Dependency Grammars Topological Dependency Trees: A Constraint-based Account of Linear Precedence **Extensible Dependency Grammar: A New Methodology** Sibel Ciddi NPFL106 - Linguistics 2013 Summer

Framework

- Immediate dependency (ID) → syntactic dependency tree → (initially) non-projective, non-ordered
 - The edges of the ID tree \rightarrow syntactic roles
 - {subject, object, vinf, ...}
- Linear precedence (LP) → topological dependency tree → projective, partially ordered.
 - The edges of the LP tree \rightarrow topological fields
 - {df, mf, vc, xf, ...}

(determiner-field, mittelfeld, canonical-position, extraposition...)

Discontinuous VP constructions in free word order (1) (dass) Einen Mann Maria zu lieben versucht (that) a man_{acc} Maria_{nom} to love tries

To handle discontinuous constituents, Reape's Theory:

- 1. the unordered syntax tree
- 2. the totally ordered tree of word order domains, which handles the following:

(2) (dass) Maria einen Mann <u>zu lieben</u> versucht→ scrambling
(3) (dass) einen Mann Maria <u>zu lieben</u> versucht→ scrambling
(4) (dass) Maria versucht, einen Mann <u>zu lieben</u>→ full extraposition

But it does not handle the following:

(5) (dass) Maria einen Mann versucht, zu lieben → partial extraposition

ID / LP Tree Example - free word order

(2) (dass) Maria Einen Mann zu lieben versucht (scrambling)

ID Tree

LP Tree

**zu lieben in canonical position {vc}

Formal Framework & LP Principles

An ID/LP analysis:

- a tuple of (V; E_{ID}; E_{LP}; lex; cat; valency_{ID}; valency_{LP}; field_{ext}; field_{int}) s.t. :
 - ID tree: (V; E_{ID}; lex; cat; valency_{ID})
 - valency_{ID}(w) = lex(w).valency_{ID}
 - LP tree: (V; E_{LP}; lex; valency_{LP}; field_{ext}; field_{int})
 - valency_{LP}(w) = lex(w).valency_{LP}
 - The following principles are satisfied:
 - 1. A node must land on a transitive head.
 - 2. It may not climb through a barrier.
 - 3. A node must land on, or climb higher than its head.

Valency Satisfaction

A tree (V, E) satisfies the valency assignment, iff:

- The labeled edge, l-daughter: |l(w)| = 1
- The labeled edge, l-daughter: |l(w)| is 0 or 1
- The labeled edge, l-daughter: |l(w)| is 0 or more
- Example:
 - Valency_{ID}: versucht={subject; zuvinf}
 - Valency_{LP}: versucht={mf*; vc?; xf?}

Partial VP- Extraposition

(8) (dass) Maria einen Mann versucht, zu lieben

- zu lieben extraposed to the right of versucht
- its nominal complement einen Mann remains in the Mittelfeld.

Obligatory Head-Final Placement

(9) (dass) Maria einen Mann lieben wird.

(that) Maria a man_{acc} love will

***In head-final verb-clusters, non-finite verbs precede their verbal heads (wird).

 $field_{ext}(lieben) = \{vc\}$

Extensible Dependency Grammar (XDG)

- Formalization (extended from the LP schema)
 XDG= ((Lab_i; Fea_i; Val_i; Pri_i)ⁿ_{i=1}; Pri; Lex)
 - n dimensions + multi-dimensional principles + Lex

Solver

- Infers information about one dimension from another dimension, by using:
 - Either a multi-dimensional principle linking the two dimensions,
 - Or the synchronization induced by the lexical entries.

XDG Example:

- **Dimensions,** Labels, Principles:
- Lab_{ID} = {det; subj; obj; vinf; part}
 - 1. **Tree** : *tree(i)*, *non-lexicalized*, *parameterized*
 - 2. Valency: valency(i; in_i; out_i) Lexicalized
 - **3. Government**: government(i; cases_i; govern_i) Lexicalized.
 - **4. Agreement**: *agreement(i; cases_i; agree_i) Lexicalized.*

XDG Example:

- **Dimensions,** Labels, Principles:
- Lab_{LP} = {detf; nounf; vf; lbf; mf; partf; rbf}
 - **1. Tree, Valency** (same as the ID dim. principles)
 - **2.** Order: $order(i; on_i; \prec i)$, lexicalized
 - 3. *Projectivity: : projectivity(i), non-lexicalized
 - **Climbing**: *climbing(i; j), non-lexicalized, multidimensional*
 - Linking: linking(i; j; link_{i;j}), lexicalized, multidimensional

**Projectivity is relevant only for the order principle.

XDG: Topicalization (Peter versucht einen Roman zu lesen) Einen Roman versucht Peter zu lesen. **ID** Tree - obi 00 Roman $\overline{z}u$ lesen versucht Sinen Peter LP Tree Valency, projectivity, nounf nounf part Roman versucht Peter \dot{zu} lesen

XDG Example: ungrammatical sentence

*Peter einen Roman versucht zu lesen.

From the lexicon, we have:

Versucht-LP: in{ }, out{ vf?; mf*; rbf?}, on{lbf}, link{ }

- The finite verb versucht → 1 dependent in its Vorfeld (to left)
- This sentence has 2 dependents (??)
- The sentence gets ruled out before further analysis is made.

XDG Example: Dutch

Peter probeert een roman te lezen Peter tries a novel to read.

The Vorfeld of the finite verb probeert cannot be occupied by an object (but only by an object).

- link_{LP;ID} = {vf -> {subj} }.
- The linking principle: The Vorfeld of probeert must be filled by a subject, and not by an object.
- Peter in the Vorfeld must be a subject.

XDG Example: Predicate-Argument Structure

Labels: Lab_{PA} = {ag; pat; prop} *(agent, patient, proposition)* 1-Dimensional principles: dag, valency Multi-Dimensional principles: climbing, linking

XDG Comparisons & Conclusions

- 1. LFG: Ruling out ambiguity involves several steps:
 - the ambiguity on the f-structure is duplicated
 - the ill-formed structure on the semantic $\sigma\mbox{-structure}$ is filtered out later.

+ In XDG, the semantic principles can rule out the ill-formed analysis much earlier, typically on the basis of a partial syntactic analysis.

- + Ill-formed analyses are never duplicated, so processing is faster.
- 2. HPSG: Adaptation of semantics and syntax is not independent.
 - Whenever the syntax part of the grammar changes, the semantics part needs to be adapted.
 - + In XDG, semantic phenomena can be described much more independently from syntax.

+ Facilitates grammar engineering, and the statement of cross-linguistic generalizations