Outline

- **Linear regression**
 - Auto data set

- **Logistic regression**
 - Auto data set
Machine learning process and development cycle

Machine learning process

Formulating the task

Getting data → Building predictor → Final evaluation → ML method selection

Development cycle

Feature engineering → Predictor training → Development evaluation → Parameter tuning

Predictor to use
Machine learning as building a prediction function

- if target values are *continuous* numbers, we speak about **regression**
 = estimating or predicting a continuous response
- if target values are *discrete/categorical*, we speak about **classification**
 = identifying group membership
Idealized model of supervised learning

- x_i are feature vectors, y_i are true predictions
- prediction function h^* is the “best” of all possible hypotheses h
- learning process is searching for h^*, which means to search the hypothesis space and minimize a predefined loss function
- ideally, the learning process results in h^* so that predicted $\hat{y}_i = h^*(x_i)$ is equal to the true target values y_i
Linear regression
Dataset Auto from the ISLR package

392 instances on the following 9 features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpg</td>
<td>Miles per gallon</td>
</tr>
<tr>
<td>cylinders</td>
<td>Number of cylinders between 4 and 8</td>
</tr>
<tr>
<td>displacement</td>
<td>Engine displacement (cu. inches)</td>
</tr>
<tr>
<td>horsepower</td>
<td>Engine horsepower</td>
</tr>
<tr>
<td>weight</td>
<td>Vehicle weight (lbs.)</td>
</tr>
<tr>
<td>acceleration</td>
<td>Time to accelerate from 0 to 60 mph (sec.)</td>
</tr>
<tr>
<td>year</td>
<td>Model year (modulo 100)</td>
</tr>
<tr>
<td>name</td>
<td>Vehicle name</td>
</tr>
</tbody>
</table>
Dataset Auto from the ISLR package
Linear regression

h has a form of **linear function**

\[h(x) = \Theta_0 + \Theta_1 x_1 + \ldots \Theta_m x_m = \Theta_0 + \langle \Theta_1, \ldots, \Theta_m \rangle^T x \quad (1) \]

Linear regression is a **parametric method**.

We estimate \(m + 1 \) parameters (\(\Theta \)) instead of fitting data with an entirely arbitrary function \(h \).
Linear regression

Notation

\[y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \Theta = \begin{pmatrix} \Theta_0 \\ \vdots \\ \Theta_m \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1m} \\ 1 & x_{21} & \cdots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nm} \end{pmatrix} \]

\[y = X\Theta \]
Simple regression is a linear regression with a single feature.

- \(\text{Attr} = \{A_1\} \)
- \(\mathbf{x} = \langle x_1 \rangle \)
- \(h(\mathbf{x}) = \Theta_0 + \Theta_1 x_1 \)
- \(\Theta_1 \) is the average change in \(y \) for a unit change in \(A_1 \), if \(A_1 \) is a continuous feature
How to choose parameters Θ_0 and Θ_1?

Idea: Choose them so that $h(x)$ is close to y for training examples $\langle x, y \rangle$

How to measure closeness? Using e.g., the **least squares criterion**
Least squares criterion

- Residual $e_i = y_i - h(x_i)$
- Residual sum of squares $RSS(h) = \sum_{i=1}^{n} e_i^2$
Simple linear regression

Hypothesis

\[h(x) = \Theta_0 + \Theta_1 x_1 \]

Hypothesis parameters

\[\Theta = \langle \Theta_0, \Theta_1 \rangle \]

- Loss function

\[L(\Theta) = RSS = (X\Theta - y)^2 \] \hspace{1cm} (2)

- Optimization task

\[\Theta^* = \arg\min_{\Theta} L(\Theta) \] \hspace{1cm} (3)

The \arg\min operator will give \(\Theta \) for which \(L(\Theta) \) is minimal.
Simple linear regression
Solving the loss function analytically

• Find the pair \((\Theta_0, \Theta_1)\) that minimizes \(L(\Theta) = \sum_{i=1}^{n} (y_i - \Theta_0 - \Theta_1 x_i)^2\)

\[\frac{\partial L(\Theta)}{\partial \Theta_0} = - \sum_{i=1}^{n} 2(y_i - \Theta_0 - \Theta_1 x_i) \]
\[- \sum_{i=1}^{n} 2(y_i - \Theta_0 - \Theta_1 x_i) = 0 \implies \sum_{i=1}^{n} (y_i - \Theta_0 - \Theta_1 x_i) = 0 \]

\[\frac{\partial L(\Theta)}{\partial \Theta_1} = - \sum_{i=1}^{n} 2x_i(y_i - \Theta_0 - \Theta_1 x_i) \]
\[- \sum_{i=1}^{n} 2x_i(y_i - \Theta_0 - \Theta_1 x_i) = 0 \implies \sum_{i=1}^{n} x_i(y_i - \Theta_0 - \Theta_1 x_i) = 0 \]

• Using the Normal equations calculus (see below), the minimizers are

\[\Theta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} \]

\[\Theta_0 = \bar{y} - \Theta_1 \bar{x} \]

where \(\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i\)
Simple linear regression
Solving the loss function analytically

Normal Equations Calculus

Find Θ that minimizes $e = y - X\Theta$

Theorem

$\Theta^* \text{ is a least squares solution to } y = X\Theta \iff \Theta^* \text{ is a solution to the Normal equation } X^TX\Theta = X^Ty.$
Simple linear regression
Solving the loss function analytically

Normal Equations Calculus

- $\Theta^* = (X^T X)^{-1} X^T y$
- Thus we work with a system of $(m + 1)$ equations in $(m + 1)$ unknowns.
- The term "normal equations" derives from the fact that the solution Θ satisfies at $X^T(y - X\Theta) = 0$ where the residual vector $y - X\Theta$ is a normal to the columns of X.
- (Two non-zero vectors a and b are orthogonal if and only if $ab = 0$.)
Simple linear regression
Solving the loss function analytically

- When using the Normal equations for solving the cost function analytically one has to compute $(X^T X)^{-1} X^T y$
- But it is computationally expensive:-(calculating the inverse of a $(m + 1) \times (m + 1)$ matrix is $O(m + 1)^3$ and as m increases it can take a very long time to finish.
- When m is low one can think of Normal equations as the better option for calculation Θ, however for greater values the Gradient Descent Algorithm is much more faster.
Simple linear regression

Gradient Descent Algorithm

Simplification: $\Theta_0 = 0, \Theta_1 \neq 0$

Hypothesis: $h(x) = \Theta_1 x_1$

Hypothesis parameters: Θ_1 ($\Theta = \langle 0, \Theta_1 \rangle$)

Loss function: $L(\Theta) = RSS$

Optimization task: $\Theta_1^* = \arg\min_{\Theta_1} L(\Theta)$
$\theta_0 = 0, \theta_1 \neq 0$
\[\Theta_0 \neq 0, \Theta_1 \neq 0 \]
Gradient descent algorithm is an optimization algorithm to find a local minimum of a function \(f \).
1. Start with some \(x_0 \).
2. Keep changing x_i to reduce $f(x_i)$ until you end up at a minimum.
Gradient Descent Algorithm

Credits: Andrew Ng
Gradient Descent Algorithm

• We are seeking the solution to the minimum of a function $f(x)$. Given some initial value x_0, we can change its value in many directions.

• What is the best direction to minimize f? We take the gradient ∇f of f

$$\nabla f(x_1, x_2, \ldots, x_m) = \langle \frac{\partial f(x_1, x_2, \ldots, x_m)}{\partial x_1}, \ldots, \frac{\partial f(x_1, x_2, \ldots, x_m)}{\partial x_m} \rangle$$ (4)

• Intuitively, the gradient of f at any point tells which direction is the steepest from that point and how steep it is. So we change x in the opposite direction to lower the function value.
Gradient Descent Algorithm

Choice of the step
Choice of the step

\[f(x) \]

\[f(z) \]

Step 0

\[z \]
Gradient Descent Algorithm

Choice of the step

![Graph showing the choice of the step in gradient descent algorithm. The function f(x) is plotted, with points labeled as step i and step i+1. The point z is also marked, showing the direction of the step.](image)
repeat until convergence {

$$\Theta_j := \Theta_j - \alpha \frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_j}, j = 0, 1$$

(simultaneously update Θ_j for $j = 0$ and $j = 1$)

}

α is a positive step-size parameter that controls how big step we’ll take downhill.
• If α is too large, GDA can overshoot the minimum. It may fail to converge, or even diverge.

• If α is too small, GDA can be slow.
Simple linear regression

Gradient Descent Algorithm

\[
\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_j} = \frac{\partial}{\partial \Theta_j} \sum_{i=1}^{n} (h(x_i) - y_i)^2 = \frac{\partial}{\partial \Theta_j} \sum_{i=1}^{n} (\Theta_0 + \Theta_1 x_i - y_i)^2
\]

- \(j = 0 \): \(\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_0} = \sum_{i=1}^{n} (h(x_i) - y_i) \)
- \(j = 1 \): \(\frac{\partial L(\Theta_0, \Theta_1)}{\partial \Theta_1} = \sum_{i=1}^{n} (h(x_i) - y_i) x_i \)

\[
\Theta_0 := \Theta_0 - \alpha \sum_{i=1}^{n} (h(x_i) - y_i) \\
\Theta_1 := \Theta_1 - \alpha \sum_{i=1}^{n} (h(x_i) - y_i) x_i
\]

Batch gradient descent uses all the training examples at each step.
Squared error function $L(\Theta)$ is a convex function, so there is no local optimum, just global minimum.
Assessing the accuracy of the model

Coefficient of determination R^2

R^2 measures the proportion of variance in a target value that is reduced by taking into account x

- $TSS = \sum_{i=1}^{n} (y_i - \bar{y})^2$ # total variance in Y
- $RSS = \sum_{i=1}^{n} (y_i - \hat{y})^2$
- $R^2 = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}$ (%)
Multivariate linear regression is a linear regression with multiple features.

- \(x = \langle x_1, x_2, \ldots, x_m \rangle \)

\[
h(x) = \Theta_0 + \Theta_1 x_1 + \ldots + \Theta_m x_m
\]

- \(\langle \Theta_0, \Theta_1, \ldots, \Theta_m \rangle \in \mathbb{R}^{m+1} \)
- Define \(x_0 = 1 \), so \(x = \langle x_0, x_1, x_2, \ldots, x_m \rangle \)
- \(\Theta_i \) is the average change in \(y \) for a unit change in \(A_1 \) holding all other features fixed, if \(A_1 \) is a continuous feature
Multivariate linear regression

Hypothesis: \(h(x) = \Theta^T x \)

Hypothesis parameters: \(\Theta = \langle \Theta_0, \Theta_1, \ldots, \Theta_m \rangle \)

Loss function: \(L(\Theta) = RSS = \sum_{i=1}^{n} (h(x_i) - y_i)^2 \)

Optimization task: \(\Theta^* = \text{argmin}_\Theta L(\Theta) \)
Multivariate linear regression

Auto data set

ISLR: Auto data set

Weight

Miles Per Gallon

ISLR: Auto data set

Horse Power

ISLR: Auto data set

Weight

Horse Power

Miles Per Gallon

Weight
repeat until convergence

$$\Theta^{K+1} := \Theta^K - \alpha \nabla L(\Theta^K), \quad (7)$$

where

$$\nabla L(\Theta^K) = X^T (X\Theta^K - y) \quad (8)$$

}
Polynomial regression is an extension of linear regression where the relationship between features and target value is modelled as a d-th order polynomial.

Simple regression

$$y = \Theta_0 + \Theta_1 x_1$$

Polynomial regression

$$y = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_1^2 + \ldots + \Theta_d x_1^d$$

It is still a linear model with features $A_1, A_1^2, \ldots, A_1^d$.

The *linear* in linear model refers to the hypothesis parameters, not to the features. Thus, the parameters $\Theta_0, \Theta_1, \ldots, \Theta_d$ can be easily estimated using least squares linear regression.
Polynomial regression

Notation

\[y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad \Theta = \begin{pmatrix} \Theta_0 \\ \vdots \\ \Theta_d \end{pmatrix}, \quad X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{pmatrix} \]

\[y = X\Theta \]
Polynomial regression
Auto data set

ISLR: Auto data set

- Orange line: Linear
- Blue line: Degree 2
- Green line: Degree 5
Simple regression with a categorical feature

• assume a categorical feature with \(k \) values
• create \(k - 1 \) dummy variables (\(DA^1, DA^2, \ldots DA^{k-1} \))
• then \(y_i = \Theta_0 + \Theta_1 DA^1_i + \cdots + \Theta_{k-1} DA^{k-1}_i \)

Example:

- \(mpg \sim \text{origin} \)

<table>
<thead>
<tr>
<th></th>
<th>(DA^1_i)</th>
<th>(DA^2_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>European</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Japanese</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- \(y_i = \Theta_0 + \Theta_1 DA^1_i + \Theta_2 DA^2_i \)
- \(y_i = \Theta_0 + \Theta_1 \) if the \(i \)-th car is European
- \(y_i = \Theta_0 + \Theta_2 \) if the \(i \)-th car is Japanese
- \(y_i = \Theta_0 \) if the \(i \)-th car is American

Interpretation

• \(\Theta_0 \) as the average mpg for American cars
• \(\Theta_1 \) as the average difference in mpg between European and American cars
• \(\Theta_2 \) as the average difference in mpg between Japanese and American cars
- $Attr = \{ A_1 \}$ (e.g., Pointwise mutual information)
- $Y = \{ 0, 1 \}$
Linear regression on binary classification

- Fit the data with a linear function h

$$h(x) = \Phi^T x$$

(Pointwise mutual information)

(Yes) 1

(No) 0

A_1
Linear regression on binary classification

- prediction function of x
 - if $h(x) \geq 0.5$, predict 1
 - if $h(x) < 0.5$, predict 0
Linear regression on binary classification

- Add one more training instance
It can happen that $h(x) > 1$ or $h(x) < 0$ but we predict 0 and 1.
Logistic regression

Machine learning process

Formulating the task

Getting data

Building Logistic regression predictor

Final evaluation

Predictor to use
Logistic regression

h has a form of **sigmoid function** $g(z) = \frac{1}{1 + e^{-z}}$

$$h(x) = g(\Theta^T x) = \frac{1}{1 + e^{-\Theta^T x}} = \frac{e^{\Theta^T x}}{1 + e^{\Theta^T x}}$$ (9)
Sigmoid function

- \(g(z) = \frac{1}{1 + e^{-z}} \)
- \(\lim_{z \to +\infty} g(z) = 1 \)
- \(\lim_{z \to -\infty} g(z) = 0 \)
Logistic regression

- We interpret the output of $h(x)$ as estimated probability of $y = 1$ given x parameterized by Θ, i.e. $h(x) = \Pr(y = 1|\mathbf{x}; \Theta)$

- the ratio of the probability of success and the probability of failure
 \[
 \text{odds} = \frac{h(x)}{1 - h(x)} = e^{\Theta^T \mathbf{x}} \in (0, +\infty)
 \]

- log-odds (logit) is linear in \mathbf{x}
 \[
 \log \frac{h(x)}{1 - h(x)} = \Theta^T \mathbf{x} \in (-\infty, +\infty)
 \]

- recall linear regression $h(x) = \Theta^T \mathbf{x}$
Logistic regression

Interpretation of Θ for continuous features

Suppose $\Theta = \langle \Theta_0, \Theta_1 \rangle$

- linear regression $h(x) = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in a target value with one-unit change in A_1

- logistic regression $\log \frac{h(x)}{1-h(x)} = \Theta_0 + \Theta_1 x_1$: Θ_1 gives an average change in logit $h(x)$ with one-unit change in A_1
Logistic regression
Interpretation of Θ for binary features

Example:

<table>
<thead>
<tr>
<th>Disease</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (Male)</td>
<td>1 (Female)</td>
</tr>
<tr>
<td>No</td>
<td>74</td>
<td>77</td>
</tr>
<tr>
<td>Yes</td>
<td>17</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>109</td>
</tr>
</tbody>
</table>

- the odds of having the disease for male:
 \[\frac{Pr(\text{disease} = \text{yes} | \text{female} = 0)}{Pr(\text{disease} = \text{no} | \text{female} = 0)} = \frac{17/91}{74/91} = 0.23 \]
- the odds of having the disease for female:
 \[\frac{Pr(\text{disease} = \text{yes} | \text{female} = 1)}{Pr(\text{disease} = \text{no} | \text{female} = 1)} = \frac{32/109}{77/109} = 0.42 \]
- the ratio of the odds for female to the odds for male \(0.42/0.23 = 1.81\), i.e. the odds for female are about 81% higher than the odds for males
Logistic regression

Interpretation of Θ for binary features

- $\log \frac{p_1}{1-p_1} = \Theta_0 + \Theta_1 \times \text{female}$

 If female == 0 then $\frac{p_1}{1-p_1} = e^{\Theta_0}$
 - the intercept Θ_0 is the log odds for men

- $\log \frac{p_2}{1-p_2} = \Theta_0 + \Theta_1 \times \text{female}$ If female == 1 then $\frac{p_2}{1-p_2} = e^{\Theta_0 + \Theta_1}$

- odds ratio $= \frac{p_2}{1-p_2} / \frac{p_1}{1-p_1} = e^{\Theta_1}$
 - the parameter Θ_1 is the log of odds ratio between men and women

Assume the output of logistic regression $\Theta_0 = -1.471$, $\Theta_1 = 0.593$. Then relate the odds for males and females and the parameters:

$-1.471 = \log(0.23)$, $0.593 = \log(1.81)$
Logistic regression

Hypothesis

\[h(x) = \frac{1}{1 + e^{-\Theta^T x}} \]

Hypothesis parameters

\[\Theta = \langle \Theta_0, \ldots, \Theta_m \rangle \]

- Loss function

\[L(\Theta) = -\sum_{i=1}^{n} y_i \log P(y_i|x_i; \Theta) + (1 - y_i) \log (1 - P(y_i|x_i; \Theta)) \] \hspace{1cm} (10)

- Optimization task

\[\Theta^* = \arg\min_{\Theta} L(\Theta) \]

The argmin operator will give \(\Theta \) for which \(L(\Theta) \) is minimal.
Logistic regression
Estimating Θ by maximizing the likelihood

(Maximum likelihood principle will be taught in details later on.)

- likelihood of the data

$$L(y_1, \ldots, y_n; \Theta, X) = \prod_{i=1}^{n} P(y_i|x_i; \Theta)$$

- log likelihood of the data

$$\ell(y_1, \ldots, y_n; \Theta, X) = \log L(y_1, \ldots, y_n; \Theta, X)$$

$$= \sum_{i=1}^{n} \log P(y_i|x_i; \Theta)$$

$$= \sum_{i=1}^{n} y_i \log P(y_i|x_i; \Theta) + (1 - y_i) \log(1 - P(y_i|x_i; \Theta))$$

loss function $L(\Theta) = \ell(y_1, \ldots, y_n; \Theta, X)$
Logistic regression

prediction function of x

- $h(x) = g(\Theta^T x)$

- $g(z) \geq 0.5$ whenever $z \geq 0$ and $g(z) < 0.5$ whenever $z < 0$
 - if $h(x) \geq 0.5$, i.e. $\Theta^T x \geq 0$, predict 1
 - if $h(x) < 0.5$, i.e. $\Theta^T x < 0$, predict 0
Decision boundary

partitions a feature space into two sets, one for each class. Decision boundary takes a form of function h.
Assume a **linear** decision boundary, called **hyperplane**, of the form

\[h(x) = \Theta^T x = \Theta_0 + \sum_{i=1}^{m} \Theta_i x_i \]

where direction of \(\langle \Theta_1, \Theta_2, \ldots, \Theta_m \rangle \) is perpendicular to the hyperplane and \(\Theta_0 \) determines position of the hyperplane with respect to the origin.
• Logistic regression models imply a linear decision boundary.
• A condition for instance \mathbf{x} to be on the hyperplane is $h(\mathbf{x}) = \Theta^T \mathbf{x} = 0$.
• Decision boundaries are the set of points with log odds $= 0$.
Logistic regression

- Predict $y = 1$ if $h(x) \geq 0.5$, i.e. $\Theta^T x \geq 0$
- Predict $y = 0$ if $h(x) < 0.5$, i.e. $\Theta^T x < 0$
Non-linear decision boundary

- Let $h(x) = g(\Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \Theta_3 x_1^2 + \Theta_4 x_2^2)$ (a higher degree polynomial)
- Assume $\Theta_0 = -1, \Theta_1 = 0, \Theta_2 = 0, \Theta_3 = 1, \Theta_4 = 1$
- Predict $y = 1$ if $-1 + x_1^2 + x_2^2 \geq 0$, i.e. $x_1^2 + x_2^2 \geq 1$
Non-linear decision boundary
More complicated decision boundary

decision boundary

y=1

y=0

x_1

x_2
Logistic regression

Gradient Descent Algorithm

Loss function

\[L(\Theta) = -\sum_{i=1}^{n} y_i \log(h(x_i)) + (1 - y_i) \log(1 - h(x_i)) \]

Optimization task

\[\Theta^* = \arg\min_{\Theta} L(\Theta) \]

Use Gradient descent algorithm

Repeat until convergence

\[
\Theta_j := \Theta_j - \alpha \frac{\partial L(\theta)}{\partial \Theta_j}
\] \hspace{1cm} (11)

(simultaneously update \(\Theta_j\) for \(j = 1, \ldots, m\))

Logistic regression
Gradient descent algorithm

Repeat until convergence

\[
\Theta_j := \Theta_j - \alpha \sum_{i=1}^{n} (h(x_i) - y_i)x_{ij}
\] (simultaneously update Θ_j for $j = 1, \ldots, m$)

Have you already meet it? Yes, see linear regression.

- linear regression $h(x) = \Theta^T x$
- logistic regression $h(x) = \frac{1}{1 + e^{-\Theta^T x}}$
Classification of \(x \) by \(h^* \)

1. Project \(x \) onto \(\Theta^* \) to convert it into a real number \(z \) in the range \((-\infty, +\infty) \)

 \(\text{i.e. } z = (\Theta^*)^T x \)

2. Map \(z \) to the range \([0, 1] \) using the sigmoid function \(g(z) = 1/(1 + e^{-z}) \)
Logistic regression for multi-class classification

One-vs-all algorithm
Logistic regression for multi-class classification

One-vs-all algorithm

Diagram showing two sets of data points: one set is represented by black circles, and the other set is represented by green circles. A green line is drawn to separate the two sets of data points.
Logistic regression for multi-class classification

One-vs-all algorithm

![Diagram showing a red line separating two classes of data points. The red line is a decision boundary that discriminates between the two classes.](image)
Logistic regression for multi-class classification

One-vs-all algorithm

Diagram showing a scatter plot with two classes, one represented by grey circles and the other by blue circles, separated by a decision boundary.
Logistic regression for multi-class classification

One-vs-all algorithm

New instance \mathbf{x}:

- $h(\mathbf{x}) = \Pr(y = \text{red} | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = \text{blue} | \mathbf{x}; \Theta)$
- $h(\mathbf{x}) = \Pr(y = \text{green} | \mathbf{x}; \Theta)$

Classify \mathbf{x} into class $i \in \{\text{red}, \text{green}, \text{blue}\}$ that maximizes $h(\mathbf{x})$.
Summary of Examination Requirements

- Simple linear regression
- Multivariate linear regression
- Polynomial linear regression
- Coefficient of determination
- Gradient Descent Algorithm
- Logistic regression