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Lecture #12

Principal Component Analysis is

® a tool to analyze the data

® 3 tool to do dimensionality reduction
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Auto data set
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Basic concepts needed

® data analysis
measures of center and spread, covariance and correlation

® |inear algebra
eigenvectors, eigenvalues, dot product, basis
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Data analysis

How two features are related

Both covariance and correlation indicate how closely two features relationship
follows a straight line.

Covariance cov(X, Y) is a measure of the joint variability of two random
variables X and Y

cov(X,Y) = E[(X — EX)(Y — EY)]

The magnitude of the covariance is not easy to interpret because it is not
normalized and hence depends on the magnitudes of the variables. Therefore
normalize the covariance — Pearson correlation coefficient

cov(X,Y)
OxX0y

-1 <pxy= < +1
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Data analysis

Covariance matrix of features Ay,..., A,

var(A;) cov(Ag,Ay) ... cov(Ag,An)
COV(Ar,.... Ap) = cov(Ay, Ay) var(A») .. cov(Ag, Ap)
cov(Am, A1) cov(An,,Az) ... var(Ap)
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Data analysis

Auto data set

> cov(Auto[c("mpg", "cylinders", "ho
# mpg  cylinders
# mpg 60.91814 -10.352928
# cylinders -10.35293 2.909696
# horsepower -233.85793  55.348244
# weight -5517.44070 1300.424363
> cor(Auto[c("mpg", "cylinders", "ho
# mpg cylinders h
# mpg 1.0000000 -0.7776175 -
# cylinders -0.7776175 1.0000000
# horsepower -0.7784268 0.8429834
# weight -0.8322442 0.8975273

rsepower", "weight")])

horsepower weight
-233.85793 -5517.441
55.34824  1300.424
1481.56939 28265.620
28265.62023 721484.709

rsepower", "weight")])

orsepower weight
0.7784268 -0.8322442
0.8429834 0.8975273
1.0000000 0.8645377
0.8645377 1.0000000
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Linear algebra

Eigenvector u, eigenvalue \: A-u = )\u
® u does not change its direction under the transformation

® )u scales a vector u by ); it changes its length, not its direction

@ The covariance matrix of X is an m X m symmetric matrix given by ﬁXXT

® Any symmetric matrix m X m has a set of orthonormal eigenvectors

Vi,Vo,...,V, associated with eigenvalues A1, Ao, ..., Am
® forany i, A-v; = \iv;
* vl =1

L V,"V_,':(Jifl'#j
© A is a symmetric m x m matrix and E is an m X m matrix whose i-th column
is the i-th eigenvector of A. The eigenvectors are ordered in terms of

decreasing values of their associated eigenvalues. Then there is a diagonal
matrix D such that A=E-D-E"

O If the rows of E are orthogonal, then E"1 = ET
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Linear algebra

Basis of R"™ is a set of linearly independent vectors uy, ..., up,

® none of them is a linear combination of other vectors
*u-u=0ij=1...mi#/j

® any u = cjuy + -+ + Cpuy

e for example, the standard basis of the 3-dimensional Euclidean space R3

consists of x = (1,0,0),y = (0,1,0),z = (0,0,1). It is an example of
orthonormal basis, so called naive basis |
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Principal Component Analysis

Representation of Data = {x;,x; = (xq;, ..

X11

X

Xm1
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Which features to keep?

® features that change a lot, i.e. high variance

® features that do not depend on others, i.e. low covariance

Which features to ignore?

® features with some noise, i.e. low variance
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PCA principles

@ high correlation ~ high redundancy

® the most important feature has the largest variance
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® Question

Is there any other representation of X to extract the most important features?

® Answer

Use another basis

PT.X=12

where P transforms X into Z
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PCA

Heading for P

Pi1 ... ... Pim
P— P21 ... ... P2m
Pm1 -+ .. Pmm

® principal components of X are the vectors p; = (p1j,- . -, Pmi)

® principal component loadings of p; are the elements p;1, ..., pim
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PCA

Heading for P

P1 - X1 cee oo P1e
.xn

Z— P2 - X1 I ¢ )

Pm-X1 ... ... Pm

+ Xp

i-principal component scores of n instances are p;
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PCA

Heading for P

P, \direction A A
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PCA

Heading for P

® What is a good choice of P?
® What features we would like Z to exhibit?
Goal: Z is a new representation of X

The new features are linear combinations of the original features whose weights
are given by P.

The covariance matrix of Z is diagonal and the entries on the diagonal are in
descending order, i.e. the covariance of any pair of distinct features is zero, and
the variance of each of our new features is listed along the diagonal.
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PCA

Heading for P

® principal components are new basis vectors to represent x;, j=1,...,n
® p;-X; is a projection of x; on p;

® changing the basis does not change data, it changes their representation
Covariance matrix cov(A1, Ag, ..., Ap)

® on the diagonal, large values correspond to interesting structure

® off the diagonal, large values correspond to high redundancy
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Derivation of PCA

@ preprocessing Data
mean normalization to get centered data — X

Y T
O cov(X) = A = XX
©® Compute eigenvectors v, ...,V and eigenvalues A1, ..., A, of A

O Take the eigenvectors, order them by eigenvalues, i.e. by significance, highest

to lowest: p1,...,Pm, A1 > A2 >+ > Ay
O The eigenvectors p1, ..., Pm become columns of P

Pii

pi=1-..

Pmi
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Properties of PCA

PT.X=12
P1 - X1 v oee P1Xp
ya P2 - X1 P2 - X,
Pm-X1 ... ... Pm- Xp

® The i-th diagonal value of cov(Z) is the variance of X along p;.

® We calculate a rotation of the original coordinate system such that all
non-diagonal elements of the new covariance matrix become zero.

® The principal components define the basis of the new coordinate axes and
the eigenvalues correspond to the diagonal elements of the new covariance
matrix.

® So the eigenvalues, by definition, define the variance along the corresponding
principal components.
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Properties of PCA

see p_.49.1

cov(PT - X) ﬁ(PT X)-(PT-X)T =

1
n—1

PT X - xT .P let A::X~X-r

1
PT.A.-P=
n—1

see p.49.3 1 T T T Th_1 T Tv_1 1
B P .(P-D-PT)-P PT.(PT)"'DPT.(PT) 1= D
n—1 ( ) n—1 (P (P n—1

see p.49.4 1
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Properties of PCA

A geometric interpretation for the first principal component p;

It defines a direction in feature space along which the data vary the most. If we
project the n instances xi,...,X, onto this direction, the projected values are the
principal component scores z1, ..., 2z, themselves.
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Proportion of Variance Explained (PVE)

The fraction of variance explained by a k-th principal component PVE(py) is the
ratio between the variance of that principal component and the total variance.

. . . m m 1 n 2
[ ) — =
total vaTrlance in X: E j 1.Vaut(Aj) = E i=1 7 2ai=1Xij
(assumlng feature normallzatlon)

; 1N 2
® variance expressed by px: > i, Zj;

n 2
* PVE(py) = 7;2 -
i=1 =11

* PVE(py,...,pm) = X, PVE(p;), M < m
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PCA

Auto data set

v

a <- Auto[c("mpg", "cylinders", "horsepower", "weight")]
> pca.a <- prcomp(a, scale = TRUE)
summary (pca.a)

v

# Importance of components:

# Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 1.8704 0.49540 0.40390 0.30518
Proportion of Variance 0.8746 0.06135 0.04078 0.02328
Cumulative Proportion 0.8746 0.93593 0.97672 1.00000
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PCA

Auto data set

Scree plot

Scree plot: Auto data set Scree plot: Auto data set
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PCA

Auto data set

> pca.a$rotation

PC1 PC2 PC3 PC4
mpg 0.4833271 0.8550485 -0.02994982 0.1854453
cylinders -0.5033993 0.3818233 -0.55748381 -0.5385276
horsepower -0.4984381 0.3346173 0.79129092 -0.1159714
weight -0.5143380 0.1055192 -0.24934614 0.8137252

® PC1 places approximately equal weight on cylinders, horsepower, weight
with much higher weight on mpg.

® PC2 places most of its weight on mpg and less weight on the other three
features.
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PCA

Auto data set

A biplot displays both the PC scores and the PC loadings.

Biplot: scaled Auto data set
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PCA

Auto data set

The biplot for the Auto data set is showing

® the scores of each example (i.e., cars) on the first two principal components
with axes on the top and right
— see the id cars in black

® the loading of each feature (i.e., mpg, weight, cylinders, horsepower) on
the first two principal components with axes on the bottom and left
— see the red arrows

NPFLO054, 2018 Hladka & Holub Lecture 12, page 28/30



In general, a m x n matrix X has min(n — 1, m) distinct principal components.

® Question
How many principal components are needed?

® Answer
There is no single answer to this question. Study scree plots.
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Summary of Examination Requirements

® Principal Component Analysis
data nalaysis, derivation, scree plot, biplot
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