Chapter 1

Ambiguity, Neutrality, and Coordination in
Higher-Order Grammar

CARL POLLARD AND JIRI HANA

ABSTRACT. We show that the standard account of neutrality and coatidin in type-logical
grammar is untenable. However, when using as our framewwaeksaon of Lambek’s categor-
ical grammar with a type theory based on Lambek and Scotjlsdniorder intuitionistic logic
(the internal language of a topos) rather than the Lambeatulkad, the account can largely be
salvaged. Because of the difficulty of phonologically ipteting coordinated functors of differ-
ing directionality we need to handle both phonology andaymiithin a single polymorphically
typed lambda calculus.

1.1 Introduction

The standard type-logical grammar (hereafter TLG) accotineutrality and co-
ordination (Morrill 1990, Bayer and Johnson 1995, Bayer@, 3®%reafter MBJ)
analyzes neutrality between two typésand B as the conjunctioal A B, and co-
ordination of anA and aB as the disjunctiom v B, whereA andV are Lambek’s
(1961) binary additive connectives. This account is pnolatc in several respects.
First, as shown by Whitman 2002, it fails to distinguish angumt ambiguity from
argument neutrality, so that all instances of homophonwéeen slots in a word
paradigm are wrongly predicted to be syncretic. This idffatsby examples such
as the following (Dyla 1984):

(1) *CO Janek zrobih zmartwiloMarie? (Polish)
what.NOM/ACC did andupset

[Intended meaning, roughly: What was it that Janek did arad tipset
Mary?]

as compared with syncretic examples such as

(2) KOGO Janek lubi a Jerzy nienawidzi?Polish)
who.ACC/GEN likeqee and hatg.,,

‘Who does Janek like and Jerzy hate?’
1
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Likewise, the MBJ account fails to distinguish functor rrality from functor am-
biguity, deriving the ungrammatical (3) side by side witk tirammatical (4):

(3) *Mary WANTS to go and John to go.

(4) 1 WOULD LIKE to leave town early tomorrow morning and fooy to go
with me.

Faced with this problem, Whitman (2002) and Morrill (p.cpdépendently
suggested the possibility of distinct phonologies/presedvith no audible differ-
ence (more specifically, Morrill suggested using an ordgaadof a string and an
integer instead of just a string). Whitman subsequentlg@pistead for abandon-
ing the hypothesis that there is any purely syntactic diitin between neutrality
and ambiguity, so that in principle all ambiguities are pdigdly neutralizable sub-
ject to pragmatic or processing constraints.

Second, the MBJ account does not account for examples ofimamytcoor-
dination, where one or more of the coordinated constitueatsthemselves be
coordinate structures:

(5) Kim is [drunk, stoned, or under the table] and an inveteliar.

And third, on the MBJ account an unlike coordination suchiesand an excellent
cookis analyzed as aNPVAP. Butin the standard frame-semantical phonological
interpretation (Heylen 1996 and 1997, Moortgat 1997, Qatgrel997), ifS is the
stringset that interprefSP andT the stringset that interprefsP, thenrich and an
excellent cook is in their union. So either itis i or itis in T'; hence either it is
derivable as aiNP, or it is derivable as alP. But it is neither. So the theory is
inconsistent.

From what we have said so far, it may seem that the MBJ accelb#@yiond
salvation. However, we will argue that the intuitions behihare right on the
mark, but just need to be expressed in a more cooperativeditgbe theory.
An alternative account of (inter alia) the same phenomematdalrymple and
Kaplan (2000, hereafter DK) treats the f-structure of a dowte structure as the
set of f-structures of the coordinated constituents. Is paper we show how
to import the desirable features of the DK analysis into anfaf type-logical
grammar so as to fix what is wrong with the MBJ account whilespreing its
main insights.

1.2 Higher Order Grammar

Our framework is higher-order grammar (hereafter HOG,d?dI2001 and 2003),
a version of Lambek’s (1988, 1999) categorical (not catedjogrammar. In cat-
egorical grammar the role of proofs is different than in ded TLG. Instead of
starting with a set of lexical signs (usually triples of a pbtogy/prosody, a syn-
tactic type, and a meaning) and using proof theory to enldrgeet of triples, in
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categorical grammar the signs literaliye the proofs, or more precisely, Prawitz
(1965) equivalence classes of them. (Categorically, taesarrows which are in
a natural one-to-one correspondence with equivalenceadas proofs, but for fa-
miliarity we will engage in a mild abuse of language and sirgall them proofs.)
On the Curry-Howard interpretation, this means that, ehg pgroper nourdohn

is actually an inhabitant of the ty@€P. Logically, that means it is a proof of the
propositionNP from the null premisqd (tensor identity):

John:I — NP

Moreover, semantic interpretation is treated as a (caigonot categorial) func-
tor, which in logical terms amounts to a mapping from syntgmtoofs into seman-
tic proofs that preserves identity proofs:(A — A) and composition of proofs.
In terms of the associated proof term calculi, this amoums translation from a
bilinear lambda calculus (Mints 1977, Szabo 1978, Wans8tf1Gabbay and de
Queiroz 1992) into a more familiar (Church-Henkin-GalMontague-style) clas-
sical higher-order logic.

HOG differs from Lambek’s categorical grammar in employdrsghe syntactic
type logic not the Lambek calculus but rather a full intutistic propositional
logic with all three of weakening, contraction, and perniota The basic types
are sign types such asP, S, andN, as well as types for the values of features
such as @GsE, VFORM, etc. In keeping with the formulas-as-types perspective we
write x, +, and1 for conjunction, disjunction, and truth; categoricallyte are
(cartesian, not tensor) product and coproduct and terrypal (in the presence of
the structural rules the tensor null premissecomes cartesialr). The typeBool
is also provided by the logic: it is judt+ 1, with the truth value$ and f being the
canonical injections into the coproduct.

The proof term calculus, correspondingly, is not bilinear tather a boolean,
two-valued form of Lambek and Scott’s (1986) higher ordeuitionistic logic.
Basic constants correspond to syntactic words (elghn of type NP denotes
the wordJohn: 1 — NP), and also to feature values, e.gcc of type Case
denotesacc: 1 — Case). In light of the Lambek-Scott equivalence discussed
below, we don't bother to distinguish notationally betwedosed terms and the
arrows/equivalence classes of proofs that they denote.

This logic, called SL (syntactic logic), has a robust fornsobtyping: ifz is a
variable of typeA and¢ a propositional term with at mostfree, thenz € A | ¢]
is a subtype ofd. It is important to note that in order fd8 to be a subtype oA, it
is not enough just for there to be a proof frotrto B; rather there must beraonic
proof from A to B (the categorical generalization of an injective functitonf one
set to another).

Because the proof term calculus for higher order intuistailogic is so much
expressive than ones for the Lambek calculus, SL can be nggldde of special
purpose feature logics (such as Richter’s (2000) RSRL fosmafor HPSG) to
impose feature constraints on types, and obviates the me#dyer’ one logic
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over another (Doerre et al. 1996, Bayer and Johnson 19953t i$hthe gram-
mar (or at least the purely syntactic part of it) is writtenSh. So it is relatively
straightforward to implement a HOG grammar in a typed apfille programming
language with a suitably robust form of subtyping. Note tidike standard TLG,
there is not a logic associated with the grammar but ratleegthmmais a logical
theory (since the constraints are nonlogical axioms). Em@nical model of such
a theory is a (bivalent boolean) topos (Lawvere 1971, GakiihB84, Lambek and
Scott 1986), which we call SYNTAX. Categorically, SL is tiarnal language of
SYNTAX; the relationship between the two is one of adjointigglence (Lambek
and Scott 1986).

A second important important difference between HOG andhekis categor-
ical grammar is that it follows Curry (1961) in distinguislgiphonology (pheno-
grammar) from syntax (tectogrammar). The way this is doihy isaving a second
higher-order intuitionistic logic for the phonology (hafter PL for phonological
logic). The corresponding topos model is called PHONOLO@GM (adopting
Lambek’s methodology for semantic interpretation) phogadal interpretation is
a logical functor from SYNTAX to PHONOLOGY (or equivalentlg translation
from SL to PL that preserves all the logical connectiveshc8ithe string realiza-
tions of signs are handled functorially, there is no needtersyntactic logic to be
resource sensitive, and none of the structural rules in S¥fN€ads to undesirable
results (Pollard 2003).

HOG makes use, both in SYNTAX and PHONOLOGY, of the fact thnat t
Kleene-* type constructor is definable in a topos (as longressfollows Lambek
and Scott in including a natural number tylgg That is, for every type A there is:

1. atypeA*;

2. a monic prooflos4 : A — A* (the name is mnemonic for “length-one
string™);

3. anelement4 : 1 — A* (the null A-string)

4. aprooft,4 : A* x A* — A* (concatenation ofi-strings) such that
FVz(ehr = x)
FVz(z'e = x)
=V, y, 2((@"y)" 2 = 2" (y"2))

Also, for eachA we defineA™ = [s € A*|s # e4].

It can be shown that Kleene-* is monotonic in the sense thatiff a subtype
of B then A* is a subtype ofB*. Also there is a natural embeddig: (A =
B)* into A = B*; intuitively, if f1,....,fn : A — B, thenh(fio..0 f,)is
Az(fi(z) o...o fno(x)). (Soh is a typed analog of Lisp’s mapcar. This will be
made more precise in the full paper.)

Thus, the PHONOLOGY topos can be obtained starting fromriae lbivalent
boolean topos with Kleene-* over the basic type PHONEME lisd PHONEME*
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is the type of phonological words and PHONEME** the type oirgjs of phono-
logical words) by using PL to define natural classes of phaseand to impose
phonotactic constraints. But Kleene-* will also play a dalicole in SYNTAX, as
we will see.

It is crucially important that in a boolean topos, for eachaw, the type
A=Bool (the powertype ofd) forms a boolean algebra, with local analogs of
union, intersection, and complementation. It must be rebexed that these are
not global type constructors but only defined for the subdypiea given type. For
example, in the case of union what we have is, for each #/mebinary operation
Ua on the subtypes ofl, but not a general binary type constructor likeor + that
can produce a new type from any two arbitrary types.

In HOG, since directionality is handled by the phonologitdkrpretation,
there is no need for the implication constructerto splitinto/ and\. Thus e.g.
the transitive verlsees has typeNPacc = (NPnom = S) and the directionality
is handled by the phonological functBr: P(sees) = AsAt . t"/siz/"s.

1.3 Argument Neutrality

We begin with an already solved problem, viz. how to handkesaf argument
neutrality, such as (2) above. Following Levine et al. 2@dniels 2002, and Levy
and Pollard 2002, we employ a nonstandard inventoryag©values:pnom (pure
nominative) pacc (pure accusative), antbm_acc (syncretic between nominative
and accusative). ThéfiPacc andNPgen are defined as subtypesiP as follows:

NPacc = 4.f [t € NP | CASE(z) = pacc vV CASE(x) = acc_gen|
NPgen = 4. [ € NP | CASE(z) = pgen vV CASE(z) = acc_gen|

Also
NPacc_gen = 4.5 [v € N | CASE(x) = acc_gen] = NPacc N NPgen

That is, case syncretism is handled by the same device asdeatnjunction, just
as in Bayer and Johnson 1995, except that our conjunctiayeisujnely boolean)
subtype intersection in a boolean topos, not additive castjan.

By contrast, if we are given (homophonous or not) distinghsj such as
co; andco, of typesNPnom andNPacc respectively, we can pair them to get
(coq,c09) of type NPnom x NPacc, but there is no monic to get us from there to
NPnom A NPacc. So we do not have to posit diacritics in phonology (Morsill’
suggested integers paired with strings), nor are we regjiare@ccept Whitman’s
conclusion that there is no syntactic distinction betwemabiguity and neutrality.

1.4 Argument Coordination and Functor Neutrality |
Next we consider functor neutrality, e.g.

(6) John is rich and an excellent cook.
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To get started, we need a type for the coordinated complericbrand an excellent
cook. If Bayer is right about coordination being the lattice dakheutralization,
the obvious thing to try i&). Unfortunately however, as observed abaveés not
a global type constructor, but is only defined at each t§pe a binary operator on
the subtypes ofl.

The next obvious thing to try is the coprodugtin SYNTAX, whose basic
properties are dual to those of the prodwctBut this will not work either, because
in bivalent boolean higher order intuitionistic logic thelpways to proved + B
are either (1) to provel and then apply the injection: A — A+ B or (2) to
prove B and then apply the injection: B — A + B. That is, the only ways
rich and an excellent cook could be anAP + NP are for it either to have been an
AP to start with or to have been @fP to start with. This is a version of the same
problem that arose in standard TLG in connection with anatyzoordination as
additiveV.

However it should be observed thatis just what we want for functor ambi-
guity, as in:

(7) a. Icanned the tuna.
b. I canned the incompetent employee.
c. *l canned the tuna and the incompetent employee.

Here, pairing otan; andcan,, both of typeNP = VP, yields an(NP = VP) x
(NP = VP). Butin intuitionistic propositional logic disjunctive Bggism and its
converse are valid:

(A+B)=C=(A=C)x (B=0C)

So the ambiguity o€an amounts to typing it t§NP + NP) = VP.

Well, if neither the local coproduct nor the global one wilbdel coordination,
what is left? Another possibility is suggested by the arialgé Dalrymple and
Kaplan (2000), which treats the f-structure of a coordinatease as something
like the set of the f-structures of the conjuncts. The natural way to faline
the DK analysis of coordination in HOG is to say that the camation of anA
and aB is a set each of whose elements is eitherdaor a B, that is it has type
(A + B) = Bool. (We really should refine things a bit to limit to nonempty téni
subsets ofdA + B, but never mind; we are going to discard this analysis anyway
More specifically, ifa andb are of typed andB respectively, thei(a) andj(b) are
both of typeA + B (so far this is following Morrill’'s account), but next we dva
ourselves of the fact that (in any boolean topos), for ang typthere is always
an embeddingingc : C — (C = Bool) mapping each element @f to the

Categorically, these together constitute the Law of Exptsjievhich holds in any bicartesian
closed category and therefore in any topos. The arithmaticdf exponents, where the types are
natural numbers and the type constructors are arithmegiratipns, is a special case.

2We say “something like” because we are not sure how much eetythis expressible in LFG’s
functional description language.
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singleton containing it; so that, taking to be A + B and omitting the subscript,
sing(i(a)) andsing(j(b)) are both of typed + B = Bool. Now we have things
that we can union together, so (picking up the Morrill navetgain) we form
sing(i(a)))Using(b(7)). Intuitively this is the doubleton s¢t, b}. Applying this
to example (6), we derivand(sing(i(rich)), sing(j(an excellent cook))) as an
(AP + NP) = Bool.

Thus, we have shown that, at an appropriate level of ab&iradforrill's anal-
ysis of coordination and Dalrymple and Kaplan’s are esaéintihe same (mod-
ulo the identification of members of a set with their singtesaibsets). Likewise
(modulo the same thing) we have preserved Bayer’s insighitbutralization and
coordination are, respectively, intersection and uniboygh one must be careful
about the types whose powersets these operations live on).

1.5 Argument Coordination and Functor Neutrality 11

We are not out of the woods yet, though. For one thing, if we trgvio analyze
functor neutrality by saying that e.gsisa((AP+NP) = Bool) = VP, itfollows
that it can never combine directly with a noncoordin&ieor a noncoordinatdP;
instead such things must be shifted via a canonical injedtibowed by a singular
embedding. More generally, since arguments always havedss&bility of being
coordinate structures, we need to change our general tbéargument selection,
so that whenever a word was assigned tfpe- B before, it will now be assigned
(A = Bool) = B. Second, we have not provided any account of how coordinate
structures are phonologically interpreted. This is a neiadrproblem because sets
are not linearly ordered, and yet the phonological reabratof the conjuncts must
be. Third, there is no place in our account to locate the faaitand andor must
be different signs that receive different phonological aathantic interpretations.
Fourth, we have to generalize to nonbinary coordinatioref@tsome of the coor-
dinated phrases may themselves be coordinate structiifth) we need to handle
so called “principled resolution” strategies for assignagreement (person, num-
ber, and gender) features to coordinate structures (Qdr®88), strategies which
are often sensitive to the linear order of the coordinatedgds. For example, in
Czech, if the coordinate subjects follow the verb, the agere features of the
verb can be dependent on the relative order of the subjects.

Because linear order enters into so many of the considesgjist mentioned,
rather than try to address them in terms of gets= Bool), we prefer to refine
the DK-like account sketched above by working with stringgg) instead. o The
gist of the string-based account of coordination is thatefach syntactic type,
there is a type of “generalized”. As a first approximation, a generalizetican
be thought of as something which is either aror a coordination ofd’s. But
that is too simple because it does not allow for the possjtitiat one or more of
the coordinated phrases in a coordinate structure mightsbkes be coordinate
structures. So instead we set things up in such a way thateaaxaeedA is either
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an A or a coordination of generalizedls. More precisely, for each sign typé
we have a typ&sEN[A] and a moniggeny : A — GEN[A]. We now assign
the conjunctions angdand or not the typed = (A = A), but rather the type
GEN[A]" = (GEN[A] = GEN[A]), with P(and) = \s,t.s"/eend/"t. Mod-
ulo this change, the account now runs along the same lindwedsybrid Morrill-
Dalrymple-Kaplan-style account given above.

By way of illustration, consider the example (5), repeatelbiy:

(5) Kim is [drunk, stoned, or under the table] and an invetelar.

Such examples are also problematic for DK because the LFQifural descrip-
tion language only allows sets of f-structures, but not eetets, etc. We start by
assignings the typeGEN[AP + PP + NP| = VP, and using the coproduct injec-
tions composed with thgen injection to shift all the conjuncts tGEN[AP +
PP + NP]. Next we use thdos injections to shift each of the first two con-
juncts to(GEN[AP + PP + NP])* which are then concatenated to form another
(GEN[AP+PP+NP])". Then we applyrap, ppinp to this andunder thetable,
obtaining aGEN[AP + PP + NP]. (Note that we would have obtained a different
one had we appliedr rather tharand, so that the identity of the conjunction is
being taken into account.) Another application of thginjection shifts this to a
(GEN[AP + PP + NP])*, and finallyand ap pp4 np COMbines with this and and
an inveterate liar to produce a&GEN[AP + NP + PP].

But there is no way for a merely ambiguous functor to becomsrak e.g. for
modalcan of type GEN[VP] = VP and main verlzan of type GEN[NP] = VP
to somehow get together and cook up@AN|[VP + NP] = VP. If we pair them
together we get something of type

(GEN|NP] = VP) x (GEN[VP]| = VP)
which, by the Law of Exponentials, yields an
(GEN[NP] + GEN[VP]) = VP

But (by a contravariance argument) to get from thisGBN[VP + NP| = VP,
we would need a proofGEN[VP + NP] to GEN[NP]| + GEN[VP]. This cannot
exist; if it did, it would let us shift the coordination of\P and anNP either to an
NP or to aVP. This is the desired result.

It may appear as though the preceding argument depends angtinents of
the homophonous functors having different types, but im tlais is not the case.
Suppose instead we look at the two main verés; ‘to put in cans’ anctan, ‘to
fire (an employee)’, Then by pairing and disjunctive syl&rgiagain, we get the
copair fcan;,cany]: (GEN[NP]+ GENI|NP]) = VP. To shift this to aGEN[NP]
=VP, by contravariance again we need a purely logical pranhfGEN[NP]| to
GEN[NP] + GEN|NP]. In fact there are two: the canonical injectiorend;. But
of course composinfran;, cans] with either of those just throws one oén; or
cany away.
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1.6 Functor Coordination.

Finally, we consider examples of functor coordination saslthe celebrated

(8) a. Erfindet undhilft FRAUEN
hefinds,.. andhelps;,; women.ACC/DAT

‘He finds and helps women.’

b. *Erfindet undhilt ~ MANNER.
hefinds,.. andhelps;,; men.ACC

c. *Erfindet undhilft KINDERN.
hefinds,.. andhelps;,; children.DAT

This is less straightforward, for reasons that have nottaratp with neutrality. The
reason is that the theory of coordination as sketched aboge dot even handle
simple cases of coordination of like functors, as in

(9) John walks, talks, and smokes.

Here, starting withwalks andtalks both of typeGEN|NP]| = S, we can easily
producewalks and talks as aGEN[GEN[NP| = §], but what enables this to
combine with anNP, or more generally, &EN[NP]? Note we don't have to
require that the result be &y it would be good enough for the result to be a
GEN]S], the same type as

(10) John walks, John talks, and John smokes.

Ignoring the extra complication of conjuncts which are tetwes coordinate struc-
tures, the problem here is that empirically, in functor ctieation, the coordinated
functors must all have the same directionality (i.e. be ingHKor their arguments
in the same direction, and the phonology of the conjunctioistrbe different for
the leftward case than for the rightward one. Roughly whateed is, for the
rightward case,

P(and,) = As.\z.mapcar,(begin(s),e)" /eend/" [last(s)](z)
and for the leftward case
P(and;) = As.\x.[first(s)](z" /eend/ mapcar;(rest(s), e)

wheree is the null string andnapcar,., mapcar; are functions like Lisp mapcar
except that they are only defined on strings of functors viighsame directionality.
That is, in the phonology the (left or right) peripheral ammjt combines with the
argument as if the other conjuncts were not there, and treeattter conjuncts are
appeased by having the null string fed to them.

The reason this is problematic is that, since our type thesompndirectional,
mapcar, (Or mapcar;) cannot tell by looking at a string of functors what their
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directionality is. Why? It is because the directionalitygiwen by the functor
P : SYNTAX — PHONOLOGY, which is external to SYNTAX. In order to solve
the problem, it is necessary to revise the grammar architeco that SYNTAX
and PHONOLOGY are subtoposes of a common topos whose ihtanguage
talks about both syntax and phonology, as well as the interfaetween them.
In that caseP becomes a (partial) endofunctor. Thus the problem is retltme
representing the endofunctét internally as a polymorphic function. In order to
do that, we need to be working inside a topos where polymotfpinictions are are
definable, that is, we need our logic of phonology and syriaeta polymorphic
lambda calculus.

1.7 Conclusion

We showed that the standard TLG account of neutrality anddooation is unten-
able. Using as our framework a version of Lambek’s categbgcammar with a
type theory based on Lambek and Scott’s higher order inhigtic logic (the in-
ternal language of a topos) rather than the Lambek calcuwleshowed that this
account can largely be salvaged. However, the difficultyladrmlogically inter-
preting coordinated functors of differing directionalgyggests a need to handle
both phonology and syntax within a single polymorphicallyed lambda calculus.
We intend to explore this approach next.

We suspect this is the right direction to go in, though we haatdo work out
the details. We are not worried about working in an expresgivmalism, given
the competition (see Kepser 2001 for the undecidability mfdimodel checking
() in RSRL and Carpenter 1999 on the Turing equivalence dfimadal catego-
rial grammar). To look at the issue another way, we have maetia programmer
who declined to employ a language because it was capablgoéssing undecid-
able problems; one must just take care that the programs an&suo terminate
actually do. Still another take on it is that when one forxedi a scientific the-
ory, one gets at the real-world constraints being analygetidtheory one writes,
not by requiring that the language in which one writes thethdée inexpressive.
Otherwise physicists studying gravitation might insistamiting their equations in
languages where differential equations of order highen the were not just em-
pirically wrong but rather were syntax errors. In any casegmmming language
theory has long since made the move to formalisms that caregxppolymor-
phism; natural languages amore complicated than programming languages, so
why should the math be simpler?
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