
Neural Architectures for NLP
Jindřich Helcl, Jindřich Libovický

February 26, 2020

NPFL116 Compendium of Neural Machine Translation

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated



Outline

Symbol Embeddings

Recurrent Networks

Convolutional Networks

Self-attentive Networks

Reading Assignment

Neural Architectures for NLP 1/ 33



Symbol Embeddings



Discrete symbol vs. continuous representation
Simple task: predict next word given three previous:

Source: Bengio, Yoshua, et al. ”A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Architectures for NLP 2/ 33

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf


Embeddings

• Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
• It would mean a huge matrix every time a symbol is on the input
• Rather factorize this matrix and share the first part ⇒ embeddings
• “Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?
Embeddings get updated only rarely – only when a symbol appears.

Neural Architectures for NLP 3/ 33



Embeddings

• Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
• It would mean a huge matrix every time a symbol is on the input
• Rather factorize this matrix and share the first part ⇒ embeddings
• “Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?

Embeddings get updated only rarely – only when a symbol appears.

Neural Architectures for NLP 3/ 33



Embeddings

• Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
• It would mean a huge matrix every time a symbol is on the input
• Rather factorize this matrix and share the first part ⇒ embeddings
• “Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?
Embeddings get updated only rarely – only when a symbol appears.

Neural Architectures for NLP 3/ 33



Properties of embeddings

Source: https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/
Neural Architectures for NLP 4/ 33



Recurrent Networks



Why RNNs

• for loops over sequential data
• the most frequently used type of network in NLP

Neural Architectures for NLP 5/ 33



General Formulation

• inputs: 𝑥, … , 𝑥𝑇
• initial state ℎ0 = 0, a result of previous

computation, trainable parameter
• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)

Neural Architectures for NLP 6/ 33



RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Neural Architectures for NLP 7/ 33



RNN as a Fancy Image

Neural Architectures for NLP 8/ 33



Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem

Neural Architectures for NLP 9/ 33



Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

-1

-0.5

0

0.5

1

-6 -4 -2 0 2 4 6

Y

X

tanh 𝑥
𝑥 = 1 − tanh2 𝑥 ∈ (0, 1]

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

Y

X

Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.

Neural Architectures for NLP 10/ 33



Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

-1

-0.5

0

0.5

1

-6 -4 -2 0 2 4 6

Y

X

tanh 𝑥
𝑥 = 1 − tanh2 𝑥 ∈ (0, 1]

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6

Y

X

Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.
Neural Architectures for NLP 10/ 33



Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)

Neural Architectures for NLP 11/ 33



Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 =

∂𝐸𝑡+1
∂ℎ𝑡+1

⋅ ∂ℎ𝑡+1
∂𝑏 (chain rule)

Neural Architectures for NLP 11/ 33



Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)

Neural Architectures for NLP 11/ 33



Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 =

∂ tanh
=𝑧𝑡 (activation)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)
∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Neural Architectures for NLP 12/ 33



Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Neural Architectures for NLP 12/ 33



Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Neural Architectures for NLP 12/ 33



Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Neural Architectures for NLP 12/ 33



LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output

Neural Architectures for NLP 13/ 33



LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output

Neural Architectures for NLP 13/ 33



LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output

Neural Architectures for NLP 13/ 33



Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way

• direct flow of gradients (without multiplying by ≤ derivatives)
• only vectors guaranteed to live in the same space are manipulated

• information highway metaphor

Neural Architectures for NLP 14/ 33



Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory

Neural Architectures for NLP 15/ 33



Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store

Neural Architectures for NLP 16/ 33



Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡

Neural Architectures for NLP 17/ 33



Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Neural Architectures for NLP 18/ 33



Here we are!

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Neural Architectures for NLP 19/ 33



Here we are!

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

How would you implement it efficiently?

Compute all gates in a single matrix multiplication.

Neural Architectures for NLP 19/ 33



Here we are!

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Neural Architectures for NLP 19/ 33



Gated Recurrent Units

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)

𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

Neural Architectures for NLP 20/ 33



GRU and LSTM

Are GRUs special case of LSTMs?

LSTM

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

GRU

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

No, you cannot lay 𝐶𝑡 ≡ ℎ𝑡 because of the additional non-linearity in LSTMs.

Neural Architectures for NLP 21/ 33



GRU and LSTM

Are GRUs special case of LSTMs?

LSTM

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

GRU

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

No, you cannot lay 𝐶𝑡 ≡ ℎ𝑡 because of the additional non-linearity in LSTMs.

Neural Architectures for NLP 21/ 33



GRU or LSTM?

• GRU preserved the information highway property
• less parameters, should learn faster
• LSTM more general (although both Turing complete)
• empirical results: it’s task-specific

Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. ”LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).

Neural Architectures for NLP 22/ 33



Recurrent Networks‘

+

• correspond to intuition of sequential
processing

• theoretically strong

-

• cannot be parallelized, always need to
wait for previous state

Neural Architectures for NLP 23/ 33



Convolutional Networks



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)

𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Architectures for NLP 24/ 33



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Architectures for NLP 24/ 33



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Architectures for NLP 24/ 33



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Architectures for NLP 24/ 33



1-D Convolution: Code
Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')

Neural Architectures for NLP 25/ 33



Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

Allows training deeper networks.

Why do you it helps?
Better gradient flow – the same as in RNNs.

Neural Architectures for NLP 26/ 33



Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.

Why do you it helps?
Better gradient flow – the same as in RNNs.

Neural Architectures for NLP 26/ 33



Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.

Neural Architectures for NLP 26/ 33



Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.

Neural Architectures for NLP 26/ 33



Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2

Neural Architectures for NLP 27/ 33



Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.

Neural Architectures for NLP 28/ 33



Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.

Neural Architectures for NLP 28/ 33



Convolutional architectures

+

• extremely computationally efficient

-

• limited context
• by default no aware of 𝑛-gram order

Neural Architectures for NLP 29/ 33



Self-attentive Networks



Main idea of self-attention

• matrix multiplication can be used for to get dot-product similarity between all sequence
vectors

• while using the same vector space, information might be gathered by summing up

Both regardless the distance in the sequence!

Neural Architectures for NLP 30/ 33



Naive code

xs = ... # input sequence, time x dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection

for x_1 in xs:
similarities = np.array(np.sum(x_1 * x_2) for x_2 in xs)
distribution = softmax(similarities)
context = np.sum(xs * distribution, axis=1)

hidden_layer_input = layer_norm(context + xs)
hidden_layer_middle = relu(

dense_layer(hidden_input, hidden_size))
hidden_layer_output = relu(

dense_layer(hidden_input, hidden_size))

yield layer_norm(
hidden_layer_input + hidden_layer_output)

Neural Architectures for NLP 31/ 33



Self-attentive architectures

+

• computationally efficient
• unlimited context
• empower state-of-the-art models

-

• memory requirements grow quadratically
with sequence length

• not aware or positions in the sequence
(requires positional embeddings)

Neural Architectures for NLP 32/ 33



Reading Assignment



Reading for the Next Week

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. ”Neural machine translation by
jointly learning to align and translate.” arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/pdf/1409.0473.pdf

Questions:
The authors report 5 BLEU points worse score than the previous encoder-decoder
architecture (Sutskever et al., 2014). Why is their model better then?
If someone asked you to create automatically a dictionary. Would you use the
attention mechanism for it? Why yes? Why not?

Neural Architectures for NLP 33/ 33

https://arxiv.org/pdf/1409.0473.pdf

	Symbol Embeddings
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks
	Reading Assignment

