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Symbol Embeddings



Discrete symbol vs. continuous representation
Simple task: predict next word given three previous:

Source: Bengio, Yoshua, et al. ”A neural probabilistic language model.” Journal of machine learning research 3.Feb (2003): 1137-1155.
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Embeddings

• Natural solution: one-hot vector (vector of vocabulary length with exactly one 1)
• It would mean a huge matrix every time a symbol is on the input
• Rather factorize this matrix and share the first part ⇒ embeddings
• “Embeddings” because they embed discrete symbols into a continuous space

What is the biggest problem during training?
Embeddings get updated only rarely – only when a symbol appears.
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Properties of embeddings

Source: https://blogs.mathworks.com/loren/2017/09/21/math-with-words-word-embeddings-with-matlab-and-text-analytics-toolbox/
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Recurrent Networks



Why RNNs

• for loops over sequential data
• the most frequently used type of network in NLP

Neural Architectures for NLP 5/ 33



General Formulation

• inputs: 𝑥, … , 𝑥𝑇
• initial state ℎ0 = 0, a result of previous

computation, trainable parameter
• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem
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Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥
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Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)
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Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 =

∂ tanh
=𝑧𝑡 (activation)
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LSTMs

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output
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Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way

• direct flow of gradients (without multiplying by ≤ derivatives)
• only vectors guaranteed to live in the same space are manipulated

• information highway metaphor

Neural Architectures for NLP 14/ 33



Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory
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Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store
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Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
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Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡
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Here we are!

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

How would you implement it efficiently?
Compute all gates in a single matrix multiplication.
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Gated Recurrent Units

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)

𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡
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GRU and LSTM

Are GRUs special case of LSTMs?

LSTM

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

GRU

𝑧𝑡 = 𝜎 (𝑊𝑧[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑧)
𝑟𝑡 = 𝜎 (𝑊𝑟[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑟)
ℎ̃𝑡 = tanh (𝑊[𝑟𝑡 ⊙ ℎ𝑡−1; 𝑥𝑡])
ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡

No, you cannot lay 𝐶𝑡 ≡ ℎ𝑡 because of the additional non-linearity in LSTMs.
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GRU or LSTM?

• GRU preserved the information highway property
• less parameters, should learn faster
• LSTM more general (although both Turing complete)
• empirical results: it’s task-specific

Chung, Junyoung, et al. ”Empirical evaluation of gated recurrent neural networks on sequence modeling.” arXiv preprint arXiv:412.3555 (204).
Irie, Kazuki, et al. ”LSTM, GRU, highway and a bit of attention: an empirical overview for language modeling in speech recognition.” Interspeech, San
Francisco, CA, USA (206).
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Recurrent Networks‘

+

• correspond to intuition of sequential
processing

• theoretically strong

-

• cannot be parallelized, always need to
wait for previous state
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Convolutional Networks



1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)

𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length
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1-D Convolution: Code
Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')
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Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

Allows training deeper networks.

Why do you it helps?
Better gradient flow – the same as in RNNs.
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Why do you it helps?

Better gradient flow – the same as in RNNs.
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Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2
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Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.
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Convolutional architectures

+

• extremely computationally efficient

-

• limited context
• by default no aware of 𝑛-gram order
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Self-attentive Networks



Main idea of self-attention

• matrix multiplication can be used for to get dot-product similarity between all sequence
vectors

• while using the same vector space, information might be gathered by summing up

Both regardless the distance in the sequence!

Neural Architectures for NLP 30/ 33



Naive code

xs = ... # input sequence, time x dimension
dimension = xs.shape[1]
hidden_size = 400 # size of additional projection

for x_1 in xs:
similarities = np.array(np.sum(x_1 * x_2) for x_2 in xs)
distribution = softmax(similarities)
context = np.sum(xs * distribution, axis=1)

hidden_layer_input = layer_norm(context + xs)
hidden_layer_middle = relu(

dense_layer(hidden_input, hidden_size))
hidden_layer_output = relu(

dense_layer(hidden_input, hidden_size))

yield layer_norm(
hidden_layer_input + hidden_layer_output)
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Self-attentive architectures

+

• computationally efficient
• unlimited context
• empower state-of-the-art models

-

• memory requirements grow quadratically
with sequence length

• not aware or positions in the sequence
(requires positional embeddings)
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Reading Assignment



Reading for the Next Week

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. ”Neural machine translation by
jointly learning to align and translate.” arXiv preprint arXiv:1409.0473 (2014).
https://arxiv.org/pdf/1409.0473.pdf

Questions:
The authors report 5 BLEU points worse score than the previous encoder-decoder
architecture (Sutskever et al., 2014). Why is their model better then?
If someone asked you to create automatically a dictionary. Would you use the
attention mechanism for it? Why yes? Why not?
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