
Neural Network Basics
Jindřich Libovický, Jindřich Helcl

February 20, 2019

NPFL116 Compendium of Neural Machine Translation

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics unless otherwise stated

Outline

Neural Networks Basics

Representing Words

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 1/ 45

Deep Learning in NLP

• NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

• State of the art in POS tagging, parsing, named-entity recognition, machine translation,
…

• Good news: training without almost any linguistic insight
• Bad news: requires enormous amount of training data and really big computational

power

Neural Network Basics 2/ 45

What is deep learning?

• Buzzword for machine learning using neural networks with many layers using
back-propagation

• Learning of a real-valued function with millions of parameters that solves a particular
problem

• Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem

Neural Network Basics 3/ 45

Neural Networks Basics

Neural Networks Basics

Neural Networks Basics

Representing Words

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 4/ 45

Single Neuron

activation
function

input x
weights w

output

∑ ⋅ is > 0?𝑥𝑖 ⋅𝑤𝑖

𝑥1

⋅𝑤1𝑥2
⋅𝑤2��

�

𝑥𝑛

⋅𝑤𝑛

Neural Network Basics 5/ 45

Neural Network

𝑥
↓ ↑ ↓ ↑

ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1)
↓ ↑ ↓ ↑

ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2)
↓ ↑ ↓ ↑
⋮ ⋮

↓ ↑ ↓ ↑
ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛)

↓ ↑ ↓ ↑
𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸

∂𝑊𝑜
= ∂𝐸

∂𝑜 ⋅ ∂𝑜
∂𝑊𝑜

↓ ↓ ↑
𝐸 = 𝑒(𝑜, 𝑡) → ∂𝐸

∂𝑜

Neural Network Basics 6/ 45

Implementation

Logistic regression:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (1)

Computation graph:

𝑥

𝑊
×

𝑏

+ 𝜎ℎ

forward graph

loss

𝑦∗

𝑜 𝜎′𝑜′
+

𝑏′

ℎ′
×

𝑊 ′

backward graph

Neural Network Basics 7/ 45

Representing Words

Representing Words

Neural Networks Basics

Representing Words

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 8/ 45

Discrete vs. Continous

Neural Network Basics 9/ 45

Representing Sequences

Representing Sequences

Neural Networks Basics

Representing Words

Representing Sequences
Recurrent Networks
Convolutional Networks
Self-attentive Networks

Neural Network Basics 10/ 45

Representing Sequences

Recurrent Networks

Recurrent Networks (RNNs)

…the default choice for sequence labeling

• inputs: 𝑥, … , 𝑥𝑇
• initial state ℎ0 = 0, a result of previous

computation, trainable parameter
• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)

Neural Network Basics 11/ 45

RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output

Neural Network Basics 12/ 45

RNN as a Fancy Image

Neural Network Basics 13/ 45

Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem

Neural Network Basics 14/ 45

Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥

-1.0

-0.5

0.0

0.5

1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

dtanh 𝑥
d𝑥 = 1 − tanh2 𝑥 ∈ (0, 1]

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.

Neural Network Basics 15/ 45

Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)

Neural Network Basics 16/ 45

Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊ℎ⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)

Neural Network Basics 17/ 45

Long Short-Term Memory Networks

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output

Neural Network Basics 18/ 45

LMST: Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way
• direct flow of gradients (without multiplying by ≤ 1 derivatives)

Neural Network Basics 19/ 45

LSTM: Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory

Neural Network Basics 20/ 45

LSTM: Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store

Neural Network Basics 21/ 45

LMST: Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡

Neural Network Basics 22/ 45

LSTM: Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Neural Network Basics 23/ 45

Here we are, LSTM!

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.

Neural Network Basics 24/ 45

Gated Recurrent Units

update gate 𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧) ∈ (0, 1)
remember gate 𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟 + 𝑏𝑟) ∈ (0, 1)
candidate hidden state ̃ℎ𝑡 = tanh (𝑥𝑡𝑊ℎ + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑈ℎ) ∈ (−1, 1)
hidden state ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ̃𝑡

Neural Network Basics 25/ 45

LSTM vs. GRU

• GRU is smaller and therefore faster
• performance similar, task dependent
• theoretical limitation: GRU accepts regular languages, LSTM can simulate counter

machine

;

Neural Network Basics 26/ 45

RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)

output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

Neural Network Basics 27/ 45

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM

RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Neural Network Basics 28/ 45

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn

Bidirectional Networks

• simple trick to improve performance
• run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

• state of the art in tagging, crucial for neural machine translation

Neural Network Basics 29/ 45

http://colah.github.io/posts/2015-09-NN-Types-FP/

Representing Sequences

Convolutional Networks

1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Network Basics 30/ 45

1-D Convolution: Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)

Neural Network Basics 31/ 45

1-D Convolution: Frameworks

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

PyTorch

conv = nn.Conv1d(in_channels, out_channels=300, kernel_size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)

h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Neural Network Basics 32/ 45

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d
https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d

Rectified Linear Units

ReLU:

0.0
1.0
2.0
3.0
4.0
5.0
6.0

−6 −4 −2 0 2 4 6

𝑦

𝑥

Derivative of ReLU:

0.0
0.2
0.4
0.6
0.8
1.0

−6 −4 −2 0 2 4 6

𝑦

𝑥
faster, suffer less with vanishing gradient

Neural Network Basics 33/ 45

Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.

Neural Network Basics 34/ 45

Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2

Neural Network Basics 35/ 45

Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.

Neural Network Basics 36/ 45

Convolutional architectures

+
• extremely computationally efficient

–
• limited context
• by default no aware of 𝑛-gram order

• max-pooling over the hidden states = element-wise maximum over sequence
• can be understood as an ∃ operator over the feature extractors

Neural Network Basics 37/ 45

Representing Sequences

Self-attentive Networks

Self-attentive Networks

• In some layers: states are linear combination of previous layer states
• Originally for the Transformer model for machine translation

• similarity matrix between all pairs of states
• 𝑂(𝑛2) memory, 𝑂(1) time (when paralelized)
• next layer: sum by rows

Neural Network Basics 38/ 45

Multi-headed scaled dot-product attention

Single-head setup

Attn(𝑄, 𝐾, 𝑉) = softmax (𝑄𝐾⊤
√

𝑑
) 𝑉

ℎ𝑖+1 = ∑ softmax (ℎ𝑖ℎ⊤
𝑖√

𝑑
)

Multihead-head setup

Multihead(𝑄, 𝑉) = (𝐻1 ⊕ ⋯ ⊕ 𝐻ℎ)𝑊 𝑂

𝐻𝑖 = Attn(𝑄𝑊 𝑄
𝑖 , 𝑉 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖)

keys & values queries

linear linear linear

split split split

concat

scaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attention

Neural Network Basics 39/ 45

Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \

/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul(p_attn, value), p_attn

Neural Network Basics 40/ 45

Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values):
o1 = tf.matmul(queries, keys, transpose_b=True)
o2 = o1 / (dim**0.5)

o3 = tf.nn.softmax(o2)
return tf.matmul(o3, values)

Neural Network Basics 41/ 45

Position Encoding

Model cannot be aware of the position in the sequence.

pos(𝑖) =
⎧{
⎨{⎩

sin (𝑡
104

𝑖
𝑑) , if 𝑖 mod 2 = 0

cos (𝑡
104

𝑖−1
𝑑) , otherwise

0 20 40 60 80
Text length

0

100

200

300

Di
m

en
sio

n

−0.5

0.0

0.5

1.0

Neural Network Basics 42/ 45

Stacking self-attentive Layers

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• several layers (original paper 6)
• each layer: 2 sub-layers: self-attention and

feed-forward layer
• everything inter-connected with residual

connections

Neural Network Basics 43/ 45

Architectures Comparison

computation sequential operations memory
Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛 ⋅ 𝑑)
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑛 ⋅ 𝑑)
Self-attentive 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛2 ⋅ 𝑑)

𝑑 model dimension, 𝑛 sequence length, 𝑘 convolutional kernel

Neural Network Basics 44/ 45

Neural Network Basics

Summary
1. Discrete symbols → continuous representation with trained

embeddings
2. Architectures to get suitable representation: recurrent,

convolutional, self-attentive
3. Output: classification, sequence labeling, autoregressive

decoding …next time

http://ufal.mff.cuni.cz/courses/npfl116

http://ufal.mff.cuni.cz/courses/npfl116

	Neural Networks Basics
	Representing Words
	Representing Sequences
	Recurrent Networks
	Convolutional Networks
	Self-attentive Networks

