
More Theories
Formal Semantics

A Logical Grammar

More Theories, Formal semantics

Jirka Hana

Parts are based on slides by Carl Pollard

Charles University, 2011-11-12

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Optimality Theory

Universal set of violable constraints:

Faithfulness constraints:surface forms should be as close as
to underlying forms
Markedness constraints: work on output (along the lines:
CV structure is preferred, voiceless final sounds are
preferred)

Language differ in constraint rankings

Language acquisition = discovering the ranking

Mostly in phonology

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

HPSG

The most widely used grammar framework in
computational linguistics

Fully formalized

Model theoretic approach

Objects: Typed feature structures - directed graph with
labeled edges and nodes

Grammar: set of constraints (a la Prolog + types +
negation)

Constraints can be expressed as AVMs

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Expression, Meaning, and Reference

Following Frege (1892), semanticists distinguish between
the meaning (or sense) of a linguistic expression and its
reference (or denotation).

We say an expression expresses its meaning, and refers
to, or denotes, its reference.

In general, the reference of an expression can be
contingent (depend on how things are), while the meaning
is independent of how things are (examples coming soon).

Note: Here, we are ignoring the distinction between an
expression and an utterance of an expression.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Expression, Meaning, and Reference

Following Frege (1892), semanticists distinguish between
the meaning (or sense) of a linguistic expression and its
reference (or denotation).

We say an expression expresses its meaning, and refers
to, or denotes, its reference.

In general, the reference of an expression can be
contingent (depend on how things are), while the meaning
is independent of how things are (examples coming soon).

Note: Here, we are ignoring the distinction between an
expression and an utterance of an expression.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Expression, Meaning, and Reference

Following Frege (1892), semanticists distinguish between
the meaning (or sense) of a linguistic expression and its
reference (or denotation).

We say an expression expresses its meaning, and refers
to, or denotes, its reference.

In general, the reference of an expression can be
contingent (depend on how things are), while the meaning
is independent of how things are (examples coming soon).

Note: Here, we are ignoring the distinction between an
expression and an utterance of an expression.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Expression, Meaning, and Reference

Following Frege (1892), semanticists distinguish between
the meaning (or sense) of a linguistic expression and its
reference (or denotation).

We say an expression expresses its meaning, and refers
to, or denotes, its reference.

In general, the reference of an expression can be
contingent (depend on how things are), while the meaning
is independent of how things are (examples coming soon).

Note: Here, we are ignoring the distinction between an
expression and an utterance of an expression.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Examples

The meaning of a declarative sentence is a proposition,
while its reference is the truth value of that proposition.

The meaning of a common noun (e.g. donkey) or an
intransitive verb (e.g. brays), is a property, while its
reference is the set of things that have that property.

Names are controversial! Vastly oversimplifying:

Descriptivism (Frege, Russell) the meaning of a name is a
description associated with the name by speakers; the
reference is what satisfies the description.
Direct Reference Theory (Mill, Kripke) the meaning of
a name is its reference, so names are rigid (their reference
is independent of how things are.)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Examples

The meaning of a declarative sentence is a proposition,
while its reference is the truth value of that proposition.

The meaning of a common noun (e.g. donkey) or an
intransitive verb (e.g. brays), is a property, while its
reference is the set of things that have that property.

Names are controversial! Vastly oversimplifying:

Descriptivism (Frege, Russell) the meaning of a name is a
description associated with the name by speakers; the
reference is what satisfies the description.
Direct Reference Theory (Mill, Kripke) the meaning of
a name is its reference, so names are rigid (their reference
is independent of how things are.)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Examples

The meaning of a declarative sentence is a proposition,
while its reference is the truth value of that proposition.

The meaning of a common noun (e.g. donkey) or an
intransitive verb (e.g. brays), is a property, while its
reference is the set of things that have that property.

Names are controversial! Vastly oversimplifying:

Descriptivism (Frege, Russell) the meaning of a name is a
description associated with the name by speakers; the
reference is what satisfies the description.

Direct Reference Theory (Mill, Kripke) the meaning of
a name is its reference, so names are rigid (their reference
is independent of how things are.)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Examples

The meaning of a declarative sentence is a proposition,
while its reference is the truth value of that proposition.

The meaning of a common noun (e.g. donkey) or an
intransitive verb (e.g. brays), is a property, while its
reference is the set of things that have that property.

Names are controversial! Vastly oversimplifying:

Descriptivism (Frege, Russell) the meaning of a name is a
description associated with the name by speakers; the
reference is what satisfies the description.
Direct Reference Theory (Mill, Kripke) the meaning of
a name is its reference, so names are rigid (their reference
is independent of how things are.)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Grammar and Meaning

The grammar of a language specifies meanings of
expressions.

Grammar says nothing about reference.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Grammar and Meaning

The grammar of a language specifies meanings of
expressions.

Grammar says nothing about reference.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Compositionality

The Principle of Compositionality: The meaning of an
expression is a function of the meanings of its parts and of the
way they are syntactically combined.

A grammar specifies

the meaning of words (or morphemes)

how to derive a meaning of a complex expression from its
components

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Compositionality

The Principle of Compositionality: The meaning of an
expression is a function of the meanings of its parts and of the
way they are syntactically combined.

A grammar specifies

the meaning of words (or morphemes)

how to derive a meaning of a complex expression from its
components

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Entailment

John ate a cake.

A cake was eaten.

There was a cake.

Entailment: φ |= ψ iff (if φ is true then ψ must be true)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Entailment

John ate a cake.

A cake was eaten.

There was a cake.

Entailment: φ |= ψ iff (if φ is true then ψ must be true)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

A Theory of Meanings and Extensions

Our theory will use the following sets as building blocks:

Prop The propositions (sentence meanings)

Bool The truth values (extensions of propositions)
Ind The individuals (meanings of names).
World The worlds (ultrafilters of propositions)
One The unit set {0}.

It’s conventional to call the member of this set ∗,
rather than 0, since the important thing about it is
that it is a singleton and not what its member is.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

A Theory of Meanings and Extensions

Our theory will use the following sets as building blocks:

Prop The propositions (sentence meanings)
Bool The truth values (extensions of propositions)

Ind The individuals (meanings of names).
World The worlds (ultrafilters of propositions)
One The unit set {0}.

It’s conventional to call the member of this set ∗,
rather than 0, since the important thing about it is
that it is a singleton and not what its member is.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

A Theory of Meanings and Extensions

Our theory will use the following sets as building blocks:

Prop The propositions (sentence meanings)
Bool The truth values (extensions of propositions)
Ind The individuals (meanings of names).

World The worlds (ultrafilters of propositions)
One The unit set {0}.

It’s conventional to call the member of this set ∗,
rather than 0, since the important thing about it is
that it is a singleton and not what its member is.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

A Theory of Meanings and Extensions

Our theory will use the following sets as building blocks:

Prop The propositions (sentence meanings)
Bool The truth values (extensions of propositions)
Ind The individuals (meanings of names).
World The worlds (ultrafilters of propositions)

One The unit set {0}.
It’s conventional to call the member of this set ∗,
rather than 0, since the important thing about it is
that it is a singleton and not what its member is.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

A Theory of Meanings and Extensions

Our theory will use the following sets as building blocks:

Prop The propositions (sentence meanings)
Bool The truth values (extensions of propositions)
Ind The individuals (meanings of names).
World The worlds (ultrafilters of propositions)
One The unit set {0}.

It’s conventional to call the member of this set ∗,
rather than 0, since the important thing about it is
that it is a singleton and not what its member is.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Propositions

Propositions are primitive notions.

We are agnostic only about their formal nature not about
their properties.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Propositions

Propositions are primitive notions.

We are agnostic only about their formal nature not about
their properties.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

The set of propositions (Prop) forms a pre-lattice:

They are related by entailment:
|=: Prop×Prop→ Bool

And the induced equivalence:
≡: Prop×Prop→ Bool

Entailment is constrained to be a preorder (i.e., reflexive,
transitive, but not antisymmetric)
The absence of antisymmetry allows two propositions to
entail each other and still be distinct objects. Equality
implies equivalence but not vice versa.

There are the usual glb/lub, top/bottom, complement,
residual operations.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

The set of propositions (Prop) forms a pre-lattice:

They are related by entailment:
|=: Prop×Prop→ Bool

And the induced equivalence:
≡: Prop×Prop→ Bool

Entailment is constrained to be a preorder (i.e., reflexive,
transitive, but not antisymmetric)
The absence of antisymmetry allows two propositions to
entail each other and still be distinct objects. Equality
implies equivalence but not vice versa.

There are the usual glb/lub, top/bottom, complement,
residual operations.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

The set of propositions (Prop) forms a pre-lattice:

They are related by entailment:
|=: Prop×Prop→ Bool

And the induced equivalence:
≡: Prop×Prop→ Bool

Entailment is constrained to be a preorder (i.e., reflexive,
transitive, but not antisymmetric)
The absence of antisymmetry allows two propositions to
entail each other and still be distinct objects. Equality
implies equivalence but not vice versa.

There are the usual glb/lub, top/bottom, complement,
residual operations.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

The set of propositions (Prop) forms a pre-lattice:

They are related by entailment:
|=: Prop×Prop→ Bool

And the induced equivalence:
≡: Prop×Prop→ Bool

Entailment is constrained to be a preorder (i.e., reflexive,
transitive, but not antisymmetric)
The absence of antisymmetry allows two propositions to
entail each other and still be distinct objects. Equality
implies equivalence but not vice versa.

There are the usual glb/lub, top/bottom, complement,
residual operations.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

The set of propositions (Prop) forms a pre-lattice:

They are related by entailment:
|=: Prop×Prop→ Bool

And the induced equivalence:
≡: Prop×Prop→ Bool

Entailment is constrained to be a preorder (i.e., reflexive,
transitive, but not antisymmetric)
The absence of antisymmetry allows two propositions to
entail each other and still be distinct objects. Equality
implies equivalence but not vice versa.

There are the usual glb/lub, top/bottom, complement,
residual operations.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

(Hyper)intensional types

Meaning, the kind of hyperintensional types is defined as
follows:

Prop, Ind,One ∈Meaning.

If A,B ∈Meaning then

A×B ∈Meaning.
A→ B ∈Meaning

Nothing else is a hyperintensional type.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Examples of word meanings

syntax semantics

proper name Chiquita Chiquita’ : Ind
common noun donkey donkey’:Ind→ Prop
sentential adverb obviously obvious’:Prop→ Prop
dummy pronoun itd ∗ ∈ One

It is obvious that . . .

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

References

Meanings can be mapped to extensions (references).

meaning type maps to reference type
Ind Ind
Prop Bool
Prop→ Prop Prop→ Bool
etc.

meaning reference
Chiquita’: Ind Chiquita’: Ind
∗ : One ∗ : One
donkey’ : Ind→ Prop f : Ind→ Bool; f(i)⇔ (i is a donkey)
obviously : Prop→ Prop g : Prop→ Bool; g(p)⇔ (p is obvious)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

References

Meanings can be mapped to extensions (references).

meaning type maps to reference type
Ind Ind
Prop Bool
Prop→ Prop Prop→ Bool
etc.

meaning reference
Chiquita’: Ind Chiquita’: Ind
∗ : One ∗ : One
donkey’ : Ind→ Prop f : Ind→ Bool; f(i)⇔ (i is a donkey)
obviously : Prop→ Prop g : Prop→ Bool; g(p)⇔ (p is obvious)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

References

Meanings can be mapped to extensions (references).

meaning type maps to reference type
Ind Ind
Prop Bool
Prop→ Prop Prop→ Bool
etc.

meaning reference
Chiquita’: Ind Chiquita’: Ind
∗ : One ∗ : One
donkey’ : Ind→ Prop f : Ind→ Bool; f(i)⇔ (i is a donkey)
obviously : Prop→ Prop g : Prop→ Bool; g(p)⇔ (p is obvious)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Categorial Grammar

logical formalism, several implications (usually written as /
and \)
small number of language independent rules (e.g., modus
ponens = function application), the rest of grammar is in
the lexicon (radical lexicalism)

syntactic structure is an equivalence set of proofs

Usually, surface form and semantics are derived in parallel.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Categorial Grammar

we can say that verbs are functions taking noun phrases as
their arguments

john:NP sleeps:NP\S
john sleeps:S

application

If there is an object john of type NP and an object sleeps
of type NP\S then there is an object john sleeps of type S.
Note that john sleeps is a syntactical object, not the actual
surface form. We could have written x123 for john.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Recall

currying – transformation of a function with multiple
parameters into a function taking a single argument (the first of
the arguments of the original function) and returning a new
function which takes the remainder of the arguments.

uncurried curried
plus : (Int× Int)→ Int plus’ : Int→ (Int→ Int)
plus(3, 4) plus’(3)(4)

inc = plus’(1)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Recall

currying – transformation of a function with multiple
parameters into a function taking a single argument (the first of
the arguments of the original function) and returning a new
function which takes the remainder of the arguments.

uncurried curried
plus : (Int× Int)→ Int plus’ : Int→ (Int→ Int)
plus(3, 4) plus’(3)(4)

inc = plus’(1)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

Recall

currying – transformation of a function with multiple
parameters into a function taking a single argument (the first of
the arguments of the original function) and returning a new
function which takes the remainder of the arguments.

uncurried curried
plus : (Int× Int)→ Int plus’ : Int→ (Int→ Int)
plus(3, 4) plus’(3)(4)

inc = plus’(1)

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now

Words, phrases and sentences are modeled as signs.

Signs are the combinations of phonological, syntactic, and
semantic objects that makes sense.

The phonological component of a sign is the pronunciation
of the syntactic component and the semantic component is
the meaning of it.

The type Sign is a subtype of the following tuple type phon Phon∗

syn Syn
sem Meaning


Syn is the kind of syntactic types, i.e., set of basic types
(NP, N, S, . . . ) closed under syntactic constructors (×,
⇒, . . . ).

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop



In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop
[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop
[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)
[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :

(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop
[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop


In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop

[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop
[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)
[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :

(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop
[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop


In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop
[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop

[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)
[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :

(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop
[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop


In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop
[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop
[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)

[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop

[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop


In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop
[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop
[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)
[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :

(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop

[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Lexicon

Lexicon consists of axioms of the form:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop


In abbreviated form:
[boI]: Phon∗ boy: N boy’: Ind⇒ Prop
[sno:rz]: Phon∗ snores: NP⇒ S snore’: Ind⇒ Prop
[sli:ps]: Phon∗ sleeps: NP⇒ S sleep’: Ind⇒ Prop
[laUdlI]: Phon∗ loudly: VP⇒ VP loud’: (Ind⇒ Prop)⇒ (Ind⇒ Prop)
[EvrI]: Phon∗ every: N⇒ NP every’ = λq, p.λx.(q(x)⇒ p(x)) :

(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop
[ænd]: Phon∗ and: ∀A.A×A⇒ A and’: ∀A.A×A⇒ A

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

All together now – Grammar

function application in syntax corresponds to:

function application in semantics
concatenation in phonology

Possibly other rules in individual sub-grammars. For
example, phonotactic constraints in phonology.

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy:

Relevant lexicon:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop

 `


phon [EvrI] : Phon∗

syn every : N⇒ NP
sem every′ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop



`

 phon [EvrI boI] : Phon∗

syn every(boy) : NP
sem every’(boy’) : (Ind⇒ Prop)⇒ Prop


every’(boy’) =

[λq, p . λx.(q(x)⇒ p(x))](λx . boy’(x))
λp . λx(boy’(x)⇒ p(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy:

Relevant lexicon:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop

 `


phon [EvrI] : Phon∗

syn every : N⇒ NP
sem every′ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop



`

 phon [EvrI boI] : Phon∗

syn every(boy) : NP
sem every’(boy’) : (Ind⇒ Prop)⇒ Prop


every’(boy’) =

[λq, p . λx.(q(x)⇒ p(x))](λx . boy’(x))
λp . λx(boy’(x)⇒ p(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy:

Relevant lexicon:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop

 `


phon [EvrI] : Phon∗

syn every : N⇒ NP
sem every′ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop



`

 phon [EvrI boI] : Phon∗

syn every(boy) : NP
sem every’(boy’) : (Ind⇒ Prop)⇒ Prop



every’(boy’) =
[λq, p . λx.(q(x)⇒ p(x))](λx . boy’(x))
λp . λx(boy’(x)⇒ p(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy:

Relevant lexicon:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop

 `


phon [EvrI] : Phon∗

syn every : N⇒ NP
sem every′ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop



`

 phon [EvrI boI] : Phon∗

syn every(boy) : NP
sem every’(boy’) : (Ind⇒ Prop)⇒ Prop


every’(boy’) =

[λq, p . λx.(q(x)⇒ p(x))](λx . boy’(x))

λp . λx(boy’(x)⇒ p(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy:

Relevant lexicon:

`

 phon [boI] : Phon∗

syn boy : N
sem boy′ : Ind⇒ Prop

 `


phon [EvrI] : Phon∗

syn every : N⇒ NP
sem every′ = λq, p.λx.(q(x)⇒ p(x)) :
(Ind⇒ Prop)× (Ind⇒ Prop)⇒ Prop



`

 phon [EvrI boI] : Phon∗

syn every(boy) : NP
sem every’(boy’) : (Ind⇒ Prop)⇒ Prop


every’(boy’) =

[λq, p . λx.(q(x)⇒ p(x))](λx . boy’(x))
λp . λx(boy’(x)⇒ p(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy sleeps and snores loudly

`

 phon [EvrI boI sli:ps ænd sno:rz laUdlI] : Phon∗

syn and(sleeps, loud(snore))(every(boy)) : S
sem and’(sleep’, loud’(snore’))(every’(boy’)) : Prop


and’(sleep’, loud’(snore’))(every’(boy’)) =

[λp.λx(boy’(x)⇒ p(x))](λs.and’(sleep’, loudly’(snore’))(s)) =

λx.(boy’(x)⇒ and’(sleep’, loud’(snore’))(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy sleeps and snores loudly

`

 phon [EvrI boI sli:ps ænd sno:rz laUdlI] : Phon∗

syn and(sleeps, loud(snore))(every(boy)) : S
sem and’(sleep’, loud’(snore’))(every’(boy’)) : Prop



and’(sleep’, loud’(snore’))(every’(boy’)) =
[λp.λx(boy’(x)⇒ p(x))](λs.and’(sleep’, loudly’(snore’))(s)) =

λx.(boy’(x)⇒ and’(sleep’, loud’(snore’))(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy sleeps and snores loudly

`

 phon [EvrI boI sli:ps ænd sno:rz laUdlI] : Phon∗

syn and(sleeps, loud(snore))(every(boy)) : S
sem and’(sleep’, loud’(snore’))(every’(boy’)) : Prop


and’(sleep’, loud’(snore’))(every’(boy’)) =

[λp.λx(boy’(x)⇒ p(x))](λs.and’(sleep’, loudly’(snore’))(s)) =

λx.(boy’(x)⇒ and’(sleep’, loud’(snore’))(x))

Jirka Hana More Theories, Formal semantics



More Theories
Formal Semantics

A Logical Grammar

every boy sleeps and snores loudly

`

 phon [EvrI boI sli:ps ænd sno:rz laUdlI] : Phon∗

syn and(sleeps, loud(snore))(every(boy)) : S
sem and’(sleep’, loud’(snore’))(every’(boy’)) : Prop


and’(sleep’, loud’(snore’))(every’(boy’)) =

[λp.λx(boy’(x)⇒ p(x))](λs.and’(sleep’, loudly’(snore’))(s)) =

λx.(boy’(x)⇒ and’(sleep’, loud’(snore’))(x))

Jirka Hana More Theories, Formal semantics


	More Theories
	Formal Semantics
	A Logical Grammar

