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Lecture #12

Principal Component Analysis is

• a tool to analyze the data

• a tool to do dimensionality reduction
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Basic concepts needed

• data analysis
measures of center and spread, covariance and correlation

• linear algebra
eigenvectors, eigenvalues, dot product, basis
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Data analysis

How two features are related

Both covariance and correlation indicate how closely two features relationship
follows a straight line.

Covariance cov(X ,Y ) is a measure of the joint variability of two random
variables X and Y

cov(X ,Y ) = E [(X − EX )(Y − EY )]

The magnitude of the covariance is not easy to interpret because it is not
normalized and hence depends on the magnitudes of the variables. Therefore
normalize the covariance → Pearson correlation coefficient

−1 ≤ ρX ,Y = cov(X ,Y )
σXσY

≤ +1
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Data analysis

Covariance matrix of features A1, . . . ,Am

COV(A1, . . . ,Am) =


var(A1) cov(A1,A2) . . . cov(A1,Am)

cov(A2,A1) var(A2) . . . cov(A2,Am)
. . . . . . . . . . . .

cov(Am,A1) cov(Am,A2) . . . var(Am)


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Data analysis
Auto data set

> cov(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 60.91814 -10.352928 -233.85793 -5517.441
# cylinders -10.35293 2.909696 55.34824 1300.424
# horsepower -233.85793 55.348244 1481.56939 28265.620
# weight -5517.44070 1300.424363 28265.62023 721484.709

> cor(Auto[c("mpg", "cylinders", "horsepower", "weight")])

# mpg cylinders horsepower weight
# mpg 1.0000000 -0.7776175 -0.7784268 -0.8322442
# cylinders -0.7776175 1.0000000 0.8429834 0.8975273
# horsepower -0.7784268 0.8429834 1.0000000 0.8645377
# weight -0.8322442 0.8975273 0.8645377 1.0000000
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Linear algebra

Eigenvector u, eigenvalue λ: A · u = λu
• u does not change its direction under the transformation
• λu scales a vector u by λ; it changes its length, not its direction

1 The covariance matrix of X is an m×m symmetric matrix given by 1
n−1XX

>

2 Any symmetric matrix m ×m has a set of orthonormal eigenvectors
v1, v2, . . . , vm associated with eigenvalues λ1, λ2, . . . , λm
• for any i , A · vi = λivi
• ||vi || = 1
• vi · vj = 0 if i 6= j

3 A is a symmetric m×m matrix and E is an m×m matrix whose i-th column
is the i-th eigenvector of A. The eigenvectors are ordered in terms of
decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A = E ·D · E>

4 If the rows of E are orthogonal, then E−1 = E>
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Linear algebra

Basis of Rm is a set of linearly independent vectors u1, . . . ,um

• none of them is a linear combination of other vectors

• ui · uj = 0, i , j = 1, . . .m, i 6= j

• any u = c1u1 + · · ·+ cmum

• for example, the standard basis of the 3 -dimensional Euclidean space R3

consists of x = 〈1, 0, 0〉, y = 〈0, 1, 0〉, z = 〈0, 0, 1〉. It is an example of
orthonormal basis, so called naive basis I
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Principal Component Analysis

Representation of Data = {xi , xi = 〈x1i , . . . , xmi〉}, |Data| = n for PCA

X =


x11 . . . x1n
x21 . . . x2n
. . . . . . . . .
xm1 . . . xmn


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PCA

Which features to keep?
• features that change a lot, i.e. high variance

• features that do not depend on others, i.e. low covariance

Which features to ignore?
• features with some noise, i.e. low variance
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PCA principles

1 high correlation ∼ high redundancy

2 the most important feature has the largest variance
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PCA

• Question

Is there any other representation of X to extract the most important features?

• Answer

Use another basis

P> · X = Z

where P transforms X into Z
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PCA
Heading for P

P =


p11 . . . . . . p1m
p21 . . . . . . p2m
. . . . . . . . . . . .
pm1 . . . . . . pmm



• principal components of X are the vectors pi = 〈p1i , . . . , pmi〉

• principal component loadings of pi are the elements pi1, . . . , pim
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PCA
Heading for P

Z =


p1 · x1 . . . . . . p1 · xn
p2 · x1 . . . . . . p2 · xn
. . . . . . . . . . . .

pm · x1 . . . . . . pm · xn


i-principal component scores of n instances are pi · x1,pi · x2, . . . ,pi · xn
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PCA
Heading for P
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PCA
Heading for P

• What is a good choice of P?

• What features we would like Z to exhibit?

Goal: Z is a new representation of X

The new features are linear combinations of the original features whose weights
are given by P.

The covariance matrix of Z is diagonal and the entries on the diagonal are in
descending order, i.e. the covariance of any pair of distinct features is zero, and
the variance of each of our new features is listed along the diagonal.

NPFL054, 2018 Hladká & Holub Lecture 12, page 17/30



PCA
Heading for P

• principal components are new basis vectors to represent xj , j = 1, . . . , n

• pi · xj is a projection of xj on pi

• changing the basis does not change data, it changes their representation

Covariance matrix cov(A1,A2, . . . ,Am)

• on the diagonal, large values correspond to interesting structure

• off the diagonal, large values correspond to high redundancy
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Derivation of PCA

1 preprocessing Data
mean normalization to get centered data → X

2 cov(X) = A = 1
n−1XX

>

3 Compute eigenvectors v1, . . . , vm and eigenvalues λ1, . . . , λm of A

4 Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest
to lowest: p1, . . . ,pm, λ1 ≥ λ2 ≥ · · · ≥ λm

5 The eigenvectors p1, . . . ,pm become columns of P

pi =

p1i
. . .
pmi


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Properties of PCA

P> · X = Z

Z =


p1 · x1 . . . . . . p1 · xn
p2 · x1 . . . . . . p2 · xn
. . . . . . . . . . . .

pm · x1 . . . . . . pm · xn



• The i-th diagonal value of cov(Z) is the variance of X along pi.
• We calculate a rotation of the original coordinate system such that all

non-diagonal elements of the new covariance matrix become zero.
• The principal components define the basis of the new coordinate axes and

the eigenvalues correspond to the diagonal elements of the new covariance
matrix.

• So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

cov(P> · X) see p.49.1= 1
n − 1(P> · X) · (P> · X)> =

1
n − 1P

> · X · X> · P let A=X·X>

= 1
n − 1P

> · A · P =

see p.49.3= 1
n − 1P

>·(P·D·P>)·P see p.49.4= 1
n − 1P

>·(P>)−1D·P>·(P>)−1 = 1
n − 1D
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Properties of PCA

A geometric interpretation for the first principal component p1

It defines a direction in feature space along which the data vary the most. If we
project the n instances x1, . . . , xn onto this direction, the projected values are the
principal component scores z11, . . . , zn1 themselves.
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Proportion of Variance Explained (PVE)

The fraction of variance explained by a k-th principal component PVE(pk) is the
ratio between the variance of that principal component and the total variance.

• total variance in X:
∑m

j=1 var(Aj) =
∑m

i=1
1
n

∑n
i=1 x2

ij
(assuming feature normalization)

• variance expressed by pk : 1
n

∑n
i=1 z2

ki

• PVE(pk) =
∑n

i=1
z2

ki∑m
i=1

∑n
i=1

x2
ij

• PVE(p1, . . . ,pM) =
∑M

i=1 PVE(pi), M ≤ m
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PCA
Auto data set

> a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
> summary(pca.a)

# Importance of components:
# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA
Auto data set

Scree plot
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PCA
Auto data set

> pca.a$rotation
PC1 PC2 PC3 PC4

mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

• PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

• PC2 places most of its weight on mpg and less weight on the other three
features.
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PCA
Auto data set
A biplot displays both the PC scores and the PC loadings.
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PCA
Auto data set

The biplot for the Auto data set is showing
• the scores of each example (i.e., cars) on the first two principal components

with axes on the top and right
– see the id cars in black

• the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
– see the red arrows
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PCA

In general, a m × n matrix X has min(n − 1,m) distinct principal components.

• Question
How many principal components are needed?

• Answer
There is no single answer to this question. Study scree plots.
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Summary of Examination Requirements

• Principal Component Analysis
data nalaysis, derivation, scree plot, biplot
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