
Comparison of MT between related and
unrelated languages

Ond�rej Bojar, Natalia Kjlueva, David Kolovratn��k

Charles University in Prague,

Faculty of Mathematics and Physics,

Institute of Formal and Applied Linguistics

September 27, 2009

http://ufallab2.ms.m�.cuni.cz/�bojar/teaching/NPFL087/wiki/CzeRu



machine translation

in our experiment

I a system of programs

I takes text (natural language) as input, also needs models

I outputs text translated into another language

I poor quality � Does it worth reading?

di�erent approaches

I data driven
I word to word
I phrase based
I example based, employing syntax, . . .

I manualy constructed translation rules, . . .



phrase based machine translation � simpli�ed idea

training/learning

I explores paralel bilingual corpus � a list of 1:1 coupled
sentences

I a phrase is a continuous sequence of tokens (for our
purposes)

I extracts a list of (scored) equivalent phrases

I how phrases are extracted is not explained here

I also explores monolingual (target side) corpus to train
language model

I simpli�ed: lists of words with zero, one and two previous
words



phrase based machine translation � simpli�ed idea (2)

decoding/search for translation

I try to cover an input sentence with source-side of learned
phrases

I target-side of selected phrases forms output sentence

I search is driven by phrase score and language model

I phrase model ensures translation correspondence

I language model tends to make output sentenge grammatical

achieved abstraction

I phrases over sentences



phrase based machine translation � main issues

achieved abstraction

I phrases over sentences

I but no further generelization

I cannot even recognize an unseen form of a seen word in the
language model

data sparseness

I in any available corpus we do not see all usages of all units
(words)

I but we would like to se all translations in all their contexts
in source language

I thus generalization is needed

Example

EBMT: close to mountains → close to X



generalization in language model

n-gram language model

I n-gram is n-tupple of tokens; e.g. n = 2
w|h: �rekla|� ,|�rekla �ze|, p�ujde|�ze s|p�ujde n�ami|s .|n�ami

I a sentence is scored on the basis of scores of n-grams it
consists of (Bayes' chain rule)

I usually n=3, 2 tokens of history, 1 predicted:
p(wi|wi−2wi−1)

I higher n → su�ering more from data sparseness

I take into account also m-grams, 0 ≤ m < n (smoothing)

smoothing with parts of speech

I if we have not seen the word in a given context of words,
use at least the context of its POS

I p(lesy|rozs�ahl�e)= · · ·+ λip(lesy|Adj.) + · · ·



Statistical Machine Translation between Czech, Russian
and English

Carried out experiments' basic facts

I employed data set: UMC 0.1 + extra set from
ProjectSyndicate

I direction of translations: ru → cz, en → cz

I included methods: direct transfer, factored translation,
both using Moses and related tools

I evaluation: Bleu, Gray-box evaluation



Data sources

Corus UMC 0.1

I Ufal Multilingual Corpus

I ProjectSyndicate articles new in 2009
extra 2 765 sentences tri-parallel

I numbers
LM sencences cz 92 233
TM sencences ru → cz 79 888
TM sencences en → cz 76 588

test set cz, en, ru 1 000
dev set cz, en, ru 750



Main steps

Data preparation

I factored TM training corpus
I lemmatization and tagging
I English&Russian by Tree-Tagger
I Czech by J. Haji�c tagger module in TectoMT
I a lot of exercises with UNIX tools :-)

Factored sentence snippets

prost�e|prost�e|Dg-----1A---- jsem|b�yt|VB-S-1P-AA---
âêëþ÷àÿ|âêëþ÷àÿ|Sp-a ïðåçèäåíòà|ïðåçèäåíò|Ncmsay
ìáåêè|ìáåêè|Vmip3s-a-p
the|the|DT visionaries|visionary|NNS would|would|MD
have|have|VH gotten|get|VVN nowhere|nowhere|RB



Main steps (2)

Running Moses

I direct transfer (simple)

I factored � two decoding paths

1. (T) F.form → E.form, E.lemma, E.tag
2. (T) F.lemma → E.lemma

(T) F.tag → E.tag
(G) E.lemma + E.tag → E.form
+ three separate LMs: for forms, lemmas and forms

Calling train-factored-phrase-model.perl
-lm 0:3:"$(WORK)/lm/cer.lctok.form.cz.blm"
-lm 1:3:"$(WORK)/lm/cer.lctok.lemma.cz.blm"
-lm 2:3:"$(WORK)/lm/cer.lctok.tag.cz.blm"
-translation-factors 0-0,1,2+1-1+2-2
-generation-factors 1,2-0

-decoding-steps t0:t1,t2,g0



explored settings

Russian Czech

si
m

pl
e

form 1 form

fa
ct

or
ed

1

(a) form 1 form, lemma, tag

(b) lemma 2 lemma
tag 3 tag }4 form

fa
ct

or
ed

2

(a) form 1 form lemma, tag2

(b) lemma 3 lemma
tag 4 tag }5 form



Evaluation of machine translation

evaluation criterion

I no single criterion
I preserves meaning
I outputs grammatical sentences
I what type of errors occure
I how much time/money does it take to correct the output,

etc.

I we do not know user's needs

our evaluation criterion

I automatic metric Bleu

I manual evaluation
I error analysis: missing word, extra word, bad word form, . . .
I ranking � order translations of di�erent systems



Evaluation � error analysis

I manual �agging of errors

I judge only of simple model (limited human resources)

I overview of errors
Error Class en→cs ru→cs

Disambiguation 9.3 % 8.8 %
Extra word 6.2 % 18.2 %
Word Form 49.0 % 22.0 %
Lexical Variant 5.4 % 5.7 %
Missed Auxilary 0.8 % 1.9 %
Missed Content 6.6 % 20.1 %
Word Order Long 0.8 % 0.6 %
Word Order Short 4.6 % 0.6 %
Punctuation 13.9 % 2.5 %
Unknown 3.5 % 19.5 %

Total 259 (100.0%) 159 (100.0%)



Evaluation � ranking

I which system produced the best translation?
En→Cz simple factored1 factored2

Best/Second 2/8 9/6 4/6

Ru→Cz simple factored1 factored2

Best/Second 10/12 19/9 �

I ru→cz, factored1 was the best the most times

I factorization helped particularly for translation from
Russian



Evaluation � Bleu

I no signi�cant improvement for English → Czech

I useful for Russian to Czech

I achieved Bleu scores in our experiments
BLEU score on forms

pair simple factored1 factored2

en→cs 14.58±0.96 15.84±1.03 15.39±1.05
ru→cs 11.91±0.91 13.11±0.90 �

BLEU score on lemmas

pair simple factored1 factored2

en→cs 24.16±1.10 24.77±1.18 24.99±1.16
ru→cs 15.98±0.97 18.06±0.92 �



Typical errors

Russian → Czech

I negation
(cs ref) bez n�eho�z nebylo mo�zn�e sestavit
(ru → cs): bez n�eho�z bylo mo�zn�e vytvo�rit

I re�exives
(ru src) ñóìåë óéòè îò
(ru → cs) poda�rilo odej��t od

English → Czech

I word order in possessive constructions
(en src) mahmoud abbas 's palestinian authority
(cs ref) palestinskou samospr�avou prezidenta mahm�uda
abb�ase
(en → cs) prezidenta mahm�uda abb�ase palestinsk�e
samospr�avy



Typical errors (2)

Both source languages → Czech

I Bad case after a preposition.
(cs ref) podle indick�ych vy�set�rovatel�u
(en src) according to indian investigators
(en → cs) podle indick�e �re�sitel�u
(ru src) ñîãëàñíî èíäèéñêèì ýêñïåðòàì
(ru → cs) podle indick�ym experti



Conclusion

I less number of errors in errors �agging advices that
translation from Russian is simpler

I it is also supported by manual ranking

I factorization is useful particularly for translation from
Russian
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