
Encoder-Decoder Models
Jindřich Liboviký, Jindřich Helcl

March 03, 2022

NPFL116 Compendium of Neural Machine Translation

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Model Concept

Conceptual Scheme of the Model

I am the walrus.
↓

Encoder

↓

intermediate representation

↓

Decoder

↓
Ich bin der Walros.

Neural model with a sequence of discrete
symbols as an input that generates another
sequence of discrete symbols as an output.

• pre-process source sentence
(tokenize, split into smaller units)

• convert input into vocabulary indices
• run the encoder to get an intermediate

representation (vector/matrix)
• run the decoder
• postprocess the output (detokenize)

Encoder-Decoder Models 1/ 38

Language Models and Decoders

What is a Language Model

LM = an estimator of a sentence probability given a language

• From now on: sentence = sequence of words 𝑤1, … , 𝑤𝑛
• Factorize the probability by word

i.e., no grammar, no hierarchical structure

Pr (𝑤1, … , 𝑤𝑛) = Pr(𝑤1) ⋅ Pr(𝑤2|𝑤1) ⋅ Pr(𝑤3|𝑤2, 𝑤1) ⋅ ⋯

=
𝑛

∏
𝑖
Pr (𝑤𝑖|𝑤𝑖−1, … , 𝑤1)

Encoder-Decoder Models 2/ 38

What is it good for?

• Substitute for grammar: tells what is a good sentence in a language
• Used in ASR, and statistical MT to select more probable outputs
• Being able to predict next word = proxy for knowing the language

• language modeling is training objective for word2vec
• BERT is a masked language model

• Neural decoder is a conditional language model.

Encoder-Decoder Models 3/ 38

𝑛-gram vs. Neural LMs

𝑛-gram
cool from 1990 to 2013

• Limited history = Markov assumption
• Transparent: estimated from 𝑛-gram counts in a corpus

P(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2, … , 𝑤𝑖−𝑛) ≈
𝑛

∑
𝑗=0

𝜆𝑗
𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗)

𝑐(𝑤𝑖|𝑤𝑖−1, … , 𝑤𝑖−𝑗+1)

Neural
cool since 2013

• Conditioned on RNN state which gather potentially
unlimited history

• Trained by back-propagation to maximize probability of the
training data

• Opaque, but works better (as usual with deep learning)

Encoder-Decoder Models 4/ 38

Reminder: Recurrent Neural Networks

RNN = pipeline for information

In every step some information goes in
and some information goes out.

Technically: A “for” loop applying the
same function 𝐴 on input vectors 𝑥𝑖

At training time unrolled in time:
technically just a very deep network

Image on the right: Chris Olah. Understanding LSTM Networks. A blog post: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Encoder-Decoder Models 5/ 38

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Sequence Labeling

• Assign a label to each word in a sentence.
• Tasks formulated as sequence labeling:

• Part-of-Speech Tagging
• Named Entity Recognition
• Filling missing punctuation

MLP = Multilayer perceptron
𝑛× layer: 𝜎 (𝑊𝑥 + 𝑏)

Softmax for 𝐾 classes with logits
z = (𝑧1, … , 𝑧𝐾): 𝑒𝑧𝑖

∑𝐾
𝑗=1 𝑒𝑧𝑗

𝑤𝑖
↓

lookup index in the vocabulary
↓

Embedding Lookup
↓

ℎ𝑖−1 → RNN → ℎ𝑖

↓
MLP

↓
Softmax

Encoder-Decoder Models 6/ 38

Detour: Why is softmax a good choice

Output layer with softmax (with parameters 𝑊 , 𝑏) — gets categorical distribution:

𝑃𝑦 = softmax(x) = Pr(𝑦 ∣ x) = exp{x⊤𝑊} + 𝑏
∑ exp{x⊤𝑊} + 𝑏

Network error = cross-entropy between estimated distribution and one-hot ground-truth
distribution 𝑇 = 1(𝑦∗) = (0, 0, … , 1, 0, … , 0):

𝐿(𝑃𝑦, 𝑦∗) = 𝐻(𝑃 , 𝑇) = −𝔼𝑖∼𝑇 log𝑃(𝑖)
= − ∑

𝑖
𝑇 (𝑖) log𝑃(𝑖)

= − log𝑃(𝑦∗)

Encoder-Decoder Models 7/ 38

Derivative of Cross-Entropy
Let 𝑙 = x⊤𝑊 + 𝑏, 𝑙𝑦∗ corresponds to the correct one.

∂𝐿(𝑃𝑦, 𝑦∗)
∂𝑙 = − ∂

∂𝑙 log
exp 𝑙𝑦∗

∑𝑗 exp 𝑙𝑗
= − ∂

∂𝑙 (𝑙𝑦∗ − log∑ exp 𝑙)

= 1𝑦∗ + ∂
∂𝑙 − log∑ exp 𝑙 = 1𝑦∗ − ∑1𝑦∗ exp 𝑙

∑ exp 𝑙 =

= 1𝑦∗ − 𝑃𝑦(𝑦∗)

0

1

0

1

0

1

Interpretation: Reinforce the correct logit, suppress the rest.

Encoder-Decoder Models 8/ 38

Language Model as Sequence Labeling

input symbol
one-hot vectors

embedding lookup

RNN cell
(more layers)

classifier

normalization
distribution for
the next symbol

<s>

embed

RNN

MLP

softmax

𝑃(𝑤1|<s>)

𝑤1

embed

RNN

MLP

softmax

𝑃(𝑤1| …)

𝑤2

embed

RNN

MLP

softmax

𝑃(𝑤2| …)

⋯

Encoder-Decoder Models 9/ 38

Sampling from a Language Model

embed

RNN

MLP

softmax

Pr(𝑤1|<s>)

sample

embed

RNN

MLP

softmax

Pr(𝑤1| …)

sample

embed

RNN

MLP

softmax

Pr(𝑤2| …)

sample

embed

RNN

MLP

softmax

Pr(𝑤3| …)

sample

<s>

⋯

Encoder-Decoder Models 10/ 38

Sampling from a Language Model: Pseudocode

last_w = "<s>"
state = initial_state
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state = rnn(state, last_w_embeding)
logits = output_projection(state)
last_w = vocabulary[np.random.multimial(1, logits)]
yield last_w

Encoder-Decoder Models 11/ 38

Training

Training objective: negative-log likelihood:

NLL = −
𝑛

∑
𝑖
logPr (𝑤𝑖|𝑤𝑖−1, … , 𝑤1)

I.e., maximize probability of the correct word.

• Cross-entropy between the predicted distribution and one-hot “true” distribution
• Error from word is backpropagated into the rest of network unrolled in time
• Prone to exposure bias: during trainining only well-behaved sequences, it can break

when we sample something weird at inference time

Encoder-Decoder Models 12/ 38

Generating from a Language Model

(Example from GPT-2, a Tranformer-based English language model, screenshot from
https://transformer.huggingface.co/doc/gpt2-large)

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners.

OpenAI Blog., 2019

Cool, but where is the source language?

Encoder-Decoder Models 13/ 38

https://transformer.huggingface.co/doc/gpt2-large

Conditioning the Language Model &
Attention

Conditional Language Model

Formally it is simple, condition distribution of
• target sequence y = (𝑦1, … , 𝑦𝑇𝑦

) on
• source sequence x = (𝑥1, … , 𝑥𝑇𝑥

)

Pr (𝑦1, … , 𝑦𝑛|x) =
𝑛

∏
𝑖
Pr (𝑦𝑖|𝑦𝑖−1, … , 𝑦1, x)

We need an encoder to get a representation of x!

What about just continuing an RNN…

Encoder-Decoder Models 14/ 38

Sequence-to-Sequence Model

𝑥1

embed

RNN

𝑥2

embed

RNN

𝑥3

embed

RNN

embed

RNN

MLP

softmax

Pr(𝑤1|<s>)

sample

embed

RNN

MLP

softmax

Pr(𝑤1| …)

sample

embed

RNN

MLP

softmax

Pr(𝑤2| …)

sample

embed

RNN

MLP

softmax

Pr(𝑤3| …)

sample

<s>

⋯

• The interface between encoder and decoder is a single vector
regardless the sentence length.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems 27, pages 3104–3112, Montreal, Canada, December 2014

Encoder-Decoder Models 15/ 38

Seq2Seq: Pseudocode

state = np.zeros(rnn_size)
for w in input_words:

input_embedding = source_embeddings[w]
state = enc_cell(encoder_state, input_embedding)

last_w = "<s>"
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state = dec_cell(state, last_w_embeding)
logits = output_projection(state)
last_w = vocabulary[np.argmax(logits)]
yield last_w

Encoder-Decoder Models 16/ 38

Vanila Seq2Seq: Information Bottleneck

Ich habe den Walros gesehen <s> I saw the walrus

I saw the walrus </s>

⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩

Bottleneck all information needs to run through.
A single vector must represent the entire source sentence.

Main weakness and the reason for introducing the attention.

Encoder-Decoder Models 17/ 38

The Attention Model

• Motivation: It would be nice to have variable length input representation
• RNN returns one state per word …
• …what if we were able to get only information from words we need to generate a word.

Attention = probabilistic retrieval of encoder states for
estimating probability of target words.

Query = hidden states of the decoder
Values = encoder hidden states

Encoder-Decoder Models 18/ 38

Sequence-to-Sequence Model With Attention
𝑥1

embed

RNN

RNN

ℎ1

𝑥2

embed

RNN

RNN

ℎ2

𝑥3

embed

RNN

RNN

ℎ3

<s>

embed

RNN

𝑠0

context=∑
⋅𝛼0,1

⋅𝛼0,2

⋅𝛼0,3

MLP

Softmax

Pr(𝑤1|<s>)

sample

• Encoder = bidirectional RNN
states ℎ𝑖 ≈ retrieved

values
• Decoder step starts as usual

state 𝑠0 ≈ retrieval query
• Decoder state 𝑠0 used to

compute distribution the
over encoder states

• Weighted average of encoder
states = context vector

• Decoder state & context
concatenated
MLP + Softmax predicts
next word

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate.
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015

Encoder-Decoder Models 19/ 38

Attention Model in Equations (1)

Inputs:
decoder state 𝑠𝑖
encoder states ℎ𝑗 = [⃗⃗⃗ ⃗⃗ ⃗⃗ℎ𝑗; ⃖⃖⃖ ⃖⃖ ⃖⃖ℎ𝑗] ∀𝑖 = 1 … 𝑇𝑥

Attention energies:

𝑒𝑖𝑗 = 𝑣⊤
𝑎 tanh (𝑊𝑎𝑠𝑖−1 + 𝑈𝑎ℎ𝑗 + 𝑏𝑎)

Attention distribution:

𝛼𝑖𝑗 = exp (𝑒𝑖𝑗)
∑𝑇𝑥

𝑘=1 exp (𝑒𝑖𝑘)

Context vector:

𝑐𝑖 =
𝑇𝑥

∑
𝑗=1

𝛼𝑖𝑗ℎ𝑗

Encoder-Decoder Models 20/ 38

Attention Model in Equations (2)
Output projection:

𝑡𝑖 = MLP (𝑠𝑖−1 ⊕ 𝑣𝑦𝑖−1
⊕ 𝑐𝑖)

…attention is mixed with the hidden state
(different in differnt models)

Output distribution:

𝑝 (𝑦𝑖 = 𝑘|𝑠𝑖, 𝑦𝑖−1, 𝑐𝑖) ∝ exp (𝑊𝑜𝑡𝑖 + 𝑏𝑘)𝑘

(usual trick: use transposed embeddings as 𝑊𝑜)

• Different version of attentive decoders exist
• Alternative: keep the context vector as input for the next step
• Multilayer RNNs: attention between/after layers

Encoder-Decoder Models 21/ 38

Workings of the Attentive Seq2Seq model
Ich habe den Walros gesehen <s> I saw the walrus

𝑠0 𝑠1 𝑠2 𝑠3 𝑠4

I saw the walrus </s>

⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩
⟨⟨⟨ RNN ⟨⟨⟨ RNN ⟨⟨⟨ RNN ⟨⟨⟨

⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩ RNN ⟩⟩⟩

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5

Encoder-Decoder Models 22/ 38

Seq2Seq with attention: Pseudocode (1)

state = np.zeros(emb_size)
fw_states = []
for w in input_words:

input_embedding = source_embeddings[w]
state, _ = fw_enc_cell(encoder_state, input_embedding)
fw_states.append(state)

bw_states = []
state = np.zeros(emb_size)
for w in reversed(input_words):

input_embedding = source_embeddings[w]
state, _ = bw_enc_cell(encoder_state, input_embedding)
bw_states.append(state)

enc_states = [np.concatenate(fw, bw) for fw, bw in zip(fw_states,
reversed(bw_states))]

Encoder-Decoder Models 23/ 38

Seq2Seq with attention: Pseudocode (2)

last_w = "<s>"
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state = dec_cell(state, last_w_embeding)
alphas = attention(state, enc_states)
context = sum(a * state for a, state in zip(alphas, enc_states))
logits = output_projection(np.concatenate(state, context, last_w_embeding))
last_w = np.argmax(logits)
yield last_w

Encoder-Decoder Models 24/ 38

Attention Visualization (1)

Published as a conference paper at ICLR 2015

T
h
e

a
g
re

e
m

e
n
t

o
n

th
e

E
u
ro

p
e
a
n

E
co

n
o
m

ic

A
re

a

w
a
s

si
g
n
e
d

in A
u
g
u
st

1
9
9
2

. <
e
n
d
>

L'

accord

sur

la

zone

économique

européenne

a

été

signé

en

août

1992

.

<end>

It sh
o
u
ld

b
e

n
o
te

d
th

a
t

th
e

m
a
ri

n
e

e
n
v
ir

o
n
m

e
n
t

is th
e

le
a
st

kn
o
w

n
o
f

e
n
v
ir

o
n
m

e
n
ts

. <
e
n
d
>

Il
convient

de
noter

que
l'

environnement
marin

est
le

moins
connu

de
l'

environnement
.

<end>

(a) (b)

D
e
st

ru
ct

io
n

o
f

th
e

e
q
u
ip

m
e
n
t

m
e
a
n
s

th
a
t

S
y
ri

a
ca

n
n
o

lo
n
g
e
r

p
ro

d
u
ce

n
e
w

ch
e
m

ic
a
l

w
e
a
p
o
n
s

. <
e
n
d
>

La
destruction

de
l'

équipement
signifie

que
la

Syrie
ne

peut
plus

produire
de

nouvelles
armes

chimiques
.

<end>

" T
h
is

w
ill

ch
a
n
g
e

m
y

fu
tu

re
w

it
h

m
y

fa
m

ily
, " th

e
m

a
n

sa
id

. <
e
n
d
>

"
Cela

va
changer

mon
avenir

avec
ma

famille
"
,
a

dit
l'

homme
.

<end>

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Image source: Bahdanau et al. (2015), Fig. 3

Encoder-Decoder Models 25/ 38

Attention Visualization (2)

Image source: Koehn and Knowles (2017), Fig. 8

Encoder-Decoder Models 26/ 38

Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

attention (NMT) alignment (SMT)
probabilistic discrete
declarative imperative

LM generates LM discriminates

Encoder-Decoder Models 27/ 38

Training Seq2Seq Model

Optimize negative log-likelihood of parallel data, backpropagation does
the rest.

If you choose a right optimizer, learning rate, model hyper-parameters, prepare data, do
back-translation, monolingual pre-training …

Confusion: decoder inputs vs. output
inputs y[:-1] <s> 𝑦1 𝑦2 𝑦3 𝑦4

↓ ↓ ↓ ↓ ↓

Decoder

↓ ↓ ↓ ↓ ↓
outputs y[1:] 𝑦1 𝑦2 𝑦3 𝑦4 </s>

Encoder-Decoder Models 28/ 38

Inference

Getting output

• Encoder-decoder is a conditional language model
• For a pair x and y, we can compute:

Pr (y|x) =
𝑇𝑦

∏
𝑖=1
Pr (𝑦𝑖|y∶𝑖, x)

• When decoding we want to get

y∗ = argmax
y′

Pr (y′|𝑥)

☠ Enumerating all y′s is computationally intractable ☠

Encoder-Decoder Models 29/ 38

Greedy Decoding

In each step, take the maximum probable word.

𝑦∗
𝑖 = argmax

𝑦𝑖
Pr (𝑦𝑖|𝑦∗

𝑖−1, … , <s>)

last_w = "<s>"
state = initial_state
while last_w != "</s>":

last_w_embeding = target_embeddings[last_w]
state = dec_cell(state, last_w_embeding)
logits = output_projection(state)
last_w = vocabulary[np.argmax(logits)]
yield last_w

Encoder-Decoder Models 30/ 38

What if…

This is a

platypus
25%

rather
24%

random end . </s>
30% each

good sentence . </s>
60% each

⚠ Greedy decoding can easily miss the best option. ⚠

Encoder-Decoder Models 31/ 38

Beam Search

Keep a small 𝑘 of hypothesis (typically 4–20).

1. Begin with a single empty hypothesis in the beam.
2. In each time step:

2.1 Extend all hypotheses in the beam by all (or the most probable) from the output
distribution (we call these candidate hypotheses)

2.2 Score the candidate hypotheses
2.3 Keep only 𝑘 best of them.

3. Finish if all 𝑘-best hypotheses end with </s>
4. Sort the hypotheses by their score and output the best one.

Encoder-Decoder Models 32/ 38

Beam Search: Example

...

...

...

...

Hey

world

World

<s>

there

Hi

...

...

hello

world

Hello

!

Encoder-Decoder Models 33/ 38

Beam Search: Pseudocode

beam = [(["<s>"], initial_state, 1.0)]
while any(hyp[-1] != "</s>" for hyp, _, _ in beam):

candidates = []

for hyp, state, score in beam:
distribution, new_state = decoder_step(hyp[-1], state, encoder_states)

for i, prob in enumerate(distribution):
candidates.append(hyp + [vocabulary[i]], new_state, score * prob)

beam = take_best(k, candidates)

Encoder-Decoder Models 34/ 38

Implementation issues

• Multiplying of too many small numbers → float underflow
need to compute in log domain and add logarithms

• Sentences can have different lengths
This is a good long sentence . </s>
0.7 × 0.6 × 0.9 × 0.1 × 0.4 × 0.4 × 0.8 × 0.9 = 0.004

This </s>
0.7 × 0.01 = 0.007

⇒ use the geometric mean instead of probabilities directly
• Sorting candidates is expensive, assomptotically |𝑉 | log |𝑉 |:

𝑘-best can be found in linear time, |𝑉 | ∼ 104 − 105

Encoder-Decoder Models 35/ 38

Final Remarks

Brief history of the architectures

• 2013 First encoder-decoder model (Kalchbrenner and Blunsom, 2013)

• 2014 First really usable encoder-decoder model (Sutskever et al., 2014)

• 2014/2015 Added attention (crucial innovation in NLP) (Bahdanau et al., 2015)

• 2016/2017 WMT winners used RNN-based neural systems (Sennrich et al., 2016)

• 2017 Transformers invented (outperformed RNN) (Vaswani et al., 2017)

The development of achitectures still goes on...
Document context, non-autoregressive models, multilingual models, …

Encoder-Decoder Models 36/ 38

Encoder-Decoder Models

Summary
• Encoder-decoder architecture = major paradigm in MT
• Encoder-decoder architecture = conditional language model
• Attention = way of conditioning the decoder on the encoder
• Attention = probabilistic vector retrieval
• We model probability, but need heuristics to get a good sentence

from the model

http://ufal.mff.cuni.cz/courses/npfl116

http://ufal.mff.cuni.cz/courses/npfl116

References I

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1700–1709, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation,
pages 28–39, Vancouver, Canada, August 2017. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI Blog., 2019.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for WMT 16. In Proceedings of the First Conference on

Machine Translation: Volume 2, Shared Task Papers, pages 371–376, Berlin, Germany, August 2016. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/W16-2323.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27,
pages 3104–3112, Montreal, Canada, December 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In
Advances in Neural Information Processing Systems 30, pages 6000–6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc.

Encoder-Decoder Models 38/ 38

https://www.aclweb.org/anthology/W16-2323

	Model Concept
	Language Models and Decoders
	Conditioning the Language Model & Attention
	Inference
	Final Remarks

