NPFL116 Compendium of Neural Machine Translation

Neural Architectures for NLP

Jindfich Helcl, Jind¥ich Libovicky

& February 26, 2020

v Charles University @ (HEOO)
—_— Faculty of Mathematics and Physics
L aculty of Y BY NC SA
EUROPEAN UNION

"t

7 - i

FA LANGTECH e St rd e Institute of Formal and Applied Linguistics N a—————
Dot e o

Outline

Symbol Embeddings
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Reading Assignment

Neural Architectures for NLP 1/33

Symbol Embeddings

Discrete symbol vs. continuous representation

Simple task: predict next word given three previous:

i-th output = P(w; = i| context)
softmax
(eese - [X] S eee)
4 7 w
’ ’ .
’ r most| computation here

~
C(Wi_n; ~. C(w, 1) C(M}\
(oo o) . (oo (ee —®)
Table o ., ! Matmc C
100k—up 'ihared pammelm
inC
across words

index for w; ;1 index for Wy_3 index for w;

Source: Bengio, Yoshua, et al. "A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155
http://www. jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Neural Architectures for NLP

2/ 33

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
It would mean a huge matrix every time a symbol is on the input
Rather factorize this matrix and share the first part = embeddings

“Embeddings” because they embed discrete symbols into a continuous space

3/ 33

Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
It would mean a huge matrix every time a symbol is on the input
Rather factorize this matrix and share the first part = embeddings

“Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?

3/ 33

Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
It would mean a huge matrix every time a symbol is on the input
Rather factorize this matrix and share the first part = embeddings

“Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?
Embeddings get updated only rarely — only when a symbol appears.

3/ 33

Properties of embeddings

GloVe Word Embedding [EB 300d) - Food Related Area
vmeyard Lau ndry
fat prea‘kfast crate;
fragrance broiker seashare dr‘_.rer

. bak -
girseng glcohol - o : bayou kettle

opium bottle
coffee . .
- :) free -
cacaoconfectionery mint *- " 7
. P . -alder
] * ' banana g,
combife - ' alrhond . 3
.-'oereal‘ R clayer
bloorm,” »
(-, oreme n,
il Sauce bread - B
’ . cappul:cino . jockey
bagel alt
chive” a’t"_?mke’casser%burger :
celeriac pasta roast
’ hi bagon
chicory ' ' car
fish’ P
cutlet chowdet

c rayflsh “

bamboo
com .

clove * bean’

Neural Architectures for NLP
tbhiiimilbm e - Mmoo IO 17 /00 791 oo el sl e

IET Y PN RN I e P | A 2

4/ 33

Recurrent Networks

Why RNNs

= for loops over sequential data
= the most frequently used type of network in NLP

Neural Architectures for NLP 5/ 33

General Formulation

= initial state hy = 0, a result of previous
computation, trainable parameter

| A = recurrent computation: h, = A(h,_q,x,)

@ = inputs: x ...,Tp

Neural Architectures for NLP 6/ 33

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Neural Architectures for NLP 7/ 33

RNN as a Fancy Image

b &

8/ 33

o
=
2
=
il
»
g
E
2
5]
|1
=
=
Cl
o
<
T
o
5
51
4

Vanilla RNN

hy = tanh (Wh,_y;2,] +b)

= cannot propagate long-distance relations

= vanishing gradient problem

Neural Architectures for NLP 9/ 33

tanh x

X

=1—tanh®z € (0, 1]

0.8 =
0.6 =
04 =

0.2 =

10/ 33

1 —e 22 tanh x

tanhz = ——— =1 —tanh®z € (0, 1]
14e2® x
1 I I 1 1 | —
05 = -
0.6 = -
> ok - >

04 = -
0.5 = - 02 = -

1 i i 0 1 1 1
6 4 -2 0 2 4 6 6 4 -2 0 2 4 6

X X

Weight initialized ~ (0, 1) to have gradients further from zero.

10/ 33

Vanishing Gradient Problem (2)

>0

@—>—@
&—>—@

&
1
» A » A
& & -

& >—O®

11/ 33

Vanishing Gradient Problem (2)

v

v

v

@—>—@

v

&>
&—>—@

®
:
b

OF,1 _
ob

®
:
®

& >—O®

11/ 33

Vanishing Gradient Problem (2)

v

v

v

v

PR Y
A A A A
b . b b &
0B,y _ 0B,y Ohyy
0b Ohy., 0b

®
:
®

@—>—@

(chain rule)

Neural Architectures for NLP 11/ 33

Vanishing Gradient Problem (3)

dh,
ab

Neural Architectures for NLP 12/ 33

Vanishing Gradient Problem (3)

=2z, (activation)

oh, Otanh (Wph, 1 + W,x, +b)
_— = (tanh, is derivative of tanh)

0b 0b

Neural Architectures for NLP 12/ 33

Vanishing Gradient Problem (3)

=2z, (activation)

oh, Otanh (Wyh, ; + W z, +b) N
_ab = ab (tanh’ is derivative of tanh)
ow,h ow_x ob
_ h/ . h'%t—1 ¥t -
tanh’(z,) % + 3 + 3%
—_—— o

=0 =1

Neural Architectures for NLP 12/ 33

Vanishing Gradient Problem (3)

=2z, (activation)

oh, Otanh (Wyh, ; + W z, +b) N
_ab = ab (tanh’ is derivative of tanh)
ow,h ow_x ob
_ h/ . h't—1 xt -
tanh’(z,) % + 3 + o
=0 =1

= w tanh’(z,) % + tanh’(z,)
~NO0) T e(0:1]

Neural Architectures for NLP 12/ 33

LSTMs

LSTM = Long short-term memory

Neural Architectures for NLP 13/ 33

LSTMs

LSTM = Long short-term memory

& ® ®
1 P

‘ 2 ‘\r[“] {
© ® ©
1 0 — > <

Neural Network ~ Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Neural Architectures for NLP 13/ 33

LSTMs

LSTM = Long short-term memory

@ ® ®

i i i
A [dAl A
I S S

Neural Network ~ Pointwise Vector

Layer Operation ~ Transfer ~ Concatenate Copy

Control the gradient flow by explicitly gating:
= what to use from input,
= what to use from hidden state,
= what to put on output

Neural Architectures for NLP 13/ 33

two types of hidden states
h, — “public” hidden state, used an output
¢, — "“private” memory, no non-linearities on the way
= direct flow of gradients (without multiplying by < derivatives)
= only vectors guaranteed to live in the same space are manipulated

information highway metaphor

Ct —1 N\ ~ Ct
&, @ >

14/ 33

I fit=o0 (Wf[hpl;xt] + bf)
hi—1

Tt

= based on input and previous state, decide what to forget from the memory

15/ 33

it 2 iy =0 (W, [hy 1324 + ;)

Cy =tanh (W, - [h,_1;:7,] + be)

» C — candidate what may want to add to the memory
= 3, — decide how much of the information we want to store

16/ 33

Cell State Update

®

& >
ftT itr-h Co=10C,_1+1i,0 ét
t

Neural Architectures for NLP 17/ 33

he—y

he A

Tt

o, =0 (W, - [ht—1§$t] +b,)

h, =0, ©tanh C,

18/ 33

Here we are!

Neural Architectures for NLP

= 0 (Wf[ht—17 :Ut] + bf)

o (W; - [hy_y524 +b;)
o (Wo) [h’t—l; xt] + bo)

= tanh (W, - [h,_y; 2,] + bo)

C

= f,0C,_, +i,0C,

19/ 33

Here we are!

Ji = 0 (Wf[ht—1§ xt] + bf)

iv = oW, [hy52] + ;)

o, = o(W,-[hy_y524] +,)

ét = tanh (W, - [hy_q; 2] + bc)
C

f,0C,_; +i,0C,

How would you implement it efficiently?

Neural Architectures for NLP 19/ 33

Here we are!

Jit =0 (Wf[htq; T, + bf)

iv = oW, [hy52] + ;)

o, = o(W,-[hy_y524] +,)

ét = tanh (W, - [hy_q; 2] + bc)
C

f,0C,_; +i,0C,

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Neural Architectures for NLP 19/ 33

Gated Recurrent Units

hy
hea O —a—H >
© > 2y =0 (W,[hy_1i2] +0,)
Tt 2t ﬁt — .
0] [0 ~7"t =0 (Wplhy_132] +0,)
- h, = tanh (W(r, © hy_q; $t]}
Y, hy =(1—2,)0hs_1+2,0h,

|

Neural Architectures for NLP 20/ 33

GRU and LSTM

Are GRUs special case of LSTMs?

LSTM GRU
ft = O-<Wf[h‘t—1;xt] +bf> 2t = O-(Wz[ht—l;xt] +bz>
iy = o(W;-[hy 157, +b;) ry = o(Wilhy_q;2,]+0,)
op = oW, [hy_y524] +0,) hy = tanh(W[r, © hy_1574])
Cy = tanh (W, - [hy_q152] +bo) hy = (1=2)Oh, 1 +2,0h,

Ct - ft © Ct—l + it © ét
h, = o, ®tanhC,

Neural Architectures for NLP 21/ 33

GRU and LSTM

Are GRUs special case of LSTMs?

LSTM GRU
ft = O'(Wf[ht_l;xt] +bf) 2t = O-<Wz[ht—1;xt] +bz>
iy = o(W;-[hy 157, +b;) ry = o(Wilhy_q;2,]+0,)
o, = oW, [hy_q1;7]+b,) hy = tanh(W[r, © hy_1574])
Cy = tanh (W, - [hy 1524] +bo) hy = (1=2)Oh, 1 +2,0h,

Ct - ft © Ct—l + it © ét
h, = o, ®tanhC,

No, you cannot lay C, = h, because of the additional non-linearity in LSTMs.

Neural Architectures for NLP 21/ 33

GRU or LSTM?

* GRU preserved the information highway property
= less parameters, should learn faster
= LSTM more general (although both Turing complete)

= empirical results: it's task-specific

Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. "LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).

Neural Architectures for NLP 22/ 33

Recurrent Networks’

+ -
= correspond to intuition of sequential = cannot be parallelized, always need to

processing wait for previous state

= theoretically strong

Neural Architectures for NLP 23/ 33

Convolutional Networks

1-D Convolution

~ sliding window over the sequence

embeddings x = (x4, ...,z)

Neural Architectures for NLP 24/ 33

1-D Convolution

~ sliding window over the sequence

Frrrrrrrrrernrnl

zo =0 embeddings x = (21, ...,T) =0

pad with Os if we want to keep sequence length

Neural Architectures for NLP 24/ 33

1-D Convolution

~ sliding window over the sequence

H fWlzg;z1.25] +b)
RN
HIIIIIIIIIIIIH
Ty = embeddings x = (21, ...,T) =0

pad with Os if we want to keep sequence length

24/ 33

1-D Convolution

~ sliding window over the sequence

hy =f(Wlz,_y;252,,,]+0b)

HIIIIIIIIIIIIH

embeddings x = (21, ...,T) =0

pad with Os if we want to keep sequence length

Neural Architectures for NLP 24/ 33

Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []

for i in range(window, xs.shape[l] - window):
h = np.mul (W, xs[i - window:i + window]) + Db
outputs.append (h)

return np.array(h)

Tﬁl’\cf\l’:lf\\ll
25/ 33

Residual Connections

hy =f(Wlz, y;252,,,]+0b)

Frrrrrrrrrernrnl

2o =0 embeddings x = (z4,...,7) =0

Allows training deeper networks.

26/ 33

Residual Connections

2o =0 embeddings x = (x1,..., 2) =0

Allows training deeper networks.

Neural Architectures for NLP 26/ 33

Residual Connections

hy =f(Wlz, 5252,4]+0) + 2,

2o =0 embeddings x = (x1,..., 2) =0

Allows training deeper networks.
Why do you it helps?

Neural Architectures for NLP 26/ 33

Residual Connections

hy =f(Wlz, 5252,4]+0) + 2,

2o =0 embeddings x = (x1,..., 2) =0

Allows training deeper networks.
Why do you it helps?
Better gradient flow — the same as in RNNs.

Neural Architectures for NLP

26/ 33

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale = layer normalization.

Activation before non-linearity is normalized:

_ 9;
a; = U_z_(ai—#i)
7

..g is a trainable parameter, i, o estimated from data.

Neural Architectures for NLP

27/ 33

Receptive Field

DDA
JUSRNSIENENIN
DL A
H

DX A]
T O

0 embeddings x = (z4,..., 2) zy =0

Can be enlarged by dilated convolutions.

28/ 33

SESY S SE RN
|
CLTTITINnIn]

0 embeddings x = (z4,..., 2) zn =0

| | — — —

Lo

Can be enlarged by dilated convolutions.

28/ 33

Convolutional architectures

+ -

= extremely computationally efficient » limited context

= by default no aware of n-gram order

Neural Architectures for NLP 29/ 33

Self-attentive Networks

Main idea of self-attention

= matrix multiplication can be used for to get dot-product similarity between all sequence
vectors

= while using the same vector space, information might be gathered by summing up

Both regardless the distance in the sequence!

Neural Architectures for NLP 30/ 33

Xs = ... # input sequence, time x dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection

for x_1 in xs:
similarities = np.array(onp.sum(x_1 * x_2) for x_2 in xs)
distribution = softmax(similarities)
context = np.sum(xs * distribution, axis=1)

hidden_layer_input = layer_norm(context + xs)
hidden_layer_middle = relu(

dense_layer (hidden_input, hidden_size))
hidden_layer_output = relu(

dense_layer (hidden_input, hidden_size))

yield layer_norm(
hidden_layer_input + hidden_layer_output)
31/ 33

Self-attentive architectures

+ -

= computationally efficient * memory requirements grow quadratically
» unlimited context with sequence length
= empower state-of-the-art models = not aware or positions in the sequence

(requires positional embeddings)

Neural Architectures for NLP 32/ 33

Reading Assignment

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by
jointly learning to align and translate.” arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/pdf/1409.0473.pdf

Questions:

The authors report 5 BLEU points worse score than the previous encoder-decoder
architecture (Sutskever et al., 2014). Why is their model better then?

If someone asked you to create automatically a dictionary. Would you use the
attention mechanism for it? Why yes? Why not?

33/ 33

https://arxiv.org/pdf/1409.0473.pdf

	Symbol Embeddings
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks
	Reading Assignment

