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Deep Learning in NLP

• NLP tasks learn end-to-end using deep learning — the number-one approach in current
research

• State of the art in POS tagging, parsing, named-entity recognition, machine translation,
…

• Good news: training without almost any linguistic insight
• Bad news: requires enormous amount of training data and really big computational

power
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What is deep learning?

• Buzzword for machine learning using neural networks with many layers using
back-propagation

• Learning of a real-valued function with millions of parameters that solves a particular
problem

• Learning more and more abstract representation of the input data until we reach such a
suitable representation for our problem
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Neural Network

𝑥
↓ ↑ ↓ ↑

ℎ1 = 𝑓(𝑊1𝑥 + 𝑏1)
↓ ↑ ↓ ↑

ℎ2 = 𝑓(𝑊2ℎ1 + 𝑏2)
↓ ↑ ↓ ↑
⋮ ⋮

↓ ↑ ↓ ↑
ℎ𝑛 = 𝑓(𝑊𝑛ℎ𝑛−1 + 𝑏𝑛)
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𝑜 = 𝑔(𝑊𝑜ℎ𝑛 + 𝑏𝑜) ∂𝐸
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Implementation

Logistic regression:

𝑦 = 𝜎 (𝑊𝑥 + 𝑏) (1)

Computation graph:

𝑥

𝑊
×
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+ 𝜎ℎ

forward graph

loss
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backward graph
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Discrete vs. Continous
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Recurrent Networks (RNNs)

…the default choice for sequence labeling

• inputs: 𝑥, … , 𝑥𝑇
• initial state ℎ0 = 0, a result of previous

computation, trainable parameter
• recurrent computation: ℎ𝑡 = 𝐴(ℎ𝑡−1, 𝑥𝑡)
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RNN as Imperative Code

def rnn(initial_state, inputs):
prev_state = initial_state
for x in inputs:
new_state, output = rnn_cell(x, prev_state)
prev_state = new_state
yield output
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RNN as a Fancy Image
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Vanilla RNN

ℎ𝑡 = tanh (𝑊[ℎ𝑡−1; 𝑥𝑡] + 𝑏)

• cannot propagate long-distance relations
• vanishing gradient problem
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Vanishing Gradient Problem (1)

tanh 𝑥 = 1 − 𝑒−2𝑥

1 + 𝑒−2𝑥
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Weight initialized ∼ 𝒩(0, 1) to have gradients further from zero.
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Vanishing Gradient Problem (2)

∂𝐸𝑡+1
∂𝑏 = ∂𝐸𝑡+1

∂ℎ𝑡+1
⋅ ∂ℎ𝑡+1

∂𝑏 (chain rule)
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Vanishing Gradient Problem (3)

∂ℎ𝑡
∂𝑏 = ∂ tanh

=𝑧𝑡 (activation)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞(𝑊ℎℎ𝑡−1 + 𝑊𝑥𝑥𝑡 + 𝑏)

∂𝑏 (tanh′ is derivative of tanh)

= tanh′(𝑧𝑡) ⋅ ⎛⎜⎜
⎝

∂𝑊ℎℎ𝑡−1
∂𝑏 + ∂𝑊𝑥𝑥𝑡

∂𝑏⏟
=0

+ ∂𝑏
∂𝑏⏟
=1

⎞⎟⎟
⎠

= 𝑊ℎ⏟
∼𝒩(0,1)

tanh′(𝑧𝑡)⏟⏟⏟⏟⏟
∈(0;1]

∂ℎ𝑡−1
∂𝑏 + tanh′(𝑧𝑡)
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Long Short-Term Memory Networks

LSTM = Long short-term memory

Control the gradient flow by explicitly gating:
• what to use from input,
• what to use from hidden state,
• what to put on output
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LMST: Hidden State

• two types of hidden states
• ℎ𝑡 — “public” hidden state, used an output
• 𝑐𝑡 — “private” memory, no non-linearities on the way
• direct flow of gradients (without multiplying by ≤ 1 derivatives)
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LSTM: Forget Gate

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)

• based on input and previous state, decide what to forget from the memory
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LSTM: Input Gate

𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)

• ̃𝐶 — candidate what may want to add to the memory
• 𝑖𝑡 — decide how much of the information we want to store
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LMST: Cell State Update

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡

Neural Network Basics 22/ 45



LSTM: Output Gate

𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡
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Here we are, LSTM!

𝑓𝑡 = 𝜎 (𝑊𝑓[ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝑜)

̃𝐶𝑡 = tanh (𝑊𝑐 ⋅ [ℎ𝑡−1; 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ ̃𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh 𝐶𝑡

Question How would you implement it efficiently?
Compute all gates in a single matrix multiplication.
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Gated Recurrent Units

update gate 𝑧𝑡 = 𝜎(𝑥𝑡𝑊𝑧 + ℎ𝑡−1𝑈𝑧 + 𝑏𝑧) ∈ (0, 1)
remember gate 𝑟𝑡 = 𝜎(𝑥𝑡𝑊𝑟 + ℎ𝑡−1𝑈𝑟 + 𝑏𝑟) ∈ (0, 1)
candidate hidden state ̃ℎ𝑡 = tanh (𝑥𝑡𝑊ℎ + (𝑟𝑡 ⊙ ℎ𝑡−1)𝑈ℎ) ∈ (−1, 1)
hidden state ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⋅ ℎ̃𝑡
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LSTM vs. GRU

• GRU is smaller and therefore faster
• performance similar, task dependent
• theoretical limitation: GRU accepts regular languages, LSTM can simulate counter

machine

;
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RNN in PyTorch

rnn = nn.LSTM(input_dim, hidden_dim=512, num_layers=1,
bidirectional=True, dropout=0.8)

output, (hidden, cell) = self.rnn(x)

https://pytorch.org/docs/stable/nn.html?highlight=lstm#torch.nn.LSTM
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RNN in TensorFlow

inputs = ... # float tf.Tensor of shape [batch, length, dim]
lengths = ... # int tf.Tensor of shape [batch]

# Cell objects are templates
fw_cell = tf.nn.rnn_cell.LSTMCell(512, name="fw_cell")
bw_cell = tf.nn.rnn_cell.LSTMCell(512, name="bw_cell")

outputs, states = tf.nn.bidirectional_dynamic_rnn(
cell_fw, cell_bw, inputs, sequence_length=lengths)

https://www.tensorflow.org/api_docs/python/tf/nn/bidirectional_dynamic_rnn
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Bidirectional Networks

• simple trick to improve performance
• run one RNN forward, second one backward and concatenate outputs

Image from: http://colah.github.io/posts/2015-09-NN-Types-FP/

• state of the art in tagging, crucial for neural machine translation
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1-D Convolution

≈ sliding window over the sequence

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

ℎ1 = 𝑓 (𝑊[𝑥0; 𝑥1.𝑥2] + 𝑏)
ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏)

pad with 0s if we want to keep sequence length

Neural Network Basics 30/ 45



1-D Convolution: Pseudocode

xs = ... # input sequnce

kernel_size = 3 # window size
filters = 300 # output dimensions
strides=1 # step size

W = trained_parameter(xs.shape[2] * kernel_size, filters)
b = trained_parameter(filters)
window = kernel_size // 2

outputs = []
for i in range(window, xs.shape[1] - window):

h = np.mul(W, xs[i - window:i + window]) + b
outputs.append(h)

return np.array(h)
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1-D Convolution: Frameworks

TensorFlow

h = tf.layers.conv1d(x, filters=300 kernel_size=3,
strides=1, padding='same')

https://www.tensorflow.org/api_docs/python/tf/layers/conv1d

PyTorch

conv = nn.Conv1d(in_channels, out_channels=300, kernel_size=3, stride=1,
padding=0, dilation=1, groups=1, bias=True)

h = conv(x)

https://pytorch.org/docs/stable/nn.html#torch.nn.Conv1d
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Rectified Linear Units

ReLU:
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faster, suffer less with vanishing gradient
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Residual Connections

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

ℎ𝑖 = 𝑓 (𝑊 [𝑥𝑖−1; 𝑥𝑖; 𝑥𝑖+1] + 𝑏) + 𝑥𝑖

Allows training deeper networks.
Why do you it helps?

Better gradient flow – the same as in RNNs.
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Residual Connections: Numerical Stability

Numerically unstable, we need activation to be in similar scale ⇒ layer normalization.
Activation before non-linearity is normalized:

𝑎𝑖 = 𝑔𝑖
𝜎𝑖

(𝑎𝑖 − 𝜇𝑖)

…𝑔 is a trainable parameter, 𝜇, 𝜎 estimated from data.

𝜇 = 1
𝐻

𝐻
∑
𝑖=1

𝑎𝑖

𝜎 =
√√√
⎷

1
𝐻

𝐻
∑
𝑖=1

(𝑎𝑖 − 𝜇)2
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Receptive Field

embeddings x = (𝑥1, … , 𝑥𝑁)𝑥0 = ⃗0 𝑥𝑁 = ⃗0
Can be enlarged by dilated convolutions.
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Convolutional architectures

+
• extremely computationally efficient

–
• limited context
• by default no aware of 𝑛-gram order

• max-pooling over the hidden states = element-wise maximum over sequence
• can be understood as an ∃ operator over the feature extractors
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Self-attentive Networks

• In some layers: states are linear combination of previous layer states
• Originally for the Transformer model for machine translation

• similarity matrix between all pairs of states
• 𝑂(𝑛2) memory, 𝑂(1) time (when paralelized)
• next layer: sum by rows
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Multi-headed scaled dot-product attention

Single-head setup

Attn(𝑄, 𝐾, 𝑉 ) = softmax (𝑄𝐾⊤
√

𝑑
) 𝑉

ℎ𝑖+1 = ∑ softmax (ℎ𝑖ℎ⊤
𝑖√

𝑑
)

Multihead-head setup

Multihead(𝑄, 𝑉 ) = (𝐻1 ⊕ ⋯ ⊕ 𝐻ℎ)𝑊 𝑂

𝐻𝑖 = Attn(𝑄𝑊 𝑄
𝑖 , 𝑉 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 )

keys & values queries

linear linear linear

split split split

concat

scaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attentionscaled dot-product attention
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Dot-Product Attention in PyTorch

def attention(query, key, value, mask=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \

/ math.sqrt(d_k)
p_attn = F.softmax(scores, dim = -1)
return torch.matmul(p_attn, value), p_attn
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Dot-Product Attention in TensorFlow

def scaled_dot_product(self, queries, keys, values):
o1 = tf.matmul(queries, keys, transpose_b=True)
o2 = o1 / (dim**0.5)

o3 = tf.nn.softmax(o2)
return tf.matmul(o3, values)
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Position Encoding

Model cannot be aware of the position in the sequence.

pos(𝑖) =
⎧{
⎨{⎩

sin ( 𝑡
104

𝑖
𝑑 ) , if 𝑖 mod 2 = 0

cos ( 𝑡
104

𝑖−1
𝑑 ) , otherwise
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Stacking self-attentive Layers

input embeddings

⊕position
encoding

self-attentive
sublayer

multihead
attention

keys &
values

queries

⊕

layer normalization

feed-forward
sublayer

non-linear layer

linear layer

⊕

layer normalization

𝑁×

• several layers (original paper 6)
• each layer: 2 sub-layers: self-attention and

feed-forward layer
• everything inter-connected with residual

connections
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Architectures Comparison

computation sequential operations memory
Recurrent 𝑂(𝑛 ⋅ 𝑑2) 𝑂(𝑛) 𝑂(𝑛 ⋅ 𝑑)
Convolutional 𝑂(𝑘 ⋅ 𝑛 ⋅ 𝑑2) 𝑂(1) 𝑂(𝑛 ⋅ 𝑑)
Self-attentive 𝑂(𝑛2 ⋅ 𝑑) 𝑂(1) 𝑂(𝑛2 ⋅ 𝑑)

𝑑 model dimension, 𝑛 sequence length, 𝑘 convolutional kernel
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Neural Network Basics

Summary
1. Discrete symbols → continuous representation with trained

embeddings
2. Architectures to get suitable representation: recurrent,

convolutional, self-attentive
3. Output: classification, sequence labeling, autoregressive

decoding …next time

http://ufal.mff.cuni.cz/courses/npfl116
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