Introduction to Machine Learning NPFL 054

http://ufal.mff.cuni.cz/course/npf1054

Barbora Hladká hladka@ufal.mff.cuni.cz Martin Holub holub@ufal.mff.cuni.cz

Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

Outline

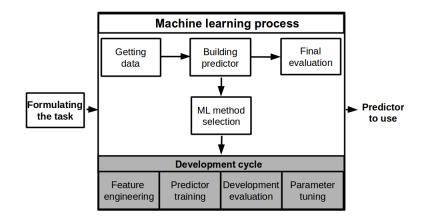
• Linear regression

• Auto data set

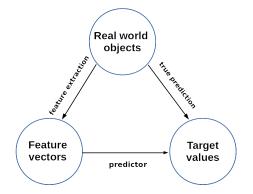
• Logistic regression

• Auto data set

Machine learning process and development cycle



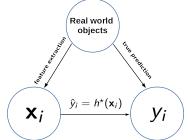
Machine learning as building a prediction function



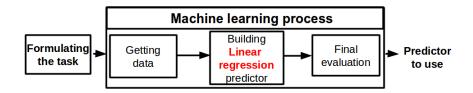
- if target values are *continuous* numbers, we speak about **regression** = estimating or predicting a continuous response
- if target values are *discrete/categorical*, we speak about **classification** = identifying group membership

Prediction function and its relation to the data

Idealized model of supervised learning



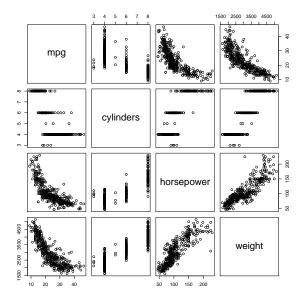
- **x**_i are **feature vectors**, y_i are true **predictions**
- prediction function h^* is the "best" of all possible hypotheses h
- learning process is searching for *h*^{*}, which means to search the hypothesis space and minimize a predefined loss function
- ideally, the learning process results in h^* so that predicted $\hat{y}_i = h^*(\mathbf{x}_i)$ is equal to the true target values y_i



392 instances on the following 9 features

mpg	Miles per gallon
cylinders	Number of cylinders between 4 and 8
displacement	Engine displacement (cu. inches)
horsepower	Engine horsepower
weight	Vehicle weight (lbs.)
acceleration	Time to accelerate from 0 to 60 mph (sec.)
year	Model year (modulo 100)
origin	Origin of car (1. American, 2. European, 3. Japanese)
name	Vehicle name

Dataset Auto from the ISLR package



h has a form of **linear function**

$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots + \Theta_m x_m = \Theta_0 + \langle \Theta_1, \dots, \Theta_m \rangle^T \mathbf{x}$$
(1)

Linear regression is a parametric method.

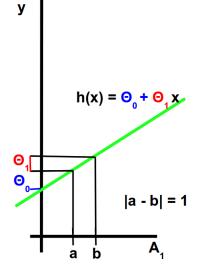
We estimate m + 1 parameters (Θ) instead of fitting data with an entirely arbitrary function h.

Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}, \ \mathbf{\Theta} = \begin{pmatrix} \Theta_0 \\ \cdots \\ \Theta_m \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1m} \\ 1 & x_{21} & \cdots & x_{2m} \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{pmatrix}$$
$$\mathbf{y} = \mathbf{X}\mathbf{\Theta}$$

Simple regression is a linear regression with a single feature.

- Attr = $\{A_1\}$
- $\mathbf{x} = \langle x_1 \rangle$
- $h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1$
- Θ₁ is the average change in y for a unit change in A₁, if A₁ is a continuous feature



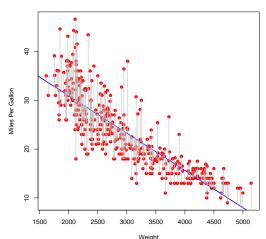
How to choose parameters Θ_0 and Θ_1 ?

Idea: Choose them so that $h(\mathbf{x})$ is close to y for training examples $\langle \mathbf{x}, y \rangle$

How to measure closeness? Using e.g., the least squares criterion

Least squares criterion

- Residual $e_i = y_i h(\mathbf{x}_i)$
- Residual sum of squares $RSS(h) = \sum_{i=1}^{n} e_i^2$



ISLR: Auto data set

Hypothesis Hypothesis parameters

$$egin{aligned} h(\mathbf{x}) &= \Theta_0 + \Theta_1 x_1 \ \mathbf{\Theta} &= \langle \Theta_0, \Theta_1
angle \end{aligned}$$

• Loss function

$$L(\boldsymbol{\Theta}) = RSS = (\mathbf{X}\boldsymbol{\Theta} - \mathbf{y})^2$$
(2)

Optimization task

$$\Theta^{\star} = \operatorname{argmin}_{\Theta} L(\Theta) \tag{3}$$

The argmin operator will give $\boldsymbol{\Theta}$ for which $L(\boldsymbol{\Theta})$ is minimal.

Simple linear regression Solving the loss function analytically

• Find the pair (Θ_0, Θ_1) that minimizes $L(\mathbf{\Theta}) = \sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)^2$

•
$$\frac{\partial L(\Theta)}{\partial \Theta_0} = -\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i)$$

 $-\sum_{i=1}^n 2(y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0 \implies \underline{\sum_{i=1}^n (y_i - \Theta_0 - \Theta_1 \mathbf{x}_i) = 0}$

•
$$\frac{\partial L(\Theta)}{\partial \Theta_1} = -\sum_{i=1}^n 2\mathbf{x}_i(y_i - \Theta_0 - \Theta_1\mathbf{x}_i)$$

 $-\sum_{i=1}^n 2\mathbf{x}_i(y_i - \Theta_0 - \Theta_1\mathbf{x}_i) = 0 \implies \sum_{i=1}^n \mathbf{x}_i(y_i - \Theta_0 - \Theta_1\mathbf{x}_i) = 0$

• Using the Normal equations calculus (see below), the minimizers are

•
$$\Theta_1 = \frac{\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})(y_i - \overline{y})}{\sum_{i=1}^n (\mathbf{x}_i - \overline{\mathbf{x}})^2},$$

• $\Theta_0 = \overline{y} - \Theta_1 \overline{\mathbf{x}}$
where $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i, \overline{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$

Simple linear regression Solving the loss function analytically

Normal Equations Calculus

Find $\boldsymbol{\Theta}$ that minimizes $\mathbf{e} = \mathbf{y} - \mathbf{X} \boldsymbol{\Theta}$

Theorem

 Θ^* is a least squares solution to $\mathbf{y} = \mathbf{X}\Theta \Leftrightarrow \Theta^*$ is a solution to the Normal equation $\mathbf{X}^T \mathbf{X} \Theta = \mathbf{X}^T \mathbf{y}$.

Simple linear regression Solving the loss function analytically

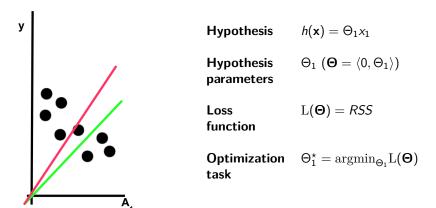
Normal Equations Calculus

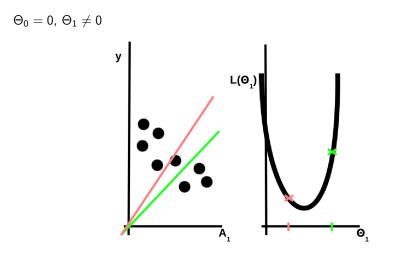
•
$$\mathbf{\Theta}^{\star} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

- Thus we work with a system of (m+1) equations in (m+1) unknowns.
- The term "normal equations" derives from the fact that the solution Θ satisfies at $\mathbf{X}^{T}(\mathbf{y} \mathbf{X}\Theta) = 0$ where the residual vector $\mathbf{y} \mathbf{X}\Theta$ is a normal to the columns of \mathbf{X} .
- (Two non-zero vectors \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{ab} = 0$.)

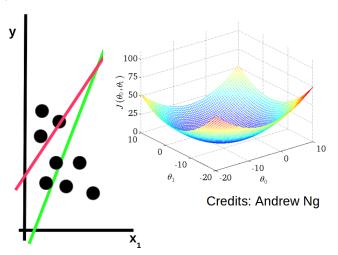
- When using the Normal equations for solving the cost function analytically one has to compute (X^TX)⁻¹X^Ty
- But it is computationally expensive:-(calculating the inverse of a $(m+1) \times (m+1)$ matrix is $O(m+1)^3$ and as *m* increases it can take a very long time to finish.
- When *m* is low one can think of Normal equations as the better option for calculation Θ, however for greater values the Gradient Descent Algorithm is much more faster.

Simplification: $\Theta_0 = 0, \ \Theta_1 \neq 0$

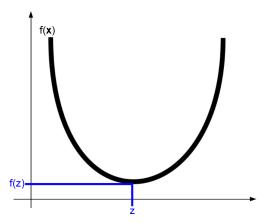




 $\Theta_0 \neq 0, \Theta_1 \neq 0$

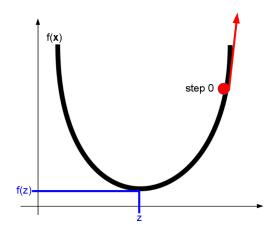


Gradient descent algorithm is an optimization algorithm to find a local minimum of a function f.

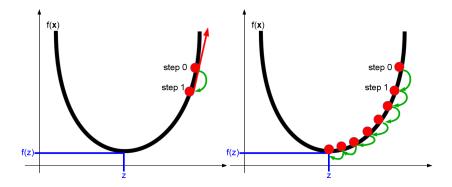


Gradient Descent Algorithm

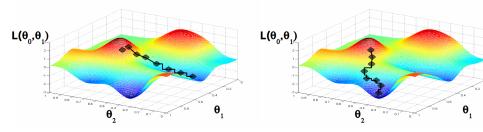
1. Start with some \mathbf{x}_0 .



2. Keep changing \mathbf{x}_i to reduce $f(\mathbf{x}_i)$ until you end up at a minimum.



Gradient Descent Algorithm



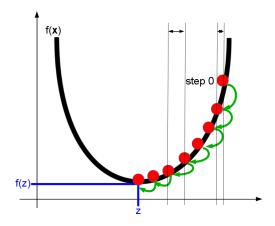
Credits: Andrew Ng

- We are seeking the solution to the minimum of a function $f(\mathbf{x})$. Given some initial value \mathbf{x}_0 , we can change its value in many directions.
- What is the best direction to minimize f? We take the gradient ∇f of f

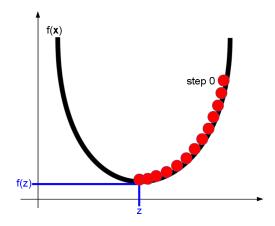
$$\nabla f(x_1, x_2, \dots, x_m) = \langle \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_1}, \dots, \frac{\partial f(x_1, x_2, \dots, x_m)}{\partial x_m} \rangle$$
(4)

• Intuitively, the gradient of f at any point tells which direction is the steepest from that point and how steep it is. So we change **x** in the opposite direction to lower the function value.

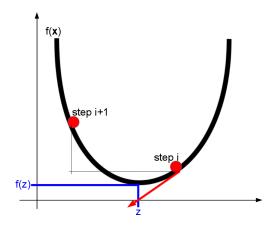
Choice of the step



Choice of the step



Choice of the step



repeat until convergence {

$$\Theta_j := \Theta_j - \alpha \frac{\partial \mathcal{L}(\Theta_0, \Theta_1)}{\partial \Theta_j}, j = 0, 1$$
(5)

(simultaneously update Θ_j for j = 0 and j = 1)

– α is a positive step-size parameter that controls how big step we'll take downhill

• If α is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

• If α is too small, GDA can be slow.

$$\frac{\partial L(\Theta_0,\Theta_1)}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)^2}{\partial \Theta_j} = \frac{\partial \sum_{i=1}^n (\Theta_0 + \Theta_1 x_{i_1} - y_i)^2}{\partial \Theta_j}$$

• $j = 0$: $\frac{\partial L(\Theta_0,\Theta_1)}{\partial \Theta_0} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$
• $j = 1$: $\frac{\partial L(\Theta_0,\Theta_1)}{\partial \Theta_1} = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$
• $\Theta_0 := \Theta_0 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)$
• $\Theta_1 := \Theta_1 - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) x_{i_1}$

Batch gradient descent uses all the training examples at each step.

Squared error function $\mathrm{L}(\Theta)$ is a convex function, so there is no local optimum, just global minimum.

Assessing the accuracy of the model Coefficient of determination R^2

 R^2 measures the proportion of variance in a target value that is reduced by taking into account ${\bf x}$

•
$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2 \ \# \text{ total variance in } Y$$

•
$$RSS = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

•
$$R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$$
 (%)

Multivariate regression is a linear regression with multiple features.

•
$$\mathbf{x} = \langle x_1, x_2, ..., x_m \rangle$$

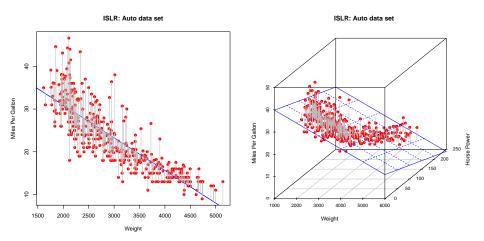
$$h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 + \dots + \Theta_m x_m \tag{6}$$

•
$$\langle \Theta_0, \Theta_1, ..., \Theta_m \rangle \in \mathcal{R}^{m+1}$$

• Define
$$x_0 = 1$$
, so $\mathbf{x} = \langle x_0, x_1, x_2, ..., x_m \rangle$

 Θ_i is the average change in y for a unit change in A₁ holding all other features fixed, if A₁ is a continuous feature Hypothesis $h(\mathbf{x}) = \boldsymbol{\Theta}^T \mathbf{x}$ Hypothesis parameters $\boldsymbol{\Theta} = \langle \Theta_0, \Theta_1, \dots, \Theta_m \rangle$ Loss function $L(\boldsymbol{\Theta}) = RSS = \sum_{i=1}^n (h(\mathbf{x}_i) - y_i)^2$ Optimization task $\boldsymbol{\Theta}^* = \operatorname{argmin}_{\boldsymbol{\Theta}} L(\boldsymbol{\Theta})$

Multivariate linear regression Auto data set



Multivariate linear regression Gradient Descent Algorithm

repeat until convergence $\{$

$$\boldsymbol{\Theta}^{K+1} := \boldsymbol{\Theta}^{K} - \alpha \nabla \mathcal{L}(\boldsymbol{\Theta}^{K}), \tag{7}$$

where

}

$$\nabla L(\boldsymbol{\Theta}^{\kappa}) = \mathbf{X}^{T} (\mathbf{X} \boldsymbol{\Theta}^{\kappa} - \mathbf{y})$$
(8)

Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a *d*-th order polynomial.

Simple regression $y = \Theta_0 + \Theta_1 x_1$

Polynomial regression $y = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_1^2 + \dots \Theta_d x_1^d$

It is still a linear model with features $A_1, A_1^2, \ldots, A_1^d$.

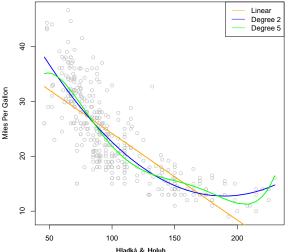
The *linear* in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\Theta_0, \Theta_1, \ldots, \Theta_d$ can be easily estimated using least squares linear regression.

Notation

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}, \, \boldsymbol{\Theta} = \begin{pmatrix} \Theta_0 \\ \cdots \\ \Theta_d \end{pmatrix}, \, \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \cdots & x_{11}^d \\ 1 & x_{21} & \cdots & x_{21}^d \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_{n1} & \cdots & x_{n1}^d \end{pmatrix}$$

$$\mathbf{y} = \mathbf{X} \boldsymbol{\Theta}$$

Polynomial regression Auto data set



ISLR: Auto data set

NPFL054, 2017

Lecture 5, page 41/73

Simple regression with a categorical feature

- assume a categorical feature with k values
- create k 1 dummy variables (DA^1 , DA^2 , ... DA^{k-1})
- then $y_i = \Theta_0 + \Theta_1 DA_i^1 + \dots + \Theta_{k-1} DA_i^{k-1}$
- Example:

\bullet mpg \sim	origin
----------------------	--------

	DA_1^1	DA_{2}^{1}
American	0	0
European	1	0
Japanase	0	1

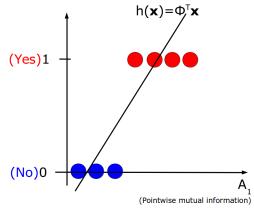
- $y_i = \Theta_0 + \Theta_1 \mathrm{DA}_1^1 + \Theta_2 \mathrm{DA}_2^1$
- $y_i = \Theta_0 + \Theta_1$ if the *i*-th car is European
- $y_i = \Theta_0 + \Theta_2$ if the *i*-th car is Japanese
- $y_i = \Theta_0$ if the *i*-th car is American

Interpretation

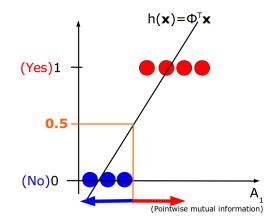
- + Θ_0 as the average mpg for American cars
- Θ_1 as the average difference in mpg between European and American cars
- Θ_2 as the average difference in mpg between Japanese and American cars

- Attr = {A₁} (e.g., Pointwise mutual information)
 Y = {0,1}
 - (Yes)1 -(No)0 (Pointwise mutual information)

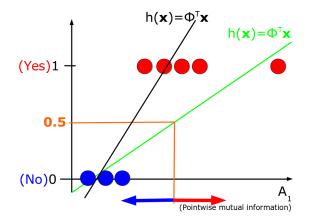
• Fit the data with a linear function h



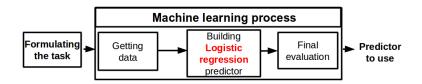
- prediction function of x
 - if *h*(**x**) ≥ 0.5, predict 1
 - if h(x) < 0.5, predict 0



Add one more training instance



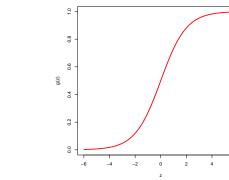
It can happen that $h(\mathbf{x}) > 1$ or $h(\mathbf{x}) < 0$ but we predict 0 and 1.



h has a form of sigmoid function $g(z) = \frac{1}{1+e^{-z}}$

$$h(\mathbf{x}) = g(\mathbf{\Theta}^{\mathsf{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{\Theta}^{\mathsf{T}}\mathbf{x}}} = \frac{e^{\mathbf{\Theta}^{\mathsf{T}}\mathbf{x}}}{1 + e^{\mathbf{\Theta}^{\mathsf{T}}\mathbf{x}}}$$

(9)



Sigmoid function

•
$$g(z) = \frac{1}{1+e^{-z}}$$

•
$$\lim_{z \to +\infty} g(z) = 1$$

•
$$\lim_{z\to -\infty} g(z) = 0$$

6

Logistic regression

• We interpret the output of $h(\mathbf{x})$ as estimated probability of y = 1 given \mathbf{x} parameterized by $\mathbf{\Theta}$, i.e. $h(\mathbf{x}) = \Pr(y = 1 | \mathbf{x}; \mathbf{\Theta})$

• the ratio of the probability of success and the probability of failure $\mathbf{odds} = \frac{h(\mathbf{x})}{1 - h(\mathbf{x})} = e^{\mathbf{\Theta}^{T}\mathbf{x}} \in (0, +\infty)$

log-odds (logit) is linear in x

$$\log \frac{h(\mathbf{x})}{1-h(\mathbf{x})} = \mathbf{\Theta}^T \mathbf{x} \in (-\infty, +\infty)$$

• recall linear regression $h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$

Logistic regression Interpretation of Θ for continuous features

Suppose $\Theta = < \Theta_0, \Theta_1 >$

- linear regression h(x) = Θ₀ + Θ₁x₁: Θ₁ gives an average change in a target value with one-unit change in A₁
- logistic regression log h(x)/(1-h(x)) = Θ₀ + Θ₁x₁: Θ₁ gives an average change in logit h(x) with one-unit change in A₁

Logistic regression Interpretation of Θ for binary features

Example:

disease			
	0 (male)	1 (female)	Total
no	74	77	151
yes	17	32	49
Total	91	109	200

- the odds of having the disease for male: $Pr(disease = yes|female = 0) / Pr(disease = no|female = 0) = \frac{17/91}{74/91} = 0.23$
- the odds of having the disease for female: $Pr(disease = yes|female = 1) / Pr(disease = no|female = 1) = \frac{32/109}{77/109} = 0.42$
- the ratio of the odds for female to the odds for male 0.42/0.23 = 1.81, i.e. the odds for female are about 81% higher than the odds for males

Logistic regression Interpretation of Θ for binary features

- $\log \frac{p_1}{1-p_1} = \Theta_0 + \Theta_1 * \text{female}$
 - If female == 0 then $\frac{p_1}{1-p_1} = e^{\Theta_0}$ - the intercept Θ_0 is the log odds for men
- $\log \frac{p_2}{1-p_2} = \Theta_0 + \Theta_1 * \text{female If female} == 1 \text{ then } \frac{p_2}{1-p_2} = e^{\Theta_0 + \Theta_1}$
- odds ratio = $\frac{p_2}{1-p_2}/\frac{p_1}{1-p_1} = e^{\Theta_1}$ - the parameter Θ_1 is the log of odds ratio between men and women

Assume the output of logistic regression $\Theta_0=-1.471,~\Theta_1=0.593.$ Then relate the odds for males and famels and the parameters:

 $-1.471 = \log(0.23), \ 0.593 = \log(1.81)$

Logistic regression

Hypothesis

$$h(\mathbf{x}) = rac{1}{1+e^{-\Theta^T \mathbf{x}}}$$

Hypothesis parameters

$$\boldsymbol{\Theta} = \langle \Theta_0, \ldots, \Theta_m \rangle$$

Loss function

$$L(\boldsymbol{\Theta}) = -\sum_{i=1}^{n} y_i \log P(y_i | \mathbf{x}_i; \boldsymbol{\Theta}) + (1 - y_i) \log(1 - P(y_i | \mathbf{x}_i; \boldsymbol{\Theta}))$$
(10)

 Optimization task $\Theta^{\star} = \operatorname{argmin}_{\Theta} L(\Theta)$

The argmin operator will give $\boldsymbol{\Theta}$ for which $L(\boldsymbol{\Theta})$ is minimal.

Logistic regression Estimating Θ by maximizing the likelihood

(Maximum likelihood principle will be taught in details later on.)

likelihood of the data

$$\mathcal{L}(y_1,\ldots,y_n;\boldsymbol{\Theta},\mathbf{X})=\prod_{i=1}^n \mathsf{P}(y_i|\mathbf{x}_i;\boldsymbol{\Theta})$$

log likelihood of the data

NPFL054, 2017

$$\begin{split} \ell(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X}) &= \log \mathcal{L}(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X}) \\ &= \sum_{i=1}^n \log \mathsf{P}(y_i | \mathbf{x}_i; \boldsymbol{\Theta}) \\ &= \sum_{i=1}^n y_i \log \mathsf{P}(y_i = 1 | \mathbf{x}_i; \boldsymbol{\Theta}) + (1 - y_i) \log(1 - \mathsf{P}(y_i = 1 | \mathbf{x}_i; \boldsymbol{\Theta}) \\ &\text{loss function } \mathrm{L}(\boldsymbol{\Theta}) = -\ell(y_1, \dots, y_n; \boldsymbol{\Theta}, \mathbf{X}) \\ & \text{Hadká & Holub} \end{split}$$

Lecture 5, page 56/73

prediction function of x

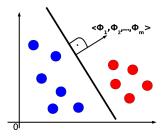
- $h(\mathbf{x}) = g(\mathbf{\Theta}^T \mathbf{x})$
- $g(z) \ge 0.5$ whenever $z \ge 0$ and g(z) < 0.5 whenever z < 0
 - if $h(\mathbf{x}) \ge 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} \ge 0$, predict 1
 - if $h(\mathbf{x}) < 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} < 0$, predict 0

partitions a feature space into two sets, one for each class. Decision boundary takes a form of function h.

Assume a linear decision boundary, called hyperplane, of the form

$$h(\mathbf{x}) = \mathbf{\Theta}^T x = \Theta_0 + \sum_{i=1}^m \Theta_i x_i$$

where direction of $\langle \Theta_1, \Theta_2, \dots, \Theta_m \rangle$ is perpendicular to the hyperplane and Θ_0 determines position of the hyperplane with respect to the origin



- Logistic regression models imply a linear decision boundary.
- A condition for instance **x** to be on the hyperplane is $h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x} = 0$.
- Decision boundaries are the set of points with $\log odds = 0$

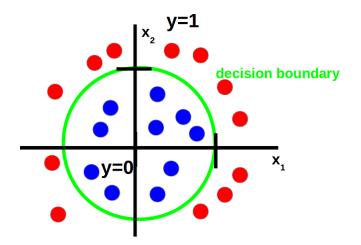
Logistic regression

- Predict y = 1 if $h(\mathbf{x}) \ge 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} \ge 0$
- Predict y = 0 if $h(\mathbf{x}) < 0.5$, i.e. $\mathbf{\Theta}^T \mathbf{x} < 0$

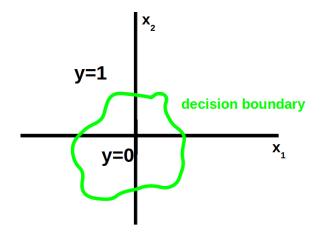


- Let $h(\mathbf{x}) = g(\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_1^2 + \Theta_4 x_2^2)$ (a higher degree polynomial)
- Assume $\Theta_0 = -1$, $\Theta_1 = 0, \Theta_2 = 0$, $\Theta_3 = 1, \Theta_4 = 1$
- Predict y = 1 if $-1 + x_1^2 + x_2^2 \ge 0$, i.e. $x_1^2 + x_2^2 \ge 1$

Non-linear decision boundary



More complicated decision boundary



Logistic regression Gradient Descent Algorithm

Loss function
$$L(\boldsymbol{\Theta}) = -\sum_{i=1}^{n} y_i \log(h(\mathbf{x}_i)) + (1 - y_i) \log(1 - h(\mathbf{x}_i))$$

Optimization task $\Theta^* = \operatorname{argmin}_{\Theta} L(\Theta)$

Use Gradient descent algorithm

Repeat until convergence

$$\Theta_j := \Theta_j - \alpha \frac{\partial \mathcal{L}(\theta)}{\partial \Theta_j} \tag{11}$$

(simultaneously update Θ_j for j = 1, ..., m)

{

Logistic regression Gradient descent algorithm

Repeat until convergence

$$\Theta_j := \Theta_j - \alpha \sum_{i=1}^n (h(\mathbf{x}_i) - y_i) \mathbf{x}_{ij}$$
(12)

(simultaneously update Θ_j for $j = 1, \dots, m$)

Have you already meet it? Yes, see linear regression.

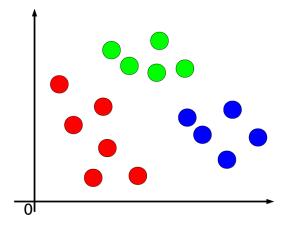
• linear regression
$$h(\mathbf{x}) = \mathbf{\Theta}^T \mathbf{x}$$

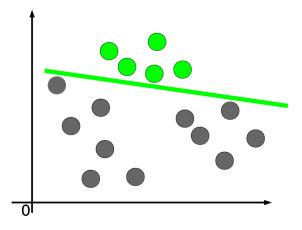
• logistic regression
$$h(\mathbf{x}) = \frac{1}{1+e^{-\Theta^T \mathbf{x}}}$$

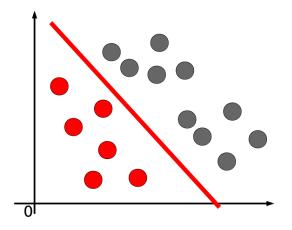
ł

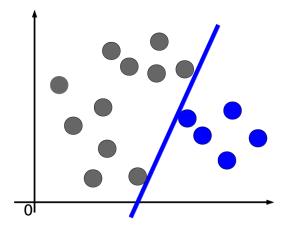
Classification of **x** by h^*

- Project x onto Θ* to convert it into a real number z in the range (-∞, +∞)
 i.e. z = (Θ*)^Tx
- 2 Map z to the range $\langle 0,1 \rangle$ using the sigmoid function $g(z)=1/(1+e^{-z})$









One-vs-all algorithm

New instance **x**:

- $h(\mathbf{x}) = \Pr(y = red | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = blue | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = green | \mathbf{x}; \Theta)$

Classify **x** into class $i \in \{red, green, blue\}$ that maximizes $h(\mathbf{x})$.

- Simple linear regression
- Multivariete linear regression
- Polynomial linear regression
- Coefficient of determination
- Gradient Descent Algorithm
- Logistic regression