TmTriangulate: A **Tool for Phrase Table** Triangulation

Tam Hoang, Ondřej Bojar https://github.com/tamhd/MultiMT

Introduction

Under-resourced language pair: Scarcity of parallel corpora

SMT Problem: No direct data \rightarrow no SMT training Insufficient data \rightarrow poor SMT performance

Pivoting involves the use of *another language* to include resources available.

E.g: English to Slovak via Czech, Vietnamese to Czech via English

Phrase Table Triangulation Method

Linking Source and Target Phrases by connecting \overline{s} and \overline{t} whenever there exists a pivot phrase \overline{p} such that $\overline{s}-\overline{p}$ is listed in the source-pivot and $\overline{p}-\overline{t}$ is listed in the pivot-target phrase table.

Pivoting Methods

System Cascades one system after another

Synthetic Corpus translates the pivot side of a corpus

Phrase Table Triangulation combines two phrase tables: source-pivot and pivot-target

Word Alignment for Linked Phrases by tracing the alignments from each source word $s \in \overline{s}$ over any pivot word $p \in \overline{p}$ to each target word $t \in \overline{t}$.

Feature Values for Constructed Phrase Pairs:

Pivoting Probabilities

Pivoting Co-Occurrence Counts

Both phrase and lexical probs merged: a) assuming independence [sum] b) using the most prominent sense [max] 1) Take min/max/mean (f) of each count

Promising results reported using phrase table triangulation, but no open-source tool

We decided to fill the gap and implement an easy-to-use tool.

Pivoting - It's an MT thing

It is NOT the *pivot* method, which aims to balance the IR scores by the document length

It is NOT the *pivot* approach to cross lingual information retrieval, closer but still NO.

Contact

TmTriangulate is freely available here:

https://github.com/tamhd/MultiMT

If you have any comments/suggestions, please send us an email to tamhd1990 AT gmail DOT com

 $\varphi(\overline{s}|\overline{t}) \approx \sum_{\overline{p}} \varphi(\overline{s}|\overline{p}) \ \varphi(\overline{p}|\overline{t})$ $\approx \max_{\overline{p}} \phi(\overline{s}|\overline{p}) \phi(\overline{p}|\overline{t})$ $p_{w}(\overline{s}|\overline{t}) \approx \sum_{\overline{p}} p_{w}(\overline{s}|\overline{p}) \ p_{w}(\overline{p}|\overline{t})$ $\approx \max_{\overline{p}} p_{w}(\overline{s}|\overline{p}) p_{w}(\overline{p}|\overline{t})$ $c(\overline{s},\overline{t})\approx \sum f(c(\overline{s},\overline{p}),c(\overline{p},\overline{t}))$

2) Estimate probabilities as usual:

Conclusion

Our Experiment:

Results of triangulation are **comparable** but **not better** than the direct system

Improvement made by merging direct and pivoted phrase tables (Moses toolkit available)

Importance: different languages, domains and corpora may show different behavior patterns.

This work was supported by the grants n^o 645452 (QT21) and n^o 644402 (HimL) of the EU and SVV 260 104 of the Czech Republic. We used language resources hosted by the LINDAT/CLARIN project LM2010013 of the Ministry of Education, Youth and Sports.