

Approximating a Deep-Syntactic Metric for MT **Evaluation and Tuning**

Matouš Macháček, Ondřej Bojar; {machacek, bojar}@ufal.mff.cuni.cz; Charles University in Prague, MFF, ÚFAL

Overview

SemPOS metric

- · Introduced by Kos and Bojar (2009), inspired by Giménez and Márquez (2007).
- Counts overlapping of deep-syntactic lemmas (t-lemmas) of content words.
- Lemmas are matched only if semantic parts-of-speech (Sgall et al. 1986) agree.
- Does not consider word order and auxiliary words.

Issues

- SemPOS requires full parsing up to the deep syntactic layer. => SemPOS is computational costly.
- · There are tools assigning t-lemmas and semposes only for Czech and English. => SemPOS is difficult to adapt for other languages.

Proposed Solution:

- Approximate t-lemmas and semposes using only tagger output.
 - => Faster and more adaptable for other languages.
 - => More suitable for MERT tuning.

Overlapping Src: Polovina míst v naší nabídce zůstává volná. Ref: Half of our capacity remains available.

5

Cap-macro (Bojar, Kos, 2007) $\sum \min(\operatorname{cnt}(w,t,r_i),\operatorname{cnt}(w,t,c_i))$ $O(t) = \frac{w \in r_i}{w \in r_i}$ $\sum \operatorname{cnt}(w,t,r_i)$ 1 0 $Q = 2^{+} 1^{+} 1^{+} 1^{+}$

cap-micro (our) $O = \frac{\sum_{t \in T} \sum_{w \in r_i} \min(\operatorname{cnt}(w, t, r_i), \operatorname{cnt}(w, t, c_i))}{\sum_{t \in T} \sum_{w \in r_i} \min(\operatorname{cnt}(w, t, r_i), \operatorname{cnt}(w, t, c_i))}$ $\sum \sum \operatorname{cnt}(w,t,r_i)$

Hyp: Half of the seats in our offer remains free. Hypothesis #perspron remain n.pron.def.pers free adj.denot n deno Reference apacit available idj.denoj Hypothesis

half #perspron remain n.denot n.pron.def.per seat n.denot offer n.denot free adj.denot Reference capacity

n.denot n.denot available adj.denot #perspror n.pron.def.pers

dj.denot

pron def pe

Approximations

- Sempos from Tag approx Morph. Sempos Tag
- · Morphological tag determines sempos. CzEng corpus (Bojar and Žabokrtský,
- 2009) used to create dictinoray which maps morphological tag to most frequent sempos.
- Surface lemmas are used instead of tlemmas.
- Accuracy on CzEng e-test: • 93.6 % for English
 - 88.4 % for Czech

n.denot

v

Rel.

Freq.

0.989

0.766

0.953

0.975

0.999

0.999

Avg

0.735

0.728

0.720

0.639

Excluding Stop–Words approx-stopwords

- · We restrict the set of considered semposes to the better ones.

Min Max Tag Semposes with the highest v 0.403 1.000 correlation in English. n.denot 0.189 1.000 This is also the restricted set 0.964 adj.denot 0.264 of semposes used in English. 1.000 n.pron.indef 0.224

Custom Tagger [tagger

- We use sequence labeling algorithm to choose the t-lemma and sempos tag.
- The CzEng corpus served to train two taggers (for English and Czech).
- At each token, the tagger use word form, surface lemma and morphological tag of the current and previous two tokens.
- Tagger chooses sempos from all sempos tags which were seen in corpus with the given morphological tags.
- The t-lemma is often the same as the surface lemma, but it could also be surface lemma with an auxiliary word (kick off, smát se). The tagger can also choose such t-lemma if the auxiliary word is present in the sentence.
- The overall accuracy on CzEng e-test: • 97.9 % for English
 - 94.9 % for Czech

Tunable Metric Task

· We optimized towards linear combination (equal weights) of BLEU and Approx + Cap-micro.

 BLEU chooses sentences with correct morfology and word order, while SemPOS prefers sentences with correctly translated content words.

Results

Tested on newstest2008, test2008, newstest2009, newsyscombtest2010.

English as a target language

Approximation	Overlapping	Min	Max	Avg
approx	cap-micro	0.409	1.000	0.804
orig	cap-macro	0.536	1.000	0.801
approx	cap-macro	0.420	1.000	0.799
tagger	cap-micro	0.409	1.000	0.790
orig	cap-micro	0.391	1.000	0.784
approx+cap-micro and BLEU		0.374	1.000	0.754
tagger	cap-macro	0.118	1.000	0.669
BLEU		-0.143	1.000	0.628

Czech as a target language

Approximation	Overlapping	Min	Мах	Avg
approx-restr	cap-macro	0.400	0.800	0.608
tagger	cap-macro	0.143	0.800	0.428
orig	cap-macro	0.143	0.800	0.423
approx-restr	cap-micro	0.086	0.769	0.413
tagger	cap-micro	0.086	0.769	0.413
orig	cap-micro	0.086	0.741	0.406
approx	cap-micro	0.086	0.734	0.354
approx+cap-micro	prox+cap-micro and BLEU		0.676	0.340
approx	cap-macro	0.086	0.469	0.338
BLEU		0.029	0.490	0.279

Overlapping performance

	Average rank in o		
Overlapping	in English	in Czech	Boost-micro is
boost-micro	12	13	for sempos-
cap-macro	6.6	5	based metrics.
cap-micro	5.4	6	

VBN V JJ adj.denot NNP n.denot PRP n.pron.def.pers

NN

VB7

- · Contribution of each sempos type to the overall performance can differ a lot.
- We assume that some sempos types raise the correlation and some lower it.