Comparison of MT between related and unrelated languages

Ondřej Bojar, Natalia Kjlueva, David Kolovratník

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics

September 27, 2009

うして ふゆう ふほう ふほう ふしつ

http://ufallab2.ms.mff.cuni.cz/~bojar/teaching/NPFL087/wiki/CzeRu

machine translation

in our experiment

- ▶ a system of programs
- ▶ takes text (natural language) as input, also needs models

うして ふゆう ふほう ふほう ふしつ

- ▶ outputs text translated into another language
- ▶ poor quality Does it worth reading?

different approaches

- ▶ data driven
 - ▶ word to word
 - ▶ phrase based
 - ▶ example based, employing syntax, ...
- ▶ manualy constructed translation rules, ...

phrase based machine translation – simplified idea

training/learning

- ▶ explores paralel bilingual corpus a list of 1:1 coupled sentences
- ▶ a phrase is a continuous sequence of tokens (for our purposes)
- ▶ extracts a list of (scored) equivalent phrases
- ▶ how phrases are extracted is not explained here
- also explores monolingual (target side) corpus to train language model
- simplified: lists of words with zero, one and two previous words

phrase based machine translation - simplified idea (2)

decoding/search for translation

- ▶ try to cover an input sentence with source-side of learned phrases
- ▶ target-side of selected phrases forms output sentence
- ▶ search is driven by phrase score and language model
- ▶ phrase model ensures translation correspondence
- ▶ language model tends to make output sentenge grammatical

achieved abstraction

phrases over sentences

phrase based machine translation – main issues achieved abstraction

- ▶ phrases over sentences
- ▶ but no further generelization
- cannot even recognize an unseen form of a seen word in the language model

data sparseness

- ▶ in any available corpus we do not see all usages of all units (words)
- ▶ but we would like to se all translations in all their contexts in source language

くしゃ ふゆゃ ふきゃ ふきゃ ふしゃ くろう

▶ thus generalization is needed

Example

EBMT: close to mountains \rightarrow close to X

generalization in language model

n-gram language model

- ▶ n-gram is n-tupple of tokens; e.g. n = 2 w|h: řekla|⊘ ,|řekla že|, půjde|že s|půjde námi|s .|námi
- ▶ a sentence is scored on the basis of scores of n-grams it consists of (Bayes' chain rule)
- ▶ usually n=3, 2 tokens of history, 1 predicted: p(w_i|w_{i-2}w_{i-1})
- \blacktriangleright higher n \rightarrow suffering more from data sparseness
- ▶ take into account also m-grams, $0 \le m < n \pmod{m}$

smoothing with parts of speech

▶ if we have not seen the word in a given context of words, use at least the context of its POS

► $p(lesy|rozsáhlé) = \cdots + \lambda_i p(lesy|Adj.) + \cdots$

Statistical Machine Translation between Czech, Russian and English

Carried out experiments' basic facts

- employed data set: UMC 0.1 + extra set from ProjectSyndicate
- ▶ direction of translations: $ru \rightarrow cz$, $en \rightarrow cz$
- ▶ included methods: direct transfer, factored translation, both using Moses and related tools

▶ evaluation: Bleu, Gray-box evaluation

Data sources

Corus UMC 0.1

- ▶ Ufal Multilingual Corpus
- ProjectSyndicate articles new in 2009 extra 2 765 sentences tri-parallel

▶ numbers

LM sencences	cz	92 233
TM sencences	$\rm ru \rightarrow cz$	79 888
TM sencences	$\mathrm{en} \to \mathrm{cz}$	76 588
test set	cz, en, ru	1 000
dev set	cz, en, ru	750

Main steps

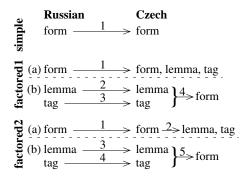
Data preparation

- ▶ factored TM training corpus
 - lemmatization and tagging
 - ▶ English&Russian by Tree-Tagger
 - ▶ Czech by J. Hajič tagger module in TectoMT
 - ▶ a lot of exercises with UNIX tools :-)

Factored sentence snippets

prostě|prostě|Dg-----1A---- jsem|být|VB-S-1P-AA--включая|Включая|Sp-а президента|президент|Ncmsay мбеки|мбеки|Vmip3s-а-p the|the|DT visionaries|visionary|NNS would|would|MD have|have|VH gotten|get|VVN nowhere|nowhere|RB

Main steps (2)


Running Moses

- ▶ direct transfer (simple)
- ▶ factored two decoding paths
 - 1. (T) F.form \rightarrow E.form, E.lemma, E.tag
 - 2. (T) F.lemma \rightarrow E.lemma
 - $(T)\ F.tag \rightarrow E.tag$
 - (G) E.lemma + E.tag \rightarrow E.form
 - + three separate LMs: for forms, lemmas and forms

Calling train-factored-phrase-model.perl

- -lm 0:3:"\$(WORK)/lm/cer.lctok.form.cz.blm"
- -lm 1:3:"\$(WORK)/lm/cer.lctok.lemma.cz.blm"
- -lm 2:3:"(WORK)/lm/cer.lctok.tag.cz.blm"
- -translation-factors $0\mathchar`-0.1,2\mathchar`-1\mathchar`-1.2$
- -generation-factors 1,2-0
- -decoding-steps t0:t1,t2,g0

explored settings

うして ふゆう ふほう ふほう ふしつ

Evaluation of machine translation

evaluation criterion

- ▶ no single criterion
 - preserves meaning
 - outputs grammatical sentences
 - ▶ what type of errors occure
 - ▶ how much time/money does it take to correct the output, etc.
- ▶ we do not know user's needs

our evaluation criterion

- ▶ automatic metric Bleu
- ▶ manual evaluation
 - \blacktriangleright error analysis: missing word, extra word, bad word form, \ldots

うして ふゆう ふほう ふほう ふしつ

▶ ranking – order translations of different systems

Evaluation – error analysis

- ▶ manual flagging of errors
- ▶ judge only of simple model (limited human resources)

▶ <u>overview of errors</u>		
Error Class	$en \rightarrow cs$	$ru \rightarrow cs$
Disambiguation	9.3~%	8.8 %
Extra word	6.2~%	18.2~%
Word Form	49.0~%	22.0~%
Lexical Variant	5.4~%	5.7~%
Missed Auxilary	0.8~%	1.9~%
Missed Content	6.6~%	20.1~%
Word Order Long	0.8~%	0.6~%
Word Order Short	4.6~%	0.6~%
Punctuation	13.9~%	2.5~%
Unknown	3.5~%	19.5~%
Total	259~(100.0%)	159 (100.0%)

Evaluation – ranking

▶ which system produced the best translation?

En→Cz	simple	factored1	factored2
Best/Second	2/8	9/6	4/6
Ru→Cz	simple	factored1	factored2
Best/Second	10/12	19/9	

- ▶ ru \rightarrow cz, factored1 was the best the most times
- factorization helped particularly for translation from Russian

・ロト ・四ト ・ヨト ・ヨー うらぐ

Evaluation – Bleu

- \blacktriangleright no significant improvement for English \rightarrow Czech
- ▶ useful for Russian to Czech
- ▶ achieved Bleu scores in our experiments

	BLEU score on forms		
pair	simple	factored1	factored2
en→cs	$14.58 {\pm} 0.96$	$15.84{\pm}1.03$	$15.39{\pm}1.05$
ru→cs	$11.91{\pm}0.91$	13.11 ± 0.90	_

	BLEU score on lemmas		
pair	simple	factored1	factored2
en→cs	24.16 ± 1.10	24.77 ± 1.18	24.99 ± 1.16
ru→cs	$15.98 {\pm} 0.97$	$18.06 {\pm} 0.92$	

Typical errors

$\mathrm{Russian} \to \mathrm{Czech}$

- \blacktriangleright negation
 - (cs ref) bez něhož nebylo možné sestavit
 - (ru \rightarrow cs): bez něhož bylo možné vytvořit

► reflexives

- (ru src) сумел уйти от
- (ru \rightarrow cs) podařilo odejít od

English \rightarrow Czech

- word order in possessive constructions (en src) mahmoud abbas 's palestinian authority (cs ref) palestinskou samosprávou prezidenta mahmúda abbáse
 - (en \rightarrow cs) prezidenta mahmúda abbáse palestinské samosprávy

Typical errors (2)

Both source languages \rightarrow Czech

Bad case after a preposition.
(cs ref) podle indických vyšetřovatelů
(en src) according to indian investigators
(en → cs) podle indické řešitelů
(ru src) согласно индийским экспертам
(ru → cs) podle indickým experti

うして ふゆう ふほう ふほう ふしつ

Conclusion

- less number of errors in errors flagging advices that translation from Russian is simpler
- ▶ it is also supported by manual ranking
- ▶ factorization is useful particularly for translation from Russian

・ロト ・回ト ・ヨト ・ヨト ・ヨー うへで