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Symbol Embeddings



Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:

i-th output = P(w; = i| context)

softmax
0 eee )
. .
most| computation here \

C( Wi+ -

(oo - [' e --- .
Table 1 L
look—up ’

. P ers
incC across words

index for w;_, 1 index for Wy_3 index for w;_;

Source: Bengio, Yoshua, et al. "A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space
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Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space

Think of training-related problems when using word embeddings...
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Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space

Think of training-related problems when using word embeddings...
Embeddings get updated only rarely — only when a symbol appears.
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Properties of embeddings

GloVe Word Embedding (6B.300d) - Food Related Area
. vineyard grage laundry

fat -breakfast
Fagrance br\;:.l:r seashgre dver
. bake -
‘ ginseng glcohol - . bayou ketle
opium s . L
P . Eottle” " bermboo
cém onfecti o ovees
caclaocen fer _‘\_oner): mint - tier
colbifie - 't bandna gihond .
‘oem" T claver
. blooin,” «
- bread™, Créme bloofn.
"l 2EeE T I'I. capplitcino fawn )
clove - ggan - Lapp . _Jode'y
D . bagel selt
ehive ” arfidhoke 03558l surger .
celeriac .pasta" m?'m‘
; . ' bacon .,
chieory : fish* carp *
cutlet  chowdet -
crayfish .,

Source:
https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/
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Recurrent Networks



Why RNNs

= for loops over sequential data
= the most frequently used type of network in NLP
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General Formulation

@ * inputs: x,,...,Tp

= initial state hg:

L._Tj o
A = result of previous computation

= trainable parameter

= recurrent computation: h, = A(h,_1, ;)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

[
© ©

®_

hy = tanh (Wlhy_q;2,] +b)

= cannot propagate long-distance relations

= vanishing gradient problem
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Vanishing Gradient Problem (1)

1 T T 1 | p— | p—
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tanh z = ———" =1—tanh®z € (0,1]

1+e2= dz
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Vanishing Gradient Problem (1)

1 T T 1 | p— | p—
05 b - 08 -
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> 0 - >

04 -
05 - o2 bk -
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6 4 -2 0 2 4 6 6 4 2 0 2 4 6

X X
1— e 2= dtanhz
tanh z = ———" =1—tanh®z € (0,1]

1+e2= dz

Weights initialized ~ N (0, 1) to have gradients further from zero.
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Vanishing Gradient Problem (2)
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Vanishing Gradient Problem (2)
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Vanishing Gradient Problem (2)

v

v

v

1
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(chain rule)
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Vanishing Gradient Problem (3)

ob
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Vanishing Gradient Problem (3)

=z, (activation)

Oh, Otanh (Wph, 1 +W,x, +b)
—_ = (tanh’ is derivative of tanh)

ob 0b
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Vanishing Gradient Problem (3)

=z, (activation)

Oh, _ Otanh (Wyh, y + Wz, +) L
ab = ab (tanh’ is derivative of tanh)
B , oW, h, , OW,z, b
= tanh'(z,) % + 3 + o
=0 =1
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Vanishing Gradient Problem (3)

=z, (activation)

Oh, Otanh (Wph, 1 +W,x, +b)
—_ = (tanh’ is derivative of tanh)
0b ob
ow, h ow_x 0b
_ h/ . h't—1 Tt -
tanh’ (z;) % 3 + o
=0 =1

oh
= w tanh’(z,) atl:l + tanh’(z,)
~N(0,1) €(0;1]
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LSTMs

LSTM = Long short-term memory
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LSTMs

LSTM = Long short-term memory

t | t

0 0 — > <

Neural Network ~ Pointwise Vector

Layer Operation  Transfer ~ Concatenate Copy
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LSTMs

LSTM = Long short-term memory

N | s
A A @D
A b A
[o] [o] [tanh] (o]
| 1 N
7] O — > ‘<
Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,
= what to put on output
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Hidden State

= two types of hidden states

= h, — "public” hidden state, used an output
= ¢, — “private” memory, no non-linearities on the way

= direct flow of gradients (without multiplying by < derivatives)
= only vectors guaranteed to live in the same space are manipulated

= information highway metaphor

Cis %

&
&
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Forget Gate

fi ft =0 (Wf[htil;.wt] + bf)

hi—1

= based on input and previous state, decide what to forget from the memory
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Input Gate

it: iy =0 (W, [hy_1;52,] +0;)
tanh ~
het Cy = tanh (W, - [hy_q52,] + bc)

» C — candidate what may want to add to the memory

= 4, — decide how much of the information we want to store
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Cell State Update

ftT it > Ct:ftQCt—l +Zt®ét
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Output Gate

he A
G@nh>
ma o, =0 (W, [hy_q1;7,] +0,)
h o] hy
— > h, = 0, © tanh C,
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Here we are!

fi=0o (Wf [he_gi] + bf)
iy =0 (Wz : [htfl;'rt] + bi)
Ot =0 (Wo : [ht—l; xt] + bo)

~

C, = tanh (W, - [h,_1;2,]) + bo)

Ct = ftQCt—l +it®c~t
h, = o, © tanh C,
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Here we are!

g (Wf * [ht—l; ZEt] _|_ bf)
iy =0 (W, [hy_y;2,] + ;)

(2

Ot =0 (Wo ' [h’t—l;xt] + bo)

C, = tanh (W, - [h,_1;2,]) + bo)

Ct:ftQCt—1+it®ét
h, = o, © tanh C,

How would you implement it efficiently?
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Here we are!

fi=0o (Wf [he_gi] + bf)
Iy =0 (Wz : [htq;xt] + bi)
Ot =0 (Wo : [h’t—l;xt] + bo)

ét = tanh (W, - [ht—l; xt] +bc)
Ct:ftQCt—1+it®ét
h, = o, © tanh C,

How would you implement it efficiently?

Compute all gates in a single matrix multiplication.
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Gated Recurrent Units

zp =0 (W,lhy q524] +0,)

ry =0 (W hy_1;2,] +0,)

th = tanh (W(r, © hy_q;24])
hy=(1—2)0h, 1 +20h,

el
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GRU and LSTM

Sequence-to-Sequence Learning using Recurrent Neural Networks

GRU

¢ =0 (Wz[h’tfl; mt] + bz)
Ty =0 (Wr[htfl;xt] + b'r’)

hy = tanh (W(r, © hy_q;2,])
hy=(1—2,)0hy 1 +2 @7%
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GRU or LSTM?

GRU preserves the information highway property

GRU has less parameters, should learn faster
= LSTM more general (although both Turing complete)

= empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).
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Recurrent Networks

+ -
= correspond to intuition of sequential = cannot be parallelized, always need to

processing wait for previous state

= theoretically strong
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Neural Network Language Models



RNN Language Model

= Train RNN as classifier for next words (unlimited history)
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RNN Language Model

= Train RNN as classifier for next words (unlimited history)

= Can be used to estimate sentence probability / perplexity — defines a distribution over
sentences
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RNN Language Model

= Train RNN as classifier for next words (unlimited history)

= Can be used to estimate sentence probability / perplexity — defines a distribution over
sentences

= We can sample from the distribution
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Two views on RNN LM

= RNN is a for loop (functional map) over sequential data
= All outputs are conditional distributions — probabilistic distribution over sequences of
words:

n
P(wl,...,wn) == HP(wz‘wzi].’...’wl)
t=1

(2
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Vanilla Sequence-to-Sequence Model



Encoder-Decoder NMT

= Exploits the conditional LM scheme
= Two networks

1. A network processing the input sentence into a single vector representation (encoder)
2. A neural language model initialized with the output of the encoder (decoder)

Sutskever, llya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.”
Advances in neural information processing systems. 2014.
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Encoder-Decoder — Image
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Encoder-Decoder Model — Code

state = np.zeros(EMB_SIZE)
for w in input_words:
input_embedding = source_embeddings [w]

state, _ = enc_cell(state, input_embedding)
prev_w = "<s>"
while prev_w != "</s>":

prev_w_embeding = target_embeddings [prev_w]

state, dec_output = dec_cell(state, prev_w_embeding)
logits = output_projection(dec_output)

prev_w = np.argmax(logits)

yield prev_w
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Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27 )

output embeddings (target language) y = (yq, ... ,yTy)
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Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27 )

output embeddings (target language) y = (yq, ..., yTy)

Encoder
initial state hg =0

final state  hp
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Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27 )

output embeddings (target language) y = (y4, ...,yTy)

Encoder
initial state hg =0

final state  hp

Decoder
initial state so = hp,
i-th decoder state s, = RNNg..(s;_1,¥;)
i-th word score tiv1 =Uy,8;.1+V,Ey; +b,, (or multi-layer projection)
output Yir1 = argmaxt, |
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Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;

= Estimated conditional distribution p, = (softmax function)
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Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)
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Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp)
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Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp) = —logp(y;)
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Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp) = —logp(y;)

~.computing 8£ is super simple
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Implementation: Runtime vs. training

A~
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Sutskever et al., “Sequence-to-Sequence Learning with Neural
Networks”, 2014

= Reverse input sequence
= Impressive empirical results — made researchers believe NMT is way to go

Evaluation on WMT14 EN — FR test set:

| method | BLEU score |
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
—"—: ensemble 4+ beam search 34.8
—"—: vanilla SMT rescoring 36.5

| Bahdanau's attention | 28.5 |

Sequence-to-Sequence Learning using Recurrent Neural Networks 32/ 41



Sutskever et al., “Sequence-to-Sequence Learning with Neural
Networks”, 2014

= Reverse input sequence
= Impressive empirical results — made researchers believe NMT is way to go

Evaluation on WMT14 EN — FR test set:

| method | BLEU score |
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
—"—: ensemble 4+ beam search 34.8
—"—: vanilla SMT rescoring 36.5

| Bahdanau's attention | 28.5 |

Why is better Bahdanau's model worse?
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.

vocabulary 160k enc, 80k dec 30k both
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs 5 epochs
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Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs

With Bahdanau's model size:

| method | BLEU score |
encoder-decoder 13.9
attention model 28.5

Sequence-to-Sequence Learning using Recurrent Neural Networks
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Attentive Sequence-to-Sequence

Learning




Main ldea

= Same as reversing input: do not force the network to catch long-distance dependencies

= Use decoder state only for target sentence dependencies and as a query for the source
word sentence

= RNN can serve as LM — it can store the language context in their hidden states
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Small Trick before We Start
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Bidirectional network

= read the input sentence from both sides

= every h; contains in fact information from the whole sentence

Sequence-to-Sequence Learning using Recurrent Neural Networks

h,

hs

B | [REE)

35/ 41



Attention Model
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Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states  h,; = [hj;hj] Vi=1..T

x
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Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states  h,; = [hj;hj] Vi=1..T
Attention energies:

6ij = UI tanh (WaS'_]_ + Ua,h] + ba)

K2
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Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states  h,; = [hj;hj] Vi=1..T

x

Attention energies: Attention distribution:

€ = v/} tanh (Was._l —i—Uahj—i—ba) o - exp (eij)

K2

¥ T,
2ol exp(egy)
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Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states  h,; = [hj;hj] Vi=1..T

x

Attention energies: Attention distribution:

€ = v} tanh (Wasi_l +Ugh; + ba) o — exp (eij)

¥ T,
2ol exp(egy)

Context vector:
TCL‘
J=1
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Attention Model in Equations (2)

Output projection:
t; =MLP (Uys;_1 + V,Ey;_1 + Coc; +b,)

..context vector is mixed with the hidden state
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Attention Model in Equations (2)

Output projection:
ti = MLP (Uos'—l + VoEyi—l + Coci + bo)

7

..context vector is mixed with the hidden state

Output distribution:

p(ys = wls; ¥s-1,¢;) < exp (Woti>w + by,
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Image Captioning

Attention over CNN for image classification:

o i %

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
i mountain in the background.

A little girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Source: Xu, Kelvin, et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.” ICML. Vol. 14. 2015.
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Reading Assignment



Vaswani, Ashish, et al. “Attention is all you need.” Advances in Neural Information
Processing Systems. 2017.
http://papers.nips.cc/paper/7181l-attention-is-all-you-need.pdf

Question:

The model uses the scaled dot-product attention which is a non-parametric variant
of the attention mechanism. Why do you think it is sufficient in this setup? Do you
think it would work in the recurrent model as well?

The way the model processes the sequence is principally different from RNNs. Does
it agree with your intuition of how language is processed?
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