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Symbol Embeddings



Discrete symbol vs. continuous representation
Simple task: predict next word given three previous:

Source: Bengio, Yoshua, et al. ”A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Embeddings

• Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
• It would mean a huge matrix every time a symbol is on the input
• Rather factorize this matrix and share the first part ⇒ embeddings
• “Embeddings” because they embed discrete symbols into a continuous space

Think of training-related problems when using word embeddings...
Embeddings get updated only rarely – only when a symbol appears.
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Properties of embeddings

Source:
https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/

Sequence-to-Sequence Learning using Recurrent Neural Networks 4/ 41



Recurrent Networks



Why RNNs

• for loops over sequential data
• the most frequently used type of network in NLP
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General Formulation

• inputs: 𝑥1, … , 𝑥𝑇
• initial state ℎ0:

• 0
• result of previous computation
• trainable parameter

• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:

new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem
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Vanishing Gradient Problem (1)
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Weights initialized ∼ 𝒩(0, 1) to have gradients further from zero.
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Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)
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Vanishing Gradient Problem (3)
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LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output
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Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way

• direct flow of gradients (without multiplying by ≤ derivatives)
• only vectors guaranteed to live in the same space are manipulated

• information highway metaphor
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Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory
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Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store
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Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
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Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡
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Here we are!

𝑓𝑡 = 𝜎 (𝑊𝑓 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.
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Gated Recurrent Units

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡
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GRU and LSTM

LSTM

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

GRU

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡
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GRU or LSTM?

• GRU preserves the information highway property
• GRU has less parameters, should learn faster
• LSTM more general (although both Turing complete)
• empirical results: it’s task-specific

Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. ”LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).
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Recurrent Networks

+

• correspond to intuition of sequential
processing

• theoretically strong

-

• cannot be parallelized, always need to
wait for previous state

Sequence-to-Sequence Learning using Recurrent Neural Networks 23/ 41



Neural Network Language Models



RNN Language Model

• Train RNN as classifier for next words (unlimited history)
<s> w1 w2 w3 w4

p(w1) p(w2) p(w3) p(w4) p(w5)

• Can be used to estimate sentence probability / perplexity → defines a distribution over
sentences

• We can sample from the distribution
<s>

~w1 ~w2 ~w3 ~w4 ~w5
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Two views on RNN LM

• RNN is a for loop (functional map) over sequential data
• All outputs are conditional distributions → probabilistic distribution over sequences of

words:
𝑃 (𝑤1, … , 𝑤𝑛) =

𝑛
∏
𝑖=1

𝑃 (𝑤𝑖|𝑤𝑖−1, … , 𝑤1)
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Vanilla Sequence-to-Sequence Model



Encoder-Decoder NMT

• Exploits the conditional LM scheme
• Two networks

1. A network processing the input sentence into a single vector representation (encoder)
2. A neural language model initialized with the output of the encoder (decoder)

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.”
Advances in neural information processing systems. 2014.
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Encoder-Decoder – Image

<s><s> x1 x2 x3 x4

~y1 ~y2 ~y3 ~y4 ~y5

Source language input + target language LM
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Encoder-Decoder Model – Code

state = np.zeros(EMB_SIZE)
for w in input_words:

input_embedding = source_embeddings[w]
state, _ = enc_cell(state, input_embedding)

prev_w = "<s>"
while prev_w != "</s>":

prev_w_embeding = target_embeddings[prev_w]
state, dec_output = dec_cell(state, prev_w_embeding)
logits = output_projection(dec_output)
prev_w = np.argmax(logits)
yield prev_w
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Encoder-Decoder Model – Formal Notation

Data
input embeddings (source language) x = (𝑥1, … , 𝑥𝑇𝑥

)
output embeddings (target language) y = (𝑦1, … , 𝑦𝑇𝑦

)

Encoder
initial state ℎ0 ≡ 0
𝑗-th state ℎ𝑗 = RNNenc(ℎ𝑗−1, 𝑥𝑗)
final state ℎ𝑇𝑥

Decoder
initial state 𝑠0 = ℎ𝑇𝑥
𝑖-th decoder state 𝑠𝑖 = RNNdec(𝑠𝑖−1, 𝑦𝑖)
𝑖-th word score 𝑡𝑖+1 = 𝑈𝑜𝑠𝑖+1 + 𝑉𝑜𝐸𝑦𝑖 + 𝑏𝑜, (or multi-layer projection)
output ̂𝑦𝑖+1 = arg max 𝑡𝑖+1
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Encoder-Decoder: Training Objective

For output word 𝑦𝑖 we have:
• Estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖

∑ exp 𝑡𝑗
(softmax function)

• Unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻( ̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41



Encoder-Decoder: Training Objective

For output word 𝑦𝑖 we have:
• Estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖

∑ exp 𝑡𝑗
(softmax function)

• Unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻( ̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41



Encoder-Decoder: Training Objective

For output word 𝑦𝑖 we have:
• Estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖

∑ exp 𝑡𝑗
(softmax function)

• Unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻( ̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝)

= − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41



Encoder-Decoder: Training Objective

For output word 𝑦𝑖 we have:
• Estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖

∑ exp 𝑡𝑗
(softmax function)

• Unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻( ̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41



Encoder-Decoder: Training Objective

For output word 𝑦𝑖 we have:
• Estimated conditional distribution ̂𝑝𝑖 = exp 𝑡𝑖

∑ exp 𝑡𝑗
(softmax function)

• Unknown true distribution 𝑝𝑖, we lay 𝑝𝑖 ≡ 1 [𝑦𝑖]

Cross entropy ≈ distance of ̂𝑝 and 𝑝:

ℒ = 𝐻( ̂𝑝, 𝑝) = E𝑝 (− log ̂𝑝) = − log ̂𝑝(𝑦𝑖)

…computing ∂ℒ
∂𝑡𝑖

is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41



Implementation: Runtime vs. training

runtime: ̂𝑦𝑗 (decoded) × training: 𝑦𝑗 (ground truth)

<s> x1 x2 x3 x4

<s>

~y1 ~y2 ~y3 ~y4 ~y5

<s>
y1 y2 y3 y4

loss
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Sutskever et al., “Sequence-to-Sequence Learning with Neural
Networks”, 2014

• Reverse input sequence
• Impressive empirical results – made researchers believe NMT is way to go

Evaluation on WMT14 EN → FR test set:
method BLEU score
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
–”–: ensemble + beam search 34.8
–”–: vanilla SMT rescoring 36.5
Bahdanau’s attention 28.5

Why is better Bahdanau’s model worse?
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Sutskever et al. × Bahdanau et al.

Sutskever et al. Bahdanau et al.

vocabulary 160k enc, 80k dec 30k both
encoder 4× LSTM, 1,000 units bidi GRU, 2,000
decoder 4× LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs 5 epochs

With Bahdanau’s model size:
method BLEU score
encoder-decoder 13.9
attention model 28.5
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Attentive Sequence-to-Sequence
Learning



Main Idea

• Same as reversing input: do not force the network to catch long-distance dependencies
• Use decoder state only for target sentence dependencies and as a query for the source

word sentence
• RNN can serve as LM — it can store the language context in their hidden states
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Small Trick before We Start

Bidirectional network

<s>
x1 x2 x3 x4

h1h0 h2 h3 h4

...

• read the input sentence from both sides
• every ℎ𝑖 contains in fact information from the whole sentence
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Attention Model

<s> x1 x2 x3 x4

~yi ~yi+1

h1h0 h2 h3 h4

...

+

×
α0

×
α1

×
α2

×
α3

×
α4

sisi-1 si+1

+
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Attention Model in Equations (1)

Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ ⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥

Attention energies:

𝑒𝑖𝑗 = 𝑣⊤
𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)

Attention distribution:

𝛼𝑖𝑗 = exp (𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp (𝑒𝑖𝑘)

Context vector:

𝑐𝑖 =
𝑇𝑥

∑
𝑗=1

𝛼𝑖𝑗ℎ𝑗
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Attention Model in Equations (2)

Output projection:

𝑡𝑖 = MLP (𝑈𝑜𝑠𝑖−1 + 𝑉𝑜𝐸𝑦𝑖−1 + 𝐶𝑜𝑐𝑖 + 𝑏𝑜)

…context vector is mixed with the hidden state

Output distribution:

𝑝 (𝑦𝑖 = 𝑤|𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖)𝑤 + 𝑏𝑤
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Attention Visualization
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Image Captioning

Attention over CNN for image classification:

Source: Xu, Kelvin, et al. ”Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.” ICML. Vol. 14. 2015.
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Reading Assignment



Reading for the Next Week

Vaswani, Ashish, et al. “Attention is all you need.” Advances in Neural Information
Processing Systems. 2017.
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

Question:
The model uses the scaled dot-product attention which is a non-parametric variant
of the attention mechanism. Why do you think it is sufficient in this setup? Do you
think it would work in the recurrent model as well?
The way the model processes the sequence is principally different from RNNs. Does
it agree with your intuition of how language is processed?

Sequence-to-Sequence Learning using Recurrent Neural Networks 41/ 41

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

	Symbol Embeddings
	Recurrent Networks
	Neural Network Language Models
	Vanilla Sequence-to-Sequence Model
	Attentive Sequence-to-Sequence Learning
	Reading Assignment

