NPFL116 Compendium of Neural Machine Translation

Sequence-to-Sequence Learning
using Recurrent Neural Networks

Jindfich Helcl, Jind¥ich Libovicky
& March 4, 2020

y Charles University 0 @ @
U\/L U - Faculty of Mathematics and Physics
F~ e

A LANGTECH Institute of Formal and Applied Linguistics T ————

Outline

Symbol Embeddings

Recurrent Networks

Neural Network Language Models
Vanilla Sequence-to-Sequence Model
Attentive Sequence-to-Sequence Learning

Reading Assignment

Sequence-to-Sequence Learning using Recurrent Neural Networks 1/ 41

Symbol Embeddings

Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:

i-th output = P(w; = i| context)

softmax
0 eee)
. .
most| computation here \

C(Wi+ -

(oo - [' e --- .
Table 1 L
look—up ’

. P ers
incC across words

index for w;_, 1 index for Wy_3 index for w;_;

Source: Bengio, Yoshua, et al. "A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Sequence-to-Sequence Learning using Recurrent Neural Networks 2/ 41

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space

Sequence-to-Sequence Learning using Recurrent Neural Networks 3/ 41

Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space

Think of training-related problems when using word embeddings...

Sequence-to-Sequence Learning using Recurrent Neural Networks 3/ 41

Embeddings

= Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
= It would mean a huge matrix every time a symbol is on the input
= Rather factorize this matrix and share the first part = embeddings

= “Embeddings” because they embed discrete symbols into a continuous space

Think of training-related problems when using word embeddings...
Embeddings get updated only rarely — only when a symbol appears.

Sequence-to-Sequence Learning using Recurrent Neural Networks 3/ 41

Properties of embeddings

GloVe Word Embedding (6B.300d) - Food Related Area
. vineyard grage laundry

fat -breakfast
Fagrance br\;:.l:r seashgre dver
. bake -
‘ ginseng glcohol - . bayou ketle
opium s . L
P . Eottle” " bermboo
cém onfecti o ovees
caclaocen fer _‘_oner): mint - tier
colbifie - 't bandna gihond .
‘oem" T claver
. blooin,” «
- bread™, Créme bloofn.
"l 2EeE T I'I. capplitcino fawn)
clove - ggan - Lapp . _Jode'y
D . bagel selt
ehive ” arfidhoke 03558l surger .
celeriac .pasta" m?'m‘
; . ' bacon .,
chieory : fish* carp *
cutlet chowdet -
crayfish .,

Source:
https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/

Sequence-to-Sequence Leari Recurrent Neural Networks

4/ a1

Recurrent Networks

Why RNNs

= for loops over sequential data
= the most frequently used type of network in NLP

Sequence-to-Sequence Learning using Recurrent Neural Networks 5/ 41

General Formulation

@ * inputs: x,,...,Tp

= initial state hg:

L._Tj o
A = result of previous computation

= trainable parameter

= recurrent computation: h, = A(h,_1, ;)

Sequence-to-Sequence Learning using Recurrent Neural Networks 6/ 41

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Sequence-to-Sequence Learning using Recurrent Neural Networks 7/ 41

RNN as a Fancy Image

® ® ® ® ®
0 - emeno
b o o e

8/ 41

Vanilla RNN

[
© ©

®_

hy = tanh (Wlhy_q;2,] +b)

= cannot propagate long-distance relations

= vanishing gradient problem

Sequence-to-Sequence Learning using Recurrent Neural Networks 9/ 41

Vanishing Gradient Problem (1)

1 T T 1 | p— | p—
05 bk - 08 -
06 -

> 0 - >

04 -
05 - w2 k -

1 L L 0 L L L
6 4 -2 0 2 4 6 6 4 2 0 2 4 6

X X
1— e 2= dtanhz
tanh z = ———" =1—tanh®z € (0,1]

1+e2= dz

Sequence-to-Sequence Learning using Recurrent Neural Networks 10/ 41

Vanishing Gradient Problem (1)

1 T T 1 | p— | p—
05 b - 08 -
06 -

> 0 - >

04 -
05 - o2 bk -

4 L L 0 L L L
6 4 -2 0 2 4 6 6 4 2 0 2 4 6

X X
1— e 2= dtanhz
tanh z = ———" =1—tanh®z € (0,1]

1+e2= dz

Weights initialized ~ N (0, 1) to have gradients further from zero.

Sequence-to-Sequence Learning using Recurrent Neural Networks 10/ 41

Vanishing Gradient Problem (2)

@—>—@
&—>—@

® O
1
» A — A
& & -

!
A

11/ 41

Vanishing Gradient Problem (2)

v

v

@—>—@

v

@—»>—>@
>0

®
I
A
I

0F;11
ob

®
:
®

Q—':D—»Q

11/ 41

Vanishing Gradient Problem (2)

v

v

v

1
§ 1l

0F; _ OF;;; 0Ohyy
ob Ohy 1 ob

(chain rule)

11/ 41

Vanishing Gradient Problem (3)

ob

Sequence-to-Sequence Learning using Recurrent Neural Networks 12/ 41

Vanishing Gradient Problem (3)

=z, (activation)

Oh, Otanh (Wph, 1 +W,x, +b)
—_ = (tanh’ is derivative of tanh)

ob 0b

Sequence-to-Sequence Learning using Recurrent Neural Networks 12/ 41

Vanishing Gradient Problem (3)

=z, (activation)

Oh, _ Otanh (Wyh, y + Wz, +) L
ab = ab (tanh’ is derivative of tanh)
B , oW, h, , OW,z, b
= tanh'(z,) % + 3 + o
=0 =1

Sequence-to-Sequence Learning using Recurrent Neural Networks 12/ 41

Vanishing Gradient Problem (3)

=z, (activation)

Oh, Otanh (Wph, 1 +W,x, +b)
—_ = (tanh’ is derivative of tanh)
0b ob
ow, h ow_x 0b
_ h/ . h't—1 Tt -
tanh’ (z;) % 3 + o
=0 =1

oh
= w tanh’(z,) atl:l + tanh’(z,)
~N(0,1) €(0;1]

Sequence-to-Sequence Learning using Recurrent Neural Networks 12/ 41

LSTMs

LSTM = Long short-term memory

Sequence-to-Sequence Learning using Recurrent Neural Networks 13/ 41

LSTMs

LSTM = Long short-term memory

t | t

0 0 — > <

Neural Network ~ Pointwise Vector

Layer Operation Transfer ~ Concatenate Copy

Sequence-to-Sequence Learning using Recurrent Neural Networks 13/ 41

LSTMs

LSTM = Long short-term memory

N | s
A A @D
A b A
[o] [o] [tanh] (o]
| 1 N
7] O — > ‘<
Neural Network Pointwise Vector
Layer Operation Transfer Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,
= what to put on output

Sequence-to-Sequence Learning using Recurrent Neural Networks 13/ 41

Hidden State

= two types of hidden states

= h, — "public” hidden state, used an output
= ¢, — “private” memory, no non-linearities on the way

= direct flow of gradients (without multiplying by < derivatives)
= only vectors guaranteed to live in the same space are manipulated

= information highway metaphor

Cis %

&
&

Sequence-to-Sequence Learning using Recurrent Neural Networks 14/ 41

Forget Gate

fi ft =0 (Wf[htil;.wt] + bf)

hi—1

= based on input and previous state, decide what to forget from the memory

Sequence-to-Sequence Learning using Recurrent Neural Networks 15/ 41

Input Gate

it: iy =0 (W, [hy_1;52,] +0;)
tanh ~
het Cy = tanh (W, - [hy_q52,] + bc)

» C — candidate what may want to add to the memory

= 4, — decide how much of the information we want to store

Sequence-to-Sequence Learning using Recurrent Neural Networks 16/ 41

Cell State Update

ftT it > Ct:ftQCt—l +Zt®ét

Sequence-to-Sequence Learning using Recurrent Neural Networks 17/ 41

Output Gate

he A
G@nh>
ma o, =0 (W, [hy_q1;7,] +0,)
h o] hy
— > h, = 0, © tanh C,

Sequence-to-Sequence Learning using Recurrent Neural Networks 18/ 41

Here we are!

fi=0o (Wf [he_gi] + bf)
iy =0 (Wz : [htfl;'rt] + bi)
Ot =0 (Wo : [ht—l; xt] + bo)

~

C, = tanh (W, - [h,_1;2,]) + bo)

Ct = ftQCt—l +it®c~t
h, = o, © tanh C,

Sequence-to-Sequence Learning using Recurrent Neural Networks 19/ 41

Here we are!

g (Wf * [ht—l; ZEt] _|_ bf)
iy =0 (W, [hy_y;2,] + ;)

(2

Ot =0 (Wo ' [h’t—l;xt] + bo)

C, = tanh (W, - [h,_1;2,]) + bo)

Ct:ftQCt—1+it®ét
h, = o, © tanh C,

How would you implement it efficiently?

Sequence-to-Sequence Learning using Recurrent Neural Networks 19/ 41

Here we are!

fi=0o (Wf [he_gi] + bf)
Iy =0 (Wz : [htq;xt] + bi)
Ot =0 (Wo : [h’t—l;xt] + bo)

ét = tanh (W, - [ht—l; xt] +bc)
Ct:ftQCt—1+it®ét
h, = o, © tanh C,

How would you implement it efficiently?

Compute all gates in a single matrix multiplication.

Sequence-to-Sequence Learning using Recurrent Neural Networks

19/ 41

Gated Recurrent Units

zp =0 (W,lhy q524] +0,)

ry =0 (W hy_1;2,] +0,)

th = tanh (W(r, © hy_q;24])
hy=(1—2)0h, 1 +20h,

el

Sequence-to-Sequence Learning using Recurrent Neural Networks 20/ 41

GRU and LSTM

Sequence-to-Sequence Learning using Recurrent Neural Networks

GRU

¢ =0 (Wz[h’tfl; mt] + bz)
Ty =0 (Wr[htfl;xt] + b'r’)

hy = tanh (W(r, © hy_q;2,])
hy=(1—2,)0hy 1 +2 @7%

21/ 41

GRU or LSTM?

GRU preserves the information highway property

GRU has less parameters, should learn faster
= LSTM more general (although both Turing complete)

= empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).

Sequence-to-Sequence Learning using Recurrent Neural Networks 22/ 41

Recurrent Networks

+ -
= correspond to intuition of sequential = cannot be parallelized, always need to

processing wait for previous state

= theoretically strong

Sequence-to-Sequence Learning using Recurrent Neural Networks 23/ 41

Neural Network Language Models

RNN Language Model

= Train RNN as classifier for next words (unlimited history)

Sequence-to-Sequence Learning using Recurrent Neural Networks

o W W ® ®
L T
- +I+l+l+

D
I T T |
@D @D @d

}
Ak

Ok~
g

24/ 41

RNN Language Model

= Train RNN as classifier for next words (unlimited history)

= Can be used to estimate sentence probability / perplexity — defines a distribution over
sentences

Sequence-to-Sequence Learning using Recurrent Neural Networks 24/ 41

RNN Language Model

= Train RNN as classifier for next words (unlimited history)

= Can be used to estimate sentence probability / perplexity — defines a distribution over
sentences

= We can sample from the distribution

Sequence-to-Sequence Learning using Recurrent Neural Networks 24/ 41

Two views on RNN LM

= RNN is a for loop (functional map) over sequential data
= All outputs are conditional distributions — probabilistic distribution over sequences of
words:

n
P(wl,...,wn) == HP(wz‘wzi].’...’wl)
t=1

(2

Sequence-to-Sequence Learning using Recurrent Neural Networks 25/ 41

Vanilla Sequence-to-Sequence Model

Encoder-Decoder NMT

= Exploits the conditional LM scheme
= Two networks

1. A network processing the input sentence into a single vector representation (encoder)
2. A neural language model initialized with the output of the encoder (decoder)

Sutskever, llya, Oriol Vinyals, and Quoc V. Le. “Sequence to sequence learning with neural networks.”
Advances in neural information processing systems. 2014.

Sequence-to-Sequence Learning using Recurrent Neural Networks 26/ 41

Encoder-Decoder — Image

27/ 41

Encoder-Decoder Model — Code

state = np.zeros(EMB_SIZE)
for w in input_words:
input_embedding = source_embeddings [w]

state, _ = enc_cell(state, input_embedding)
prev_w = "<s>"
while prev_w != "</s>":

prev_w_embeding = target_embeddings [prev_w]

state, dec_output = dec_cell(state, prev_w_embeding)
logits = output_projection(dec_output)

prev_w = np.argmax(logits)

yield prev_w

Sequence-to-Sequence Learning using Recurrent Neural Networks 28/ 41

Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27)

output embeddings (target language) y = (yq, ... ,yTy)

Sequence-to-Sequence Learning using Recurrent Neural Networks 29/ 41

Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27)

output embeddings (target language) y = (yq, ..., yTy)

Encoder
initial state hg =0

final state hp

Sequence-to-Sequence Learning using Recurrent Neural Networks 29/ 41

Encoder-Decoder Model — Formal Notation

Data
input embeddings (source language) ~ x = (z1,..., 27)

output embeddings (target language) y = (y4, ...,yTy)

Encoder
initial state hg =0

final state hp

Decoder
initial state so = hp,
i-th decoder state s, = RNNg..(s;_1,¥;)
i-th word score tiv1 =Uy,8;.1+V,Ey; +b,, (or multi-layer projection)
output Yir1 = argmaxt, |

Sequence-to-Sequence Learning using Recurrent Neural Networks 29/ 41

Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;

= Estimated conditional distribution p, = (softmax function)

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41

Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41

Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp)

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41

Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp) = —logp(y;)

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41

Encoder-Decoder: Training Objective

For output word ¥, we have:
expt;

> expt;
= Unknown true distribution p;, we lay p, = 1 [y,]

= Estimated conditional distribution p, = (softmax function)

Cross entropy ~ distance of p and p:

£ =H(p,p) =E, (—logp) = —logp(y;)

~.computing 8£ is super simple

Sequence-to-Sequence Learning using Recurrent Neural Networks 30/ 41

Implementation: Runtime vs. training

A~

31/ 41

Sutskever et al., “Sequence-to-Sequence Learning with Neural
Networks”, 2014

= Reverse input sequence
= Impressive empirical results — made researchers believe NMT is way to go

Evaluation on WMT14 EN — FR test set:

| method | BLEU score |
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
—"—: ensemble 4+ beam search 34.8
—"—: vanilla SMT rescoring 36.5

| Bahdanau's attention | 28.5 |

Sequence-to-Sequence Learning using Recurrent Neural Networks 32/ 41

Sutskever et al., “Sequence-to-Sequence Learning with Neural
Networks”, 2014

= Reverse input sequence
= Impressive empirical results — made researchers believe NMT is way to go

Evaluation on WMT14 EN — FR test set:

| method | BLEU score |
vanilla SMT 33.0
tuned SMT 37.0
Sutskever et al.: reversed 30.6
—"—: ensemble 4+ beam search 34.8
—"—: vanilla SMT rescoring 36.5

| Bahdanau's attention | 28.5 |

Why is better Bahdanau's model worse?

Sequence-to-Sequence Learning using Recurrent Neural Networks 32/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.

Sequence-to-Sequence Learning using Recurrent Neural Networks 33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.

vocabulary 160k enc, 80k dec 30k both

Sequence-to-Sequence Learning using Recurrent Neural Networks 33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000

Sequence-to-Sequence Learning using Recurrent Neural Networks 33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units

Sequence-to-Sequence Learning using Recurrent Neural Networks 33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions

Sequence-to-Sequence Learning using Recurrent Neural Networks 33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec 30k both
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs 5 epochs

Sequence-to-Sequence Learning using Recurrent Neural Networks

33/ 41

Sutskever et al. x Bahdanau et al.

Sutskever et al. Bahdanau et al.
vocabulary 160k enc, 80k dec
encoder 4x LSTM, 1,000 units bidi GRU, 2,000
decoder 4x LSTM, 1,000 units GRU, 1,000 units
word embeddings 1,000 dimensions 620 dimensions
training time 7.5 epochs

With Bahdanau's model size:

| method | BLEU score |
encoder-decoder 13.9
attention model 28.5

Sequence-to-Sequence Learning using Recurrent Neural Networks

33/ 41

Attentive Sequence-to-Sequence

Learning

Main ldea

= Same as reversing input: do not force the network to catch long-distance dependencies

= Use decoder state only for target sentence dependencies and as a query for the source
word sentence

= RNN can serve as LM — it can store the language context in their hidden states

Sequence-to-Sequence Learning using Recurrent Neural Networks 34/ 41

Small Trick before We Start

A

S>

O,

_>
‘_

)
v

[]
[]

_>
‘_

()
v
..
[]

v
..
[]

¢
.-
"

h

Bidirectional network

= read the input sentence from both sides

= every h; contains in fact information from the whole sentence

Sequence-to-Sequence Learning using Recurrent Neural Networks

h,

hs

B | [REE)

35/ 41

Attention Model

36/ 41

Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states h,; = [hj;hj] Vi=1..T

x

Sequence-to-Sequence Learning using Recurrent Neural Networks 37/ 41

Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states h,; = [hj;hj] Vi=1..T
Attention energies:

6ij = UI tanh (WaS'_]_ + Ua,h] + ba)

K2

Sequence-to-Sequence Learning using Recurrent Neural Networks 37/ 41

Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states h,; = [hj;hj] Vi=1..T

x

Attention energies: Attention distribution:

€ = v/} tanh (Was._l —i—Uahj—i—ba) o - exp (eij)

K2

¥ T,
2ol exp(egy)

Sequence-to-Sequence Learning using Recurrent Neural Networks 37/ 41

Attention Model in Equations (1)

Inputs:

decoder state s,

encoder states h,; = [hj;hj] Vi=1..T

x

Attention energies: Attention distribution:

€ = v} tanh (Wasi_l +Ugh; + ba) o — exp (eij)

¥ T,
2ol exp(egy)

Context vector:
TCL‘
J=1

Sequence-to-Sequence Learning using Recurrent Neural Networks 37/ 41

Attention Model in Equations (2)

Output projection:
t; =MLP (Uys;_1 + V,Ey;_1 + Coc; +b,)

..context vector is mixed with the hidden state

Sequence-to-Sequence Learning using Recurrent Neural Networks 38/ 41

Attention Model in Equations (2)

Output projection:
ti = MLP (Uos'—l + VoEyi—l + Coci + bo)

7

..context vector is mixed with the hidden state

Output distribution:

p(ys = wls; ¥s-1,¢;) < exp (Woti>w + by,

Sequence-to-Sequence Learning using Recurrent Neural Networks 38/ 41

=
5 c o |
2 5E 5 5
] o A
° [n)

8 s 2 © o =] ° g g
g 5 ©589035 g3 g o g5 c S A
C o c e 30 8D S o [= c & H e kel
Foosww<g 2hH ECAH Vv 3 S z = o
= Cm C uw C a
L = a E g 25T -V

1]
convient
de

noter

que
"

accord

sur

la

zone
économique
européenne environnement
marin
est

le
moins
connu
de

a
été

signé
en
aolt
1992

environnement

<end>

<end>

39/ 41

Image Captioning

Attention over CNN for image classification:

o i %

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
i mountain in the background.

A little girl sitting on a bed with A group of Eeogle sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.

Source: Xu, Kelvin, et al. "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention.” ICML. Vol. 14. 2015.

Sequence-to-Sequence Learni current Neural Networks 40/ 41

Reading Assignment

Vaswani, Ashish, et al. “Attention is all you need.” Advances in Neural Information
Processing Systems. 2017.
http://papers.nips.cc/paper/7181l-attention-is-all-you-need.pdf

Question:

The model uses the scaled dot-product attention which is a non-parametric variant
of the attention mechanism. Why do you think it is sufficient in this setup? Do you
think it would work in the recurrent model as well?

The way the model processes the sequence is principally different from RNNs. Does
it agree with your intuition of how language is processed?

41/ 41

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

	Symbol Embeddings
	Recurrent Networks
	Neural Network Language Models
	Vanilla Sequence-to-Sequence Model
	Attentive Sequence-to-Sequence Learning
	Reading Assignment

