Course Logistics

Jindřich Helcl, Jindřich Libovický

February 26, 2020
Goals of the Course

1. Make you able to read the newest MT papers
Goals of the Course

1. Make you able to read the newest MT papers

2. Give you some intuition on how the models behave
What We Expect You to Know

- Basics of deep learning
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation

Enrolling NPFL087 Statistical Machine Translation and NPFL114 Deep Learning is recommended.
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation
- Be familiar with machine translation
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation
- Be familiar with machine translation
 - data we use and how do we get them
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation

- Be familiar with machine translation
 - data we use and how do we get them
 - MT evaluation

Enrolling NPFL087 Statistical Machine Translation and NPFL114 Deep Learning is recommended.
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation

- Be familiar with machine translation
 - data we use and how do we get them
 - MT evaluation
 - main problems of MT and why they are difficult
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation

- Be familiar with machine translation
 - data we use and how do we get them
 - MT evaluation
 - main problems of MT and why they are difficult
What We Expect You to Know

- Basics of deep learning
 - basic neural architectures
 - training by backpropagation

- Be familiar with machine translation
 - data we use and how do we get them
 - MT evaluation
 - main problems of MT and why they are difficult

Enrolling **NPFL087 Statistical Machine Translation** and **NPFL114 Deep Learning** is recommended.
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

• Introductory notes on deep learning and machine translation
• Neural architectures for NLP
• Sequence-to-sequence learning with attention mechanism using RNNs
• Sequence-to-sequence learning using self-attention networks
• Dealing with limited vocabulary (character-based methods, sub-word units)
• Algorithmic tricks to improve model performance (beam search, ensembling)

The topics may change based on your interests.
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
- Sequence-to-sequence learning with attention mechanism using RNNs
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
- Sequence-to-sequence learning with attention mechanism using RNNs
- Sequence-to-sequence learning using self-attention networks
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
- Sequence-to-sequence learning with attention mechanism using RNNs
- Sequence-to-sequence learning using self-attention networks
- Dealing with limited vocabulary (character-based methods, sub-word units)
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
- Sequence-to-sequence learning with attention mechanism using RNNs
- Sequence-to-sequence learning using self-attention networks
- Dealing with limited vocabulary (character-based methods, sub-word units)
- Algorithmic tricks to improve model performance (beam search, ensembling)
First Part: Lectures

1. Discussion on a reading assignment (20 minutes)
2. Lecture (70 minutes)

Preliminary Syllabus

- Introductory notes on deep learning and machine translation
- Neural architectures for NLP
- Sequence-to-sequence learning with attention mechanism using RNNs
- Sequence-to-sequence learning using self-attention networks
- Dealing with limited vocabulary (character-based methods, sub-word units)
- Algorithmic tricks to improve model performance (beam search, ensembling)

The topics may change based on your interests.
Second Part: Paper Presentations

Every student will:

- Present a paper (or a group of papers) to the others
Second Part: Paper Presentations

Every student will:

- Present a paper (or a group of papers) to the others
- Prepare interesting questions to kick-off the discussion
Every student will:

- Present a paper (or a group of papers) to the others
- Prepare interesting questions to kick-off the discussion

Papers will cover recent research topics including: *unsupervised translation*, *interpretability*, *alternative decoding schemes* (*non-autoregressive NMT*, *Levenshtein Transformers*).
To pass the course, you need to:

- read the papers assigned for the seminar and submit an answer to a question for each paper before the seminar (via a Google Form),
- present a paper to your fellow students,
- write a test at the end of the semester.

The seminar is an **optional** course, awarded by **3 credits**.
The course materials & reading questions will be available on the course webpage.

If you have questions, drop us a line:
- Jindřich Helcl (helcl --at-- ufal.mff.cuni.cz)
- Jindřich Libovický (libovicky --at-- ufal.mff.cuni.cz)

http://ufal.mff.cuni.cz/courses/npfl116