Neural Architectures for NLP

Jindřich Helcl, Jindřich Libovický

🖬 February 26, 2020

Charles University Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics

Outline

Symbol Embeddings

Recurrent Networks

Convolutional Networks

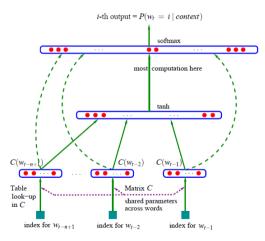
Self-attentive Networks

Reading Assignment

Symbol Embeddings

Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:



Source: Bengio, Yoshua, et al. "A neural probabilistic language model." Journal of machine learning research 3.Feb (2003): 1137-1155. http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Architectures for NLP

Embeddings

- Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
- It would mean a huge matrix every time a symbol is on the input
- Rather factorize this matrix and share the first part \Rightarrow embeddings
- "Embeddings" because they embed discrete symbols into a continuous space

Embeddings

- Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
- It would mean a huge matrix every time a symbol is on the input
- Rather factorize this matrix and share the first part \Rightarrow embeddings
- "Embeddings" because they embed discrete symbols into a continuous space

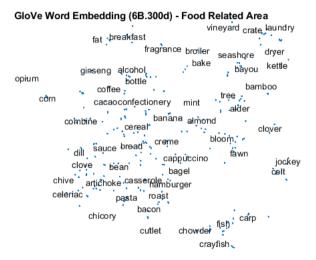
What is the biggest problem during training?

Embeddings

- Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
- It would mean a huge matrix every time a symbol is on the input
- Rather factorize this matrix and share the first part \Rightarrow embeddings
- "Embeddings" because they embed discrete symbols into a continuous space

What is the biggest problem during training? Embeddings get updated only rarely – only when a symbol appears.

Properties of embeddings



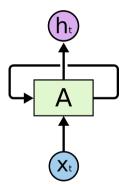
Neural Architectures for NLF

Recurrent Networks

Why RNNs

- for loops over sequential data
- the most frequently used type of network in NLP

General Formulation

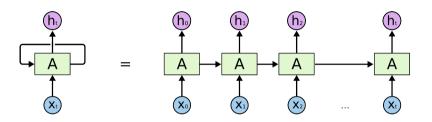


- inputs: $x_{,}\ldots,x_{T}$
- initial state $h_0={\bf 0},$ a result of previous computation, trainable parameter
- recurrent computation: $h_t = A(h_{t-1}, x_t)$

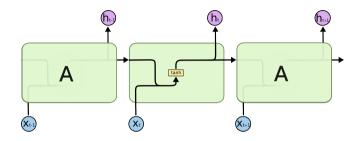
RNN as Imperative Code

```
def rnn(initial_state, inputs):
    prev_state = initial_state
    for x in inputs:
        new_state, output = rnn_cell(x, prev_state)
        prev_state = new_state
        yield output
```

RNN as a Fancy Image

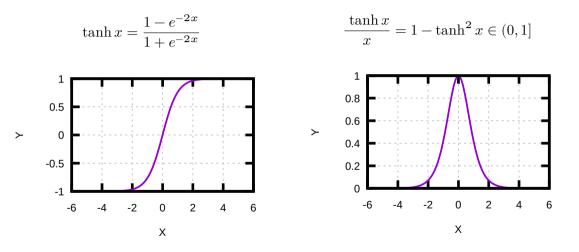


Vanilla RNN

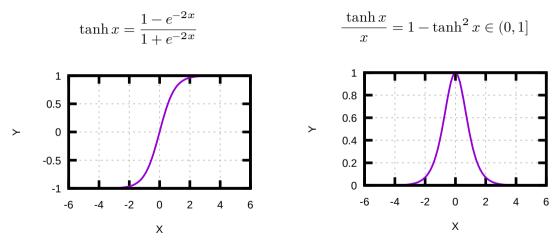


$$h_t = \tanh\left(W[h_{t-1}; x_t] + b\right)$$

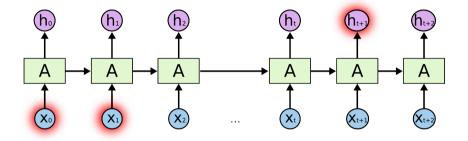
- cannot propagate long-distance relations
- vanishing gradient problem

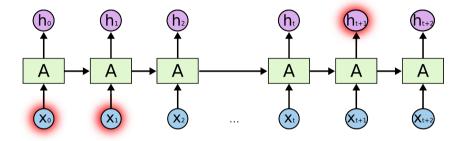


Neural Architectures for NLP

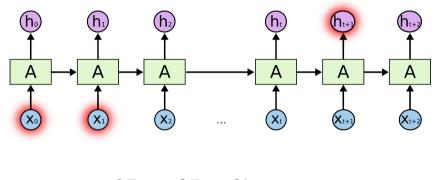


Weight initialized $\sim \mathcal{N}(0,1)$ to have gradients further from zero.





$$rac{\partial E_{t+1}}{\partial b} =$$



$$\frac{\partial E_{t+1}}{\partial b} = \frac{\partial E_{t+1}}{\partial h_{t+1}} \cdot \frac{\partial h_{t+1}}{\partial b} \quad \text{(chain rule)}$$

 $\frac{\partial h_t}{\partial b} \ = \ % \frac{\partial h_t}{\partial b} = \frac{\partial h_$

$$\frac{\partial h_t}{\partial b} = \frac{\partial \tanh\left(\overline{W_h h_{t-1} + W_x x_t + b}\right)}{\partial b} \quad (\tanh' \text{ is derivative of tanh})$$

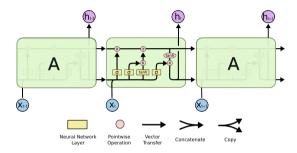
$$\begin{array}{lll} \frac{\partial h_t}{\partial b} & = & \frac{\partial \tanh \overbrace{(W_h h_{t-1} + W_x x_t + b)}}{\partial b} & {}_{(\tanh' \text{ is derivative of tanh})} \\ & = & \tanh'(z_t) \cdot \left(\frac{\partial W_h h_{t-1}}{\partial b} + \frac{\partial W_x x_t}{\underline{\partial b}} + \frac{\partial b}{\underline{\partial b}} \right) \end{array}$$

$$\begin{array}{lll} \displaystyle \frac{\partial h_t}{\partial b} & = & \displaystyle \frac{\partial \tanh \overbrace{(W_h h_{t-1} + W_x x_t + b)}}{\partial b} & {}_{(\tanh' \text{ is derivative of tanh})} \\ \\ \displaystyle & = & \displaystyle \tanh'(z_t) \cdot \left(\frac{\partial W_h h_{t-1}}{\partial b} + \frac{\partial W_x x_t}{\underline{\partial b}} + \frac{\partial b}{\underline{\partial b}} \right) \\ \\ \displaystyle & = & \displaystyle \underbrace{W}_{\sim \mathcal{N}(0,1)} \underbrace{\tanh'(z_t)}_{\in (0;1]} \frac{\partial h_{t-1}}{\partial b} + \displaystyle \tanh'(z_t) \end{array}$$

 $\mathsf{LSTM} = \mathsf{Long} \mathsf{ short-term} \mathsf{ memory}$

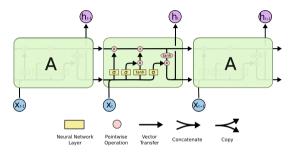
LSTMs

 $\mathsf{LSTM} = \mathsf{Long} \; \mathsf{short-term} \; \mathsf{memory}$



LSTMs

 $\mathsf{LSTM} = \mathsf{Long} \mathsf{ short-term} \mathsf{ memory}$

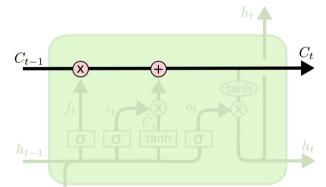


Control the gradient flow by explicitly gating:

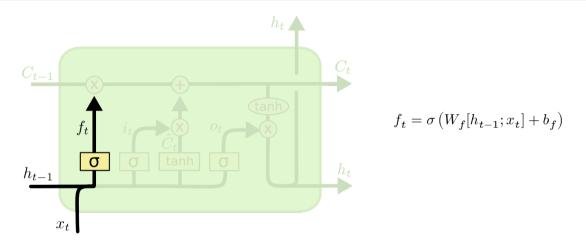
- what to use from input,
- what to use from hidden state,
- what to put on output

Hidden State

- two types of hidden states
- h_t "public" hidden state, used an output
- c_t "private" memory, no non-linearities on the way
 - direct flow of gradients (without multiplying by ≤ derivatives)
 - only vectors guaranteed to live in the same space are manipulated
- information highway metaphor

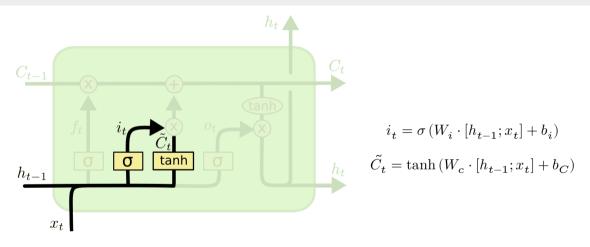


Forget Gate



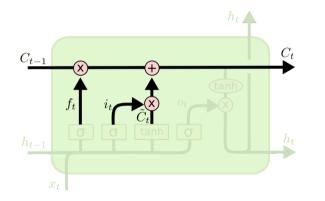
based on input and previous state, decide what to forget from the memory

Input Gate



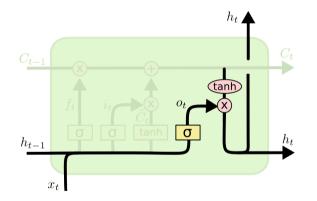
- \tilde{C} candidate what may want to add to the memory
- i_t decide how much of the information we want to store

Cell State Update



$$C_t = f_t \odot C_{t-1} + i_t \odot \tilde{C_t}$$

Output Gate



$$o_t = \sigma \left(W_o \cdot [h_{t-1}; x_t] + b_o \right)$$

$$h_t = o_t \odot \tanh C_t$$

Here we are!

$$\begin{array}{rcl} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ C_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

Here we are!

$$\begin{array}{rcl} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ C_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

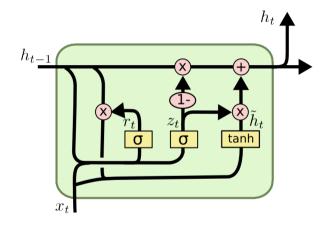
How would you implement it efficiently?

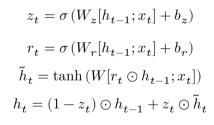
Here we are!

$$\begin{array}{rcl} f_t &=& \sigma \left(W_f[h_{t-1};x_t] + b_f \right) \\ i_t &=& \sigma \left(W_i \cdot [h_{t-1};x_t] + b_i \right) \\ o_t &=& \sigma \left(W_o \cdot [h_{t-1};x_t] + b_o \right) \\ \tilde{C}_t &=& \tanh \left(W_c \cdot [h_{t-1};x_t] + b_C \right) \\ C_t &=& f_t \odot C_{t-1} + i_t \odot \tilde{C}_t \\ h_t &=& o_t \odot \tanh C_t \end{array}$$

How would you implement it efficiently? Compute all gates in a single matrix multiplication.

Gated Recurrent Units





GRU and LSTM

Are GRUs special case of LSTMs?

GRU

LSTM

$$\begin{array}{lll} z_t &=& \sigma \left(W_z[h_{t-1};x_t] + b_z \right) \\ r_t &=& \sigma \left(W_r[h_{t-1};x_t] + b_r \right) \\ \tilde{h}_t &=& \tanh \left(W[r_t \odot h_{t-1};x_t] \right) \\ h_t &=& (1-z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t \end{array}$$

GRU and LSTM

Are GRUs special case of LSTMs?

LSTM

GRU

No, you cannot lay $C_t \equiv h_t$ because of the additional non-linearity in LSTMs.

GRU or LSTM?

- GRU preserved the information highway property
- less parameters, should learn faster
- LSTM more general (although both Turing complete)
- empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:412.3555 (204). Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition." Interspeech, San Francisco, CA, USA (206). +

- correspond to intuition of sequential processing
- theoretically strong

 cannot be parallelized, always need to wait for previous state

Convolutional Networks

 \approx sliding window over the sequence

$\label{eq:mbeddings} \left[\begin{array}{c} \ensuremath{\mathsf{I}} \\ \ensuremath{\mathsf{I}} \ \ensuremath{\mathsf{I$

 \approx sliding window over the sequence

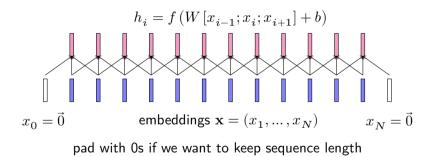
 \approx sliding window over the sequence

$$h_1 = f\left(W[x_0; x_1.x_2] + b\right)$$

$$x_0 = \vec{0}$$
embeddings $\mathbf{x} = (x_1, \dots, x_N)$

$$x_N = \vec{0}$$
pad with 0s if we want to keep sequence length

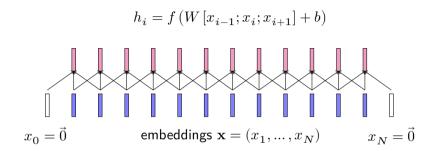
 \approx sliding window over the sequence



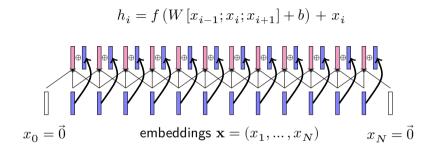
1-D Convolution: Code

Pseudocode

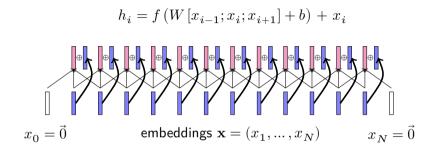
```
xs = ... # input sequnce
kernel size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size
W = trained parameter(xs.shape[2] * kernel_size, filters)
b = trained parameter(filters)
window = kernel size // 2
outputs = []
for i in range(window, xs.shape[1] - window):
   h = np.mul(W, xs[i - window:i + window]) + b
   outputs.append(h)
return np.array(h)
```

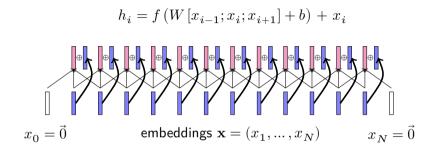
Allows training deeper networks.



Allows training deeper networks.



Allows training deeper networks. Why do you it helps?



Allows training deeper networks. Why do you it helps? Better gradient flow – the same as in RNNs.

Residual Connections: Numerical Stability

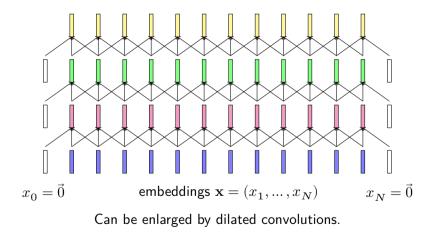
Numerically unstable, we need activation to be in similar scale \Rightarrow layer normalization. Activation before non-linearity is normalized:

$$\overline{a}_i = \frac{g_i}{\sigma_i} \left(a_i - \mu_i \right)$$

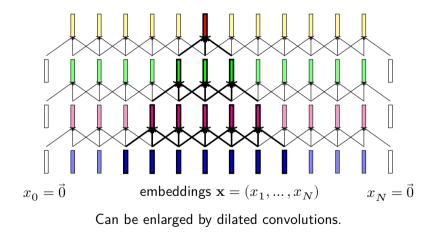
...g is a trainable parameter, μ , σ estimated from data.

$$\begin{split} \mu &= \frac{1}{H}\sum_{i=1}^{H}a_i\\ \sigma &= \sqrt{\frac{1}{H}\sum_{i=1}^{H}(a_i-\mu)^2} \end{split}$$

Receptive Field



Receptive Field



Convolutional architectures

+

extremely computationally efficient

- limited context
- by default no aware of *n*-gram order

Self-attentive Networks

- matrix multiplication can be used for to get dot-product similarity between all sequence vectors
- while using the same vector space, information might be gathered by summing up

Both regardless the distance in the sequence!

Naive code

```
xs = ... # input sequence, time x dimension
dimension = xs.shape[1]
hidden size = 400 # size of additional projection
for x 1 in xs:
   similarities = np.array(np.sum(x_1 * x_2) for x_2 in xs)
   distribution = softmax(similarities)
   context = np.sum(xs * distribution, axis=1)
   hidden_layer_input = layer_norm(context + xs)
   hidden_layer_middle = relu(
      dense layer(hidden_input, hidden_size))
   hidden_layer_output = relu(
      dense layer(hidden input, hidden size))
   vield layer norm(
```

```
hidden_layer_input + hidden_layer_output)
```

Self-attentive architectures

computationally efficient

- unlimited context
- empower state-of-the-art models

- memory requirements grow quadratically with sequence length
- not aware or positions in the sequence (requires positional embeddings)

Reading Assignment

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014). https://arxiv.org/pdf/1409.0473.pdf

Questions:

The authors report 5 BLEU points worse score than the previous encoder-decoder architecture (Sutskever et al., 2014). Why is their model better then?

If someone asked you to create automatically a dictionary. Would you use the attention mechanism for it? Why yes? Why not?