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» New forms of known words.
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Reordering. < Chance for RBMT.
Language Modelling.
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Model Optimization.
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. rich morphology makes everything harder.

Translation of New Text. <~ Chance for RBMT.
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(Phrase-Based) MT Pipeline

Word Alignment. = (Lemmatize, chop or LEAF.)
Extraction of Translation Units.

v

v

Translation of New Text.

v

» New forms of known words. = Two-Step Translation.
» Unknown words. = TectoMT.

v

Reordering.
Language Modelling.

» Sparser unigrams and higher-grams (reordering).
MT Evaluation. = SemPOS.

» Fewer matches with the reference.

Model Optimization. = SemPOS+BLEU.

. rich morphology makes everything harder.
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Morphological Explosion in Czech
(In)flective lang.: suffix encodes many categories:

» Czech nouns and adjs: 7 cases, 4 genders, 3 nums, ...
» Czech verbs: gender, num, aspect (im/perfective), . ..

I saw two green striped cats
ja pila dva zeleny pruhovany kocky
pily dvé zelend pruhovana kocek
. dvou zelené pruhované ko¢kam
vidél dvéma zeleni pruhovani ko¢kach

vidéla  dvémi  zeleného  pruhovaného  kotkami
zelenych  pruhovanych

uvidél zelenému  pruhovanému
uvidéla zelenym pruhovanym

. zelenou pruhovanou

vidél jsem zelenymi  pruhovanymi

vidéla jsem



Out-of-Vocabulary Rates

Dataset n-grams Out of: Corpus Voc.  Phrase-Table Voc.
(# Sents) Language 1 2 1 2
Czech 22% 305% | 3.9% 44.1%
7.5M English 1.5% 13.7% 2.1% 22.4%
Czech + English input sent 1.5% 29.4% | 3.1% 42.8%
Czech 6.7% 48.1% | 12.5% 65.4%
126k English 3.6% 28.1% 6.3% 45.4%
Czech + English input sent 5.2% 46.6% | 10.6% 63.7%
Czech lemmas 41% 36.3% | 5.8% 52.6%
126k English lemmas 3.4% 24.6% 6.9% 53.2%
Czech + English input lemmas  3.1% 35.7% | 5.1% 38.1%
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Out-of-Vocabulary Rates

Dataset n-grams Out of: Corpus Voc.  Phrase-Table Voc.
(# Sents) Language 1 2 1 2
Czech 22% 305% | 3.9% 44.1%
7.5M English 1.5% 13.7% 2.1% 22.4%
Czech + English input sent 1.5% 29.4% | 3.1% 42.8%
Czech 6.7% 48.1% | 12.5% 65.4%
126k English 3.6% 28.1% 6.3% 45.4%
Czech + English input sent 5.2% 46.6% | 10.6% 63.7%
Czech lemmas 41% 36.3% 52.6%
126k English lemmas 3.4% 24.6% 53.2%
Czech + English input lemmas  3.1% 35.7% | 5.1% 38.1%

v

» e.g. 2.2%—3.9% for 7.5M Czech.

v

OOV of Czech lemmas

v

v

OOQV of Czech forms ~twice as bad as in English.

in English.

Free word order of Czech apparent.

Significant vocabulary loss during phrase extraction:



Side Note: BLEU vs. Human Rank

» Large vocabulary impedes the performance of BLEU.

En—Cs Systems Various Language Pairs
WMTO08, WMT09  WMTO08, WMTO09, MetricsMATR
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= BLEU does not correlate with human rank if below ~20.
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Reason 1: Focus on Forms

SRC Prague Stock Market falls to minus by the end of the trading day
REF prazska burza se ke konci obchodovani propadla do minusu
cu-bojar  praha stock market klesne k minus na konci obchodniho dne

pctrans  praha trh cennych papirii padd minus do konce obchodniho dne

» Only a single unigram in each hyp. confirmed by the
reference.

» Large chunks of hypotheses are not compared at all.
Confirmed by Reference  Yes Yes No No

Contains Errors Yes No Yes No
Running words 6.34% 36.93% 22.33% 34.40%




Reason 2: Sequences Overvalued

BLEU overly sensitive to sequences:

» Gives credit for 1, 3, 5 and 8 four-, three-, bi- and
unigrams,

» Two of |three serious errors| not noticed,

= Quality of cu-bojar overestimated.

SRC Congress yields: US government can pump 700 billion dollars into banks
REF kongres ustoupil : vldda usa miZe do bank napumpovat 700 miliard dolari

cu-bojar  kongres | vynosy | : vldda usa miizZe | erpadlo | 700 miliard dolari | v | bankach

pctrans kongres . us vldda mize 700 miliardu dolar(i do bank

= Bojar et al. (2010) use SemPOQOS, a coarse metric that
correlates better with humans for Czech and English.
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Overview of MT Systems Discussed

Phrase-Based:

» Vanilla Moses.
> Optimized to SemPOS+BLEU. (Machagek and Bojar, 2011)
» Two-Step Translation.

TectoMT (deep, not quite RBMT).

v

v

v

Rover System Combination.
DEPFIX Grammatical Post-Editing. (Marezek et al., 2011)

v
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Overview of MT Systems Discussed

Phrase-Based:

» Vanilla Moses.
» Optimized to SemPOS+BLEU. ... Deep Evaluation.
» Two-Step Translation.

TectoMT (deep, not quite RBMT).

v

v

Rover System Combination. ... PBMT over *.

v

v

DEPFIX Grammatical Post-Editing. ... RBMT over *.
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Optimizing Towards SemPQOS

SemPOS compares bags of lemmas, not sequences of forms.

» Sequences not overvalued
= better correlation with human ranking.

» Not fit for selecting best output from n-best list.
= Need to combine with e.g. BLEU.

WMT11 Tunable Metrics Task, manual ranking:

System >others  >others
bleue 0.79 0.28
bleu-singlee 0.77 0.27
cmu-meteore 0.76 0.27
rwth-cder 0.76 0.26
cu-sempos-bleue 0.74 0.29
stanford-dcpe 0.73 0.27
nus-tesla-f 0.68 0.28
sheffield-rose 0.05 0.00

» Among the many
“winners” (e).

» Best in “>others”, i.e.

when ties are not
rewarded.
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Optimizing Towards SemPQOS

SemPOS compares bags of lemmas, not sequences of forms.

» Sequences not overvalued
= better correlation with human ranking.

» Not fit for selecting best output from n-best list.
= Need to combine with e.g. BLEU.

WMT11 Tunable Metrics Task, manual ranking:

System >others  >others
bleue 0.79 0.28
bleu-singlee 0.77 0.27
cmu-meteore 0.76 0.27
rwth-cder 0.76 0.26
cu-sempos-bleue 0.74 0.29
stanford-dcpe 0.73 0.27
nus-tesla-f 0.68 0.28
sheffield-rose 0.05 0.00

» Among the many
“winners” (e).

» Best in “>others”, i.e.

when ties are not
rewarded.

» Generally hard to
interpret the ranking.
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Two-Step Moses 1/2

» English — lemmatized Czech
» meaning-bearing morphology preserved
» max phrase len 10, distortion limit 6
» large target-side (lemmatized LM)

» Lemmatized Czech — Czech
» max phrase len 1, monotone

Src  after a sharp drop

Mid po+6 ASAl.prudky  NSA-.pokles
Gloss after+voc adj+sg...sharp noun+sg...drop

Out po prudkém poklesu

» Only 1-best output passed, lattices on our todo list.

» See also works by Alex Fraser for targetting German.
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Two-Step Moses 2/2

Data Size Simple Two-Step Diff
Parallel Mono | BLEU SemPQOS | BLEU SemPQOS | B.S.
126k 126k | 10.284-0.40 290.92 | 10.3840.38 30.01 | A

126k 13M
7.5M 13M

12.50+0.44 31.01
14.17+0.51 33.07

12.2940.47 31.40 | \,
14.06--0.49 3257 | \,\\

Manual micro-evaluation of N\ 7, i.e. 12.50+0.44 vs. 12.29+0.47:

Two- Both Both

-Step  Fine Wrong Simple | Total
Two-Step 23 4 8 - 35
Both Fine 7 14 17 5 43
Both Wrong 8 1 28 2 39
Simple - 3 7 23 33
Total 38 22 60 30 150

» Each annotator weakly prefers Two-step
» but they don't agree on individual sentences.
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TectoMT

ANALYSIS SYNTHESIS

deep syntax: tlayer

tectogramatical layer

shallow syntax: / \ a-layer
analytical layer /
morphological layer m-layer

/source language (English) target language (Czech) * w-layer

» TectoMT = MT system built using blocks in Treex
platform (on its way to CPAN).
» See Prague Dependency Tbk for tectogrammatical layer.
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TectoMT

ANALYSIS SYNTHESIS
tectogramatical layer t-layer

(fill morphological categories)

(fill formems | (grammatemes ) query use
buudttree/ dictionary) | HMTM \ impose agreement |

(_mark edges to contract | ((add functional words

analytlcal layer a-layer
(parser (McDonald's MST)]/ wordforms
morphological layer m-layer

tagger (Morce)

:
Iem.matllzatlon source language (English) target language (Czech) * w-layer

(rule based & statistical | blocks
» TectoMT = MT system built using blocks in Treex
platform (on its way to CPAN).
» See Prague Dependency Tbk for tectogrammatical layer.

13/31




TectoMT vs. PBMT: Can't Quite Tell

Metric CU-Bojar TectoMT
WMT10 > others (official) 66 60
WMT10 > others 45 44
WMT10 Edits acceptable [%] 40 34
WMT11 > others (official) 64 58
WMT11 > others 39 40
Quiz-based evaluation [%] 76 82

Even 6 annotators annotating the same 100 sentences pairwise don't agree:

Better Both

Annotator CU-BOJAR  TECTOMT fine  wrong
A 24 23 5 11
C 10 12 5 36
D 32 20 2 9

M 11 18 7 27
(0] 23 18 4 18
z 25 27 2 9
Total 125 118 25 110
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Rover System Combination (1/2)
Following Fiscus (1997) and Matusov et al. (2008):

Systems vote which individual words to put in the output.

Procedure:
1. Given a “primary system” / “skeleton”;
» Align each system to one skeleton (bold), producing

“bitexts": _

barack|barack ... ,|na dostat|e jak|e nobelovu|nobelovu cenu|cenu m
barack|barack ... na|na nobelovu|nobelovu cenu|cenu miru|miru
barack|barack ... ,|na obdrZi|nobelovu cenu|cenu mirule nobelajmiru

» Combine all bitexts to confusion network:

barack ... na € € nobelovu cenu € miru
barack ... , dostat jak nobelovu cenu € miru
barack ... na € € nobelovu cenu € miru
barack , € € obdrzi  cenu miru nobela
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Rover System Combination (2/2)

2. Combine confusion networks of various skeletons to one
lattice:

3. Add language model scores.

4. Optimize weights (word penalty, LM, skeleton choice,
number of votes, did primary system vote for this, ...).

5. Select best path.
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Combined Systems
In the following, we:
» Combine only UFAL’s systems built for the WMT10
shared task.
» Tune and test on WMT10 combination task datasets.

WMT10

Dev Set Test Set  Manual Rank

BOJAR-PRIMARY 16.00+1.15 * 16.90+0.61 65.5
BOJAR-SEMPOS  15.76+1.12 ~ 16.61+0.59 -
BOJAR-2STEP 13.59+1.12 ~ 14.38+0.58 -
TECTOMT 11.48+1.04 ~ 13.1940.58 60.1
GOOGLE 17.32+1.25 N\, 16.76+0.60 70.4
EUROTRAN 9.64+0.92 ~ 11.0440.48 54.0
PCTRANS2010 10.24+0.92 ~ 10.84+0.46 62.1

Note Google discrepancy between Dev and Test = overfitting would be very likely.
17/31



Even “Bad” Systems Offer Words

Analyzing 44193 toks in the ref of WMT10 syscomb testset.

What is the % tokens produced by:
» ... the primary system only BOJAR-PRIMARY?
» ... one of the secondary systems only?

BOJAR-PRIMARY (16.90+0.61) vs.

BOJAR-SEMPOS BOJAR-2STEPSL TECTOMT | the 3 other

16.614+0.59 14.38+0.58 13.1940.58 -

In Both 48.3 43.8 41.2 50.8
Nowhere 454 42.8 41.0 37.0
Primary Only 35 8.0 10.6 1.0
Secondary Only 2.8 5.4 7.1 11.2

» TectoMT may bring up to 7.1% tokens, Two-Step 5.4%.
» 37% tokens of the ref not available in 1-best outputs.
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Manual System Combination

To check the plausibility of “voting assumption” we
manually do the task:

» Myself:
» English—Czech, WMT10, 4 systems, 52 sents.
» Reference translation available.
» Attempted to stick to the original word order.

» Matusov (2009):

» probably Chinese(?)—English, IWSLT 2006.
(Matusov (2009) p. 140 talks about TC-STARO7 es—en.)

» 4 systems, 489 sents.
» Without looking at source or reference.
» Allowed any reordering.
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Plausibility of Voting Assumption

How many produced tokens actually had the majority

support?

Matusov (2009)

My en—cs WMT10

Manual Manual Auto
Supported by Toks % || Toks % | Toks %
1 978 15.8 160 19.4 30 3.6
2 1117 18.1 110 133 | 183 219
<2 2095 339 | 270 32.7| 213 255
3 1279 20.7 137 16.6 | 188 225
4 2806 45 4 417 50.6 | 435 52.0
Total 6180 100.0 || 824 100.0| 836 100.0

. about % of manually and % of automatically combined

tokens have no majority support (weights influence this).
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Directions Examined in System Comb.

No Rover, just Moses, simply “add to training” :

» Add the 3 other outputs to training data of
BOJAR-PRIMARY.

Within RWTH Rover implementation (minor modifications):
» Improving monolingual word alignments.
» Various automatic synonym dictionaries, ...

RWTH alignment + Moses path selection and MERT:
» More detailed lattice arc weights.
» Larger LMs.
» LMs for morphological tags.
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Baseline Combinations

Weights
Combination Method Default  Optimized
RWTH Rover 17.50+0.64 17.42+0.63
Moses Add-to-training - 17.25+0.62
Moses Rover - 17.19£0.61
bojar-primary - 16.90£0.61
google - 16.76+0.60

» RWTH marginally better unoptimized (sys. weights

equal).

» MERT optimizer in Moses worse than JaneOpt in

RWTH setup.

» Add-to-training works but very inefficient

implementation:

» Need to re-align, re-extract phrases, re-tune in MERT.
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Larger LMs

» Default: only 3gr LM based on input hypotheses used.
» G. Leusch (RWTH) saw no gains from additional LM.

» en—cs and Moses MERT do make use of that.

» Additional data; WMT10mono, 13M sents, 211M toks.

Underlying Alignment
Combination Method Baseline Eqvoc+Lemmas @ + o Across All

RWTH Unoptimized  17.50+0.64  17.53+0.63 17.52+0.01
Moses +5grLM 17.36+£0.61  17.49+0.61 17.4840.06
Moses +4grLM 17.6340.59  17.4540.62 17.4640.08
RWTH Optimized 17.4240.63  17.4740.61 17.4540.05
Moses +3grLM 17.46+0.61  17.44+0.63 17.41+0.07
Moses (default LM)  17.32+0.63  17.34+0.61 17.3240.06
» With the additional LM, Moses can reach RWTH
optimizer.

» Higher n-grams marginally better.
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LMs for Morphological Tags

» Additional LM over morphological tags can help in
factored translation (Bojar, 2007).

Source Target
lowercase —» lowercase
morph. tag + 6gr TagLM

» Hypotheses “tagged with unigram tagger” on the fly.

Underlying Alignment
@ =+ o Across All

Baseline Eqvoc+Lemmas
Moses +taglM 17.88+0.62 17.95+0.59 17.90+0.12
RWTH Unoptimized  17.50+0.64 17.534+0.63 17.524+0.01
RWTH Optimized 17.42+0.63 17.474+0.61 17.454+0.05
Moses (default LM)  17.32+0.63 17.3440.61 17.324+0.06

» Beating RWTH Rover (no support for factors) at last.
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TaglLM and Large LM

» We can combine TagLM and regular LM.

» This makes 15 weights in MERT optimization:
» 9 arc weights, 3 LM weights, 2 tagger weights, word penalty.

Source

Target

lowercase —» lowercase
morph. tag + 6grLM

+5grLM

Underlying Alignment

Baseline Eqvoc+Lemmas @ + o Across All

Moses +taglM +5grLM 18.01+0.66 17.80+0.59 17.97+0.09
Moses +taglM 17.88+0.62 17.954+0.59 17.90+0.12
RWTH Unoptimized 17.50+0.64 17.5340.63 17.5240.01
Moses +5grLM 17.36+0.61 17.49+0.61 17.4840.06
RWTH Optimized 17.4240.63 17.47+0.61 17.4540.05
Moses (default LM) 17.324+0.63 17.3440.61 17.324+0.06
RWTH Optimized 7 Systems  18.02+0.65 18.07+0.67 -

> In terms of BLEU score, this approaches the combination of all 7 systems.
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Manual Evaluation of System Comb.

» Manually ranked 65 sentences.
» All hyps get equally-poor/equally-ok, or
» All hyps get a rank (at least one of them gets rank 1).

Equally Ranked as
Poor Ok| 1 2 3 4
Moses +tagLM +5grLM 18.01+0.66 | 11 7 (18 16 10 3
RWTH Optimized 17.424+0.63 | 11 7122 17 7 1
Moses (default LM) 17.32+0.63 | 11 7 |17 14 14 2
bojar-primary 16.90+0.61 11 7 114 20 9 4
google 16.76+0.60

» Improvement over individual systems confirmed.
» Other differences not clear.
. which is in line with confidence bounds.

26 /31



Grammatical Post-Processing (DEPFIX)

1. Align source and MT output
(or use detailed output).

2. Parse MT output.

3. Apply rule-based corrections: :

AuxK

» Hack wrong tagging/parse
based on English.

» Agreement (subject case,
noun-adj, subject-predicate,
subject-past participle).

Priss

Pred

$9, M pozdéji
Rdv J

AuxK

. . .. v vs Sb vewvr
» Case implied by preposition. Néktefi pl prii
. re
» Remove extra reflexive pl
particles.

implemented in Treex platform.
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DEPFIX Impact on WMT11 Systems

System Before After Delta (Confidence)
CU-ZEMAN 1461 14.80 0.19 (0.09-0.29)

UEDIN 17.80 17.88  0.08 (-0.02-0.17)
CMU-HEAFIELD 20.24 20.32  0.08 (-0.03-0.19)
JHU 17.36  17.42  0.06 (-0.03-0.16)
ONLINE-B 20.26 20.31 0.05 (-0.06-0.16)
CU-TWOSTEP 16.57 16.60 0.03 (-0.07-0.13)
UPV-PRHLT. 20.68 20.69 0.01 (-0.08-0.11)
COMMERC?2 09.32 09.32 0.00 (-0.04-0.04)
CU-POPEL 1412 1411 -0.01 (-0.06-0.03)
CU-BOJAR 16.88 16.85 -0.03 (-0.12-0.07)
CU-TAMCHYNA  16.32 16.28 -0.04 (-0.14-0.06)

» No gain for TectoMT (CU-POPEL).
» Surpringly no gain for our tuned Moseses (CU-BOJAR,

CU-TAMCHYNA).
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Manual Evaluation of DEPFIX

Percent

System Annotator Sents Better Worse Equal

cu-bojar-twostep A 269 56.5 145 29.0

cu-bojar-twostep B 269 64.3 186 17.1

online-B A 247 63.1 159 211

online-B B 247 66.8 25.9 7.3
» Around 60% sentences that change are actually

improved.

Percent BLEU

TestSet Sents. | Better Worse Equal ‘ Before After  Diff
2010 104 | 500 19.2 308| 1699 17.38 0.39
2011 101 65.3 18.8 158 | 13.99 13.87 -0.12

» Confirmed improvement around 50-60% sentences.

» BLEU does not indicate that.
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Summary

v

Rich morphology makes everything in MT harder.

Improvements impossible to check with BLEU.
Manual ranking of hypotheses:
» Clear when comparing 2 similar outputs (DEPFIX).
» May fail for already 2 dissimilar outputs (TECTOMT vs.
CU-BOJAR).

v

v

Rover System Combination (PBMT over *):

» 1/3 of tokens should be chosen despite no majority.
» Helps over individual systems.
» Tuning in Moses Poor.
» LMs (over factors) help.
DEPFIX Grammatical Post-Processing (RBMT over *):
» Treex platform proves versatile.
» Got minor improvements of most systems.

v

\4
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