Encoder-Decoder Models

Jindřich Liboviký, Jindřich Helcl

國 March 03, 2022

LANGTECH

Model Concept

Conceptual Scheme of the Model

I am the walrus.

Neural model with a sequence of discrete symbols as an input that generates another sequence of discrete symbols as an output.

- pre-process source sentence (tokenize, split into smaller units)
- convert input into vocabulary indices
- run the encoder to get an intermediate representation (vector/matrix)
- run the decoder
- postprocess the output (detokenize)

Language Models and Decoders

What is a Language Model

$$
\mathrm{LM}=\text { an estimator of a sentence probability given a language }
$$

- From now on: sentence $=$ sequence of words w_{1}, \ldots, w_{n}
- Factorize the probability by word
i.e., no grammar, no hierarchical structure

$$
\begin{aligned}
\operatorname{Pr}\left(w_{1}, \ldots, w_{n}\right) & =\operatorname{Pr}\left(w_{1}\right) \cdot \operatorname{Pr}\left(w_{2} \mid w_{1}\right) \cdot \operatorname{Pr}\left(w_{3} \mid w_{2}, w_{1}\right) \cdot \cdots \\
& =\prod_{i}^{n} \operatorname{Pr}\left(w_{i} \mid w_{i-1}, \ldots, w_{1}\right)
\end{aligned}
$$

What is it good for?

- Substitute for grammar: tells what is a good sentence in a language
- Used in ASR, and statistical MT to select more probable outputs
- Being able to predict next word = proxy for knowing the language
- language modeling is training objective for word2vec
- BERT is a masked language model
- Neural decoder is a conditional language model.

n-gram vs. Neural LMs

n-gram
cool from 1990 to 2013

Neural

cool since 2013

- Limited history $=$ Markov assumption
- Transparent: estimated from n-gram counts in a corpus

$$
\mathrm{P}\left(w_{i} \mid w_{i-1}, w_{i-2}, \ldots, w_{i-n}\right) \approx \sum_{j=0}^{n} \lambda_{j} \frac{c\left(w_{i} \mid w_{i-1}, \ldots, w_{i-j}\right)}{c\left(w_{i} \mid w_{i-1}, \ldots, w_{i-j+1}\right)}
$$

- Conditioned on RNN state which gather potentially unlimited history
- Trained by back-propagation to maximize probability of the training data
- Opaque, but works better (as usual with deep learning)

Reminder: Recurrent Neural Networks

RNN = pipeline for information

Technically: A "for" loop applying the same function A on input vectors x_{i}

In every step some information goes in and some information goes out.

At training time unrolled in time: technically just a very deep network

[^0]
Sequence Labeling

- Assign a label to each word in a sentence.
- Tasks formulated as sequence labeling:
- Part-of-Speech Tagging
- Named Entity Recognition
- Filling missing punctuation

MLP $=$ Multilayer perceptron
$n \times$ layer: $\sigma(W x+b)$
Softmax for K classes with logits
$\mathbf{z}=\left(z_{1}, \ldots, z_{K}\right)$:

$$
\frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}}
$$

\downarrow
lookup index in the vocabulary

Detour: Why is softmax a good choice

Output layer with softmax (with parameters W, b) - gets categorical distribution:

$$
P_{y}=\operatorname{softmax}(\mathbf{x})=\operatorname{Pr}(y \mid \mathbf{x})=\frac{\exp \left\{\mathbf{x}^{\top} W\right\}+b}{\sum \exp \left\{\mathbf{x}^{\top} W\right\}+b}
$$

Network error $=$ cross-entropy between estimated distribution and one-hot ground-truth distribution $T=\mathbf{1}\left(y^{*}\right)=(0,0, \ldots, 1,0, \ldots, 0)$:

$$
\begin{aligned}
L\left(P_{y}, y^{*}\right)=H(P, T) & =-\mathbb{E}_{i \sim T} \log P(i) \\
& =-\sum_{i} T(i) \log P(i) \\
& =-\log P\left(y^{*}\right)
\end{aligned}
$$

Derivative of Cross-Entropy

Let $l=\mathbf{x}^{\top} W+b, l_{y^{*}}$ corresponds to the correct one.

$$
\begin{aligned}
\frac{\partial L\left(P_{y}, y^{*}\right)}{\partial l} & =-\frac{\partial}{\partial l} \log \frac{\exp l_{y^{*}}}{\sum_{j} \exp l_{j}}=-\frac{\partial}{\partial l}\left(l_{y^{*}}-\log \sum \exp l\right) \\
& =\mathbf{1}_{y^{*}}+\frac{\partial}{\partial l}-\log \sum \exp l=\mathbf{1}_{y^{*}}-\frac{\sum \mathbf{1}_{y^{*}} \exp l}{\sum \exp l}= \\
& =\mathbf{1}_{y^{*}}-P_{y}\left(y^{*}\right)
\end{aligned}
$$

Interpretation: Reinforce the correct logit, suppress the rest.

Language Model as Sequence Labeling

Sampling from a Language Model

Sampling from a Language Model: Pseudocode

```
last_w = "<s>"
state = initial_state
while last_w != "</s>":
    last_w_embeding = target_embeddings[last_w]
    state = rnn(state, last_w_embeding)
    logits = output_projection(state)
    last_w = vocabulary[np.random.multimial(1, logits)]
    yield last_w
```

Training objective: negative-log likelihood:

$$
\mathrm{NLL}=-\sum_{i}^{n} \log \operatorname{Pr}\left(w_{i} \mid w_{i-1}, \ldots, w_{1}\right)
$$

I.e., maximize probability of the correct word.

- Cross-entropy between the predicted distribution and one-hot "true" distribution
- Error from word is backpropagated into the rest of network unrolled in time
- Prone to exposure bias: during trainining only well-behaved sequences, it can break when we sample something weird at inference time

Generating from a Language Model

Neural Machine Translation is

```
a new technology developed by a team at the University
a technology that uses neural networks and machine learning to
a powerful tool for understanding the spoken language.
```

(Example from GPT-2, a Tranformer-based English language model, screenshot from https://transformer.huggingface.co/doc/gpt2-large)

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners.
OpenAI Blog., 2019

Cool, but where is the source language?

Conditioning the Language Model \&
Attention

Conditional Language Model

Formally it is simple, condition distribution of

- target sequence $\mathbf{y}=\left(y_{1}, \ldots, y_{T_{y}}\right)$ on
- source sequence $\mathbf{X}=\left(x_{1}, \ldots, x_{T_{x}}\right)$

$$
\operatorname{Pr}\left(y_{1}, \ldots, y_{n} \mid \mathbf{x}\right)=\prod_{i}^{n} \operatorname{Pr}\left(y_{i} \mid y_{i-1}, \ldots, y_{1}, \mathbf{x}\right)
$$

We need an encoder to get a representation of \mathbf{x} !

What about just continuing an RNN...

Sequence-to-Sequence Model

- The interface between encoder and decoder is a single vector regardless the sentence length.

Hlya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Systems 27, pages 3104-3112, Montreal, Canada, December 2014

Seq2Seq: Pseudocode

```
state = np.zeros(rnn_size)
for w in input_words:
    input_embedding = source_embeddings[w]
    state = enc_cell(encoder_state, input_embedding)
last_w = "<s>"
while last_w != "</s>":
    last_w_embeding = target_embeddings[last_w]
    state = dec_cell(state, last_w_embeding)
    logits = output_projection(state)
    last_w = vocabulary[np.argmax(logits)]
    yield last_w
```


Vanila Seq2Seq: Information Bottleneck

Bottleneck all information needs to run through.
A single vector must represent the entire source sentence.

Main weakness and the reason for introducing the attention.

- Motivation: It would be nice to have variable length input representation
- RNN returns one state per word ...
- ...what if we were able to get only information from words we need to generate a word.

> Attention $=$ probabilistic retrieval of encoder states for estimating probability of target words.

Query $=$ hidden states of the decoder Values = encoder hidden states

Sequence-to-Sequence Model With Attention

- Encoder $=$ bidirectional RNN states $h_{i} \approx$ retrieved values
- Decoder step starts as usual state $S_{0} \approx$ retrieval query
- Decoder state s_{0} used to compute distribution the over encoder states
- Weighted average of encoder states $=$ context vector
- Decoder state \& context concatenated MLP + Softmax predicts next word

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate
In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015

Attention Model in Equations (1)

Inputs:
 decoder state s_{i}
 encoder states $h_{j}=\left[\overrightarrow{h_{j}} ; \overleftarrow{h_{j}}\right] \quad \forall i=1 \ldots T_{x}$

Attention energies:

$$
e_{i j}=v_{a}^{\top} \tanh \left(W_{a} s_{i-1}+U_{a} h_{j}+b_{a}\right)
$$

Attention distribution:

$$
\alpha_{i j}=\frac{\exp \left(e_{i j}\right)}{\sum_{k=1}^{T_{x}} \exp \left(e_{i k}\right)}
$$

Context vector:

$$
c_{i}=\sum_{j=1}^{T_{x}} \alpha_{i j} h_{j}
$$

Attention Model in Equations (2)

Output projection:

$$
t_{i}=\operatorname{MLP}\left(s_{i-1} \oplus v_{y_{i-1}} \oplus c_{i}\right)
$$

...attention is mixed with the hidden state (different in differnt models)

Output distribution:

$$
p\left(y_{i}=k \mid s_{i}, y_{i-1}, c_{i}\right) \propto \exp \left(W_{o} t_{i}+b_{k}\right)_{k}
$$

(usual trick: use transposed embeddings as W_{o})

- Different version of attentive decoders exist
- Alternative: keep the context vector as input for the next step
- Multilayer RNNs: attention between/after layers

Workings of the Attentive Seq2Seq model

Ich habe den Walros gesehen

Seq2Seq with attention: Pseudocode (1)

```
state = np.zeros(emb_size)
fw_states = []
for w in input_words:
    input_embedding = source_embeddings[w]
    state, _ = fw_enc_cell(encoder_state, input_embedding)
    fw_states.append(state)
bw_states = []
state = np.zeros(emb_size)
for w in reversed(input_words):
    input_embedding = source_embeddings[w]
    state, _ = bw_enc_cell(encoder_state, input_embedding)
    bw_states.append(state)
enc_states = [np.concatenate(fw, bw) for fw, bw in zip(fw_states,
    reversed(bw_states))]
```


Seq2Seq with attention: Pseudocode (2)

```
last_w = "<s>"
while last_w != "</s>":
    last_w_embeding = target_embeddings[last_w]
    state = dec_cell(state, last_w_embeding)
    alphas = attention(state, enc_states)
    context = sum(a * state for a, state in zip(alphas, enc_states))
    logits = output_projection(np.concatenate(state, context, last_w_embeding))
    last_w = np.argmax(logits)
    yield last_w
```


Attention Visualization (1)

Attention Visualization (2)

Attention vs. Alignment

Differences between attention model and word alignment used for phrase table generation:

attention (NMT)
 alignment (SMT)

probabilistic
declarative
LM generates
discrete
imperative
LM discriminates

Optimize negative log-likelihood of parallel data, backpropagation does the rest.
If you choose a right optimizer, learning rate, model hyper-parameters, prepare data, do back-translation, monolingual pre-training ...

Confusion: decoder inputs vs. output

Inference

Getting output

- Encoder-decoder is a conditional language model
- For a pair \mathbf{x} and \mathbf{y}, we can compute:

$$
\operatorname{Pr}(\mathbf{y} \mid \mathbf{x})=\prod_{i=1}^{T_{y}} \operatorname{Pr}\left(y_{i} \mid \mathbf{y}_{: i}, \mathbf{x}\right)
$$

- When decoding we want to get

$$
\mathbf{y}^{*}=\underset{\mathbf{y}^{\prime}}{\operatorname{argmax}} \operatorname{Pr}\left(\mathbf{y}^{\prime} \mid x\right)
$$

気 Enumerating all y's is computationally intractable

Greedy Decoding

In each step, take the maximum probable word.

$$
y_{i}^{*}=\underset{u_{i}}{\operatorname{argmax}} \operatorname{Pr}\left(y_{i} \mid y_{i-1}^{*}, \ldots,\langle s\rangle\right)
$$

```
last_w = "<s>"
state = initial_state
while last_w != "</s>":
    last_w_embeding = target_embeddings[last_w]
    state = dec_cell(state, last_w_embeding)
    logits = output_projection(state)
    last_w = vocabulary[np.argmax(logits)]
    yield last_w
```


What if...

\triangle Greedy decoding can easily miss the best option. \triangle

Beam Search

Keep a small k of hypothesis (typically 4-20).

1. Begin with a single empty hypothesis in the beam.
2. In each time step:
2.1 Extend all hypotheses in the beam by all (or the most probable) from the output distribution (we call these candidate hypotheses)
2.2 Score the candidate hypotheses
2.3 Keep only k best of them.
3. Finish if all k-best hypotheses end with </s>
4. Sort the hypotheses by their score and output the best one.

Beam Search: Example

Beam Search: Pseudocode

```
beam = [(["<s>"], initial_state, 1.0)]
while any(hyp[-1] != "</s>" for hyp, _, _ in beam):
    candidates = []
    for hyp, state, score in beam:
    distribution, new_state = decoder_step(hyp[-1], state, encoder_states)
        for i, prob in enumerate(distribution):
            candidates.append(hyp + [vocabulary[i]], new_state, score * prob)
    beam = take_best(k, candidates)
```


Implementation issues

- Multiplying of too many small numbers \rightarrow float underflow need to compute in log domain and add logarithms
- Sentences can have different lengths

This	is	a	good	long	sentence		$</ s>$	
0.7	$\times 0.6$	$\times 0.9$	$\times 0.1$	$\times 0.4$	$\times 0.4$	$\times 0.8$	$\times 0.9$	$=\mathbf{0 . 0 0 4}$

This </s>
0.7×0.01
$=0.007$
\Rightarrow use the geometric mean instead of probabilities directly

- Sorting candidates is expensive, assomptotically $|V| \log |V|$: k-best can be found in linear time, $|V| \sim 10^{4}-10^{5}$

Final Remarks

Brief history of the architectures

- 2013 First encoder-decoder model (Kalchbrenner and Blunsom, 2013)
- 2014 First really usable encoder-decoder model (Sutskever et al., 2014)
- 2014/2015 Added attention (crucial innovation in NLP) (Bahdanau et al., 2015)
- 2016/2017 WMT winners used RNN-based neural systems (Sennrich et al., 2016)
- 2017 Transformers invented (outperformed RNN) (Vaswani et al., 2017)

The development of achitectures still goes on...
Document context, non-autoregressive models, multilingual models, ...

Summary

- Encoder-decoder architecture = major paradigm in MT
- Encoder-decoder architecture = conditional language model
- Attention = way of conditioning the decoder on the encoder
- Attention = probabilistic vector retrieval
- We model probability, but need heuristics to get a good sentence from the model
http://ufal.mff.cuni.cz/courses/npfl116

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1700-1709, Seattle, Washington, USA, October 2013. Association for Computational Linguistics.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings of the First Workshop on Neural Machine Translation, pages 28-39, Vancouver, Canada, August 2017. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI Blog., 2019.
Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for WMT 16. In Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, pages 371-376, Berlin, Germany, August 2016. Association for Computational Linguistics. URL https://www.aclweb.org/anthology/w16-2323.
Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks. In Advances in Neural Information Processing Systems 27, pages 3104-3112, Montreal, Canada, December 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems 30, pages 6000-6010, Long Beach, CA, USA, December 2017. Curran Associates, Inc.

[^0]: Image on the right: Chris Olah. Understanding LSTM Networks. A blog post: http://colah.github.io/posts/2015-08-Understanding-LSTMs

