
Tree-based Translation

Ondřej Bojar, Adam Lopez

Revision: 169
2008-05-08 18:14:11 +0200 (Thu, 08 May 2008)

1 Dependency vs. Constituency Trees

Syntactic structure of sentences can be represented using constituency

trees or dependency trees.
Constituency trees indicate recursive “bracketting” of the sentence–sequences

of words are grouped together to form constituents:

(1) John (loves Mary)

Dependency trees indicate which words depend on which. Nivre (2005)
gives a good review of dependency-based formalisms and dependency pars-
ing.

S
H

HH
�

��
NP

John

VP
Q

Q
�

�

V

loves

NP

Mary

loves
Q

Q
�

�

John Mary

or

John loves Mary

Figure 1: A constituency and a dependency tree. Non-terminals in bold
mark heads. Following the trail of heads, we find the terminal node with
the same label as the node in a dependency tree would have.

Figure 1 illustrates a constituency tree and a dependency tree. In con-
stituency trees, each non-terminal node (labelled in capital letters) repre-
sents a constituent. There are no non-terminals in dependency trees. If we
choose one of the sons in each constituent to be the head of the constituent,
e.g. the VP to be the head of the S, we can convert the constituency tree

1

to a dependency tree by “lifting” the terminals up along paths marked with
heads.

An unordered dependency tree is a connected rooted directed acyclic
graph in graph-theoretic sense. An unordered dependency tree does not
capture any linear order of words, just pure dependencies. We cannot speak
about projectivity (see below) of unordered dependency trees.

An ordered dependency tree is an unordered dependency tree with a
specified linear order of the nodes. We can thus draw the nodes in the tree
from left to right (and the drawing actually means something).

A constituency tree can be defined e.g. as a term, using this recursive
definition: 1) a terminal is a term, 2) if t1 , . . . , tn are terms and N is a
non-terminal, then N(t1 , . . . , tn) is a term. In the graph-theoretic view, a
constituency tree is a tree with linearly ordered sons of each non-terminal.

1.1 Crossing Brackets, Non-Projectivity

Here is a simple example of a sentence with “crossing brackets”:

(2) Mary, John loves.

Constituency trees cannot represent structures where a constituent was
“moved” outside of its father’s span (unless we use empty constituents,
sometimes called “traces”, i.e. constituents spanning no words, optionally
co-indexed with the “moved” words). Because there are no non-terminals in
dependency trees to represent the derivation history, some of the “crossing
brackets” structures just disappear, see Figure 2.1

S’
PPPP

����

TOPIC

Mary 1

S
H

HH
�

��
NP

John

VP
c
c

#
#

V

loves

NP

1

Mary John loves

Figure 2: An example of a crossing-bracket yet projective structure.

There are however structures, such as the Dutch “cross-serial” dependen-
cies where, even dependency trees become non-projective, i.e. there is a
“gap” in the span of a subtree. Representing non-projectivity in dependency
trees is easy and natural, see Figure 3.

1See the difference between a D-tree and a DR-tree as defined by Holan et al. (1998).

2

. . . dat
. . . that

Jan
John

kinderen
children

zag
saw

zwemmen
swim

. . . that John saw children swim.

Figure 3: Dutch “cross-serial” dependencies, a non-projective tree with one
gap caused by saw within the span of swim.

Non-projective structures can be relatively rare in English but amount
to 23% of sentences in Czech, a Slavic language with relatively free word
order (Debusmann and Kuhlmann, 2007).

1.2 Gap Degree and Well-Nestedness

Holan et al. (1998) and Kuhlmann and Möhl (2007) define a measure of non-
projectivity: gap degree is the number of gaps in a dependency structure.
Gap-zero structures are projective structures.

Kuhlmann and Möhl (2007) define another constraint on dependency
structures: in well-nested structures, disjoint subtrees must not interleave.

Debusmann and Kuhlmann (2007) evaluated that in the Prague Depen-
dency Treebank (Hajič et al., 2006), 99.5% of structures are well-nested and
up to gap-1, despite the fact that Czech grammar in principle allows un-
bounded pumping of gap-degree. The construction is based on two verbs
and intermixed modifiers where the dependency relations are disambiguated
based on syntactic criteria (e.g. obligatory reflexive particle se or subcat-
egorization for a particular preposition or case) and semantic criteria (e.g.
verb in past tense cannot accept time modifier refering to future):

(3)

Proti odmı́tnut́ı
Against dismissal

se
aux-refl

źıtra
tomorrow

Petr
Peter

v práci
at work

rozhodl
decided

protestovat
to object

Peter decided to object against the dismissal at work tomorrow.

The non-projective dependencies are se and Peter depending on the

3

main verb decided but appearing within the span of dependents of to ob-
ject: against dismissal, tomorrow, at work. With the main verb itself, there
are 3 gaps within the yield of to object.

2 Tree Grammars

Tree grammars are one type of finite formal means to define (infinite) sets
of trees.

Tree-adjoining grammars (TAG, tag (), see also the review by Joshi
et al. (1990)) start from a set of initial trees and use tree substitution and
tree adjunction to derive a tree. The tree substitution operation attaches
a treelet to a frontier (leaf non-terminal). The tree adjunction splits a tree
in a non-terminal and stitches a treelet in between, see Figure 4. Tree-

substitution grammars (TSG, Eisner (2003) or e.g. Bojar and Čmejrek
(2007)) are like TAG but allow only tree substitution, no tree adjunction.

F + F = F A +

A

A
=

A

A

Figure 4: Tree substitution at frontier F and tree adjunction at internal
node A.

Figure 5 illustrates how a sentence is analyzed using a constituency-based
TSG and a dependency-based TSG. The difference between constituency-
and dependency-based TSG is the type of underlying trees. Non-terminal
nodes in a dependency-based TSG can appear as leaves of unfinished trees
only and have to be substituted by a tree later in the derivation.

2.1 Constituency vs. Dependency Tree Adjunction

TAG defines the adjunction operation for constituency trees only. The same
definition cannot be casted to dependency-based TSG (dep-TSG) because
there are no internal non-terminals to adjoin at. However, we can still think
of the “linguistic adjunction” in dep-TSG. This operation adds adjuncts to
a node. In terms of TSG, a little tree gets attached to an internal node
instead at a frontier. dep-TSG adjunction thus allows to add siblings to an
already existing node.

The trouble starts if we consider ordered dependency trees. Where is the
new dependent placed with respect of the existing dependents? And is the
newly attached subtree attached projectively, or can older nodes in the tree
introduce gaps into it? (And where the gaps are allowed to be?) E.g. Quirk

4

S
...
S
PPPP

����
NP
...

NP

John

VP
H

HH
�

��
V
...
V

loves

NP
...

NP

Mary

S
...

loves
H

HH
�

��
NP
...

John

NP
...

Mary

Figure 5: Derivation of a sentence using constituency-based and

dependency-based tree substitutions. The substitution is indicated by “
...”.

et al. (2005) use a probabilistic model to interleave old dependents and newly
adjoint dependents but do not seem allow non-projective attachments.

2.2 Remarks on Generative Capacity

This is by no means a complete survey.
Gaifman (1965) shows that projective dependency structures are weakly

equivalent to CFG. We have already illustrated how marking of heads is
used to convert a constituency tree to a dependency tree in Figure 1.

Joshi et al. (1990) describe various formalisms for so-called mildly con-

text sensitive (MCS) grammars. The term MCS refers to various gram-
mars beyond CFG but still polynomially parsable. TAG is one of them
and was motivated by the need to represent Dutch cross-serial dependencies
(Figure 3). Naturally, TAG needs traces in its constituency trees.

Kuhlmann and Möhl (2007) shows that lexicalized TAG (LTAG) is equiv-
alent to well-nested dependency structures with at most one gap. kuhlmann-
mohl:2007:ACLMain (also define an infinite hierarchy of mildly context-
sensitive dependency structures (i.e. parsable in polynomial time) of ever
growing weak generative power.

Plátek (2001) defines a special type of formal automata to define a hier-
archy of languages beyond CFG. Jurdziński et al. (2008) shows that already
the class of languages accepted by a quite restricted from of the automaton
contains NP-complete languages and is thus not much useful for efficient
parsing.

5

3 Synchronous Grammars

Synchronous grammars are vaguely speaking pairs of formalisms at-
tached to each other. So instead of deriving a single tree, we obtain a
pair of structures in a synchronous derivation.

Chiang and Knight (2006) gives a nice and brief overview of synchronous
context-free grammars (SCFG), synchronous tree-substitution grammars (STSG)
and synchronous tree-adjoining grammars (STAG), including parsing strate-
gies. All his examples are based on constituency trees.

3.1 Translation Direction

When designing an MT system, one should consider the properties of the
source and target languages.

For instance, when translating from Czech to English, source-side non-
projectivities have to be accounted for. Alternatively, a non-projective de-
pendency parser such as (McDonald et al., 2005) can be used and the re-
sulting dependency tree can be tranfered to the target language using e.g.
STSG.

When translating from English to Czech, significant portion of non-
projective structures can be disregarded because there exists a grammat-
ically correct reordering that reduces the gap degree. For instance, the
sentence in Example 3 could be translated from the English gloss as Petr
se rozhodl proti odmı́tnut́ı źıtra v práci protestovat., rendering no gap at all.
However, the position of the reflexive particle se is fairly rigid (the “second”
position in the sentence) and constraints on topic-focus articulation often
lead to a gap-1 structure. Forcing projective word order by e.g. CFG as
Galley et al. (2006) do on the target side would lead to mildly disfluent
output.

4 References

Ondřej Bojar and Martin Čmejrek. 2007. Mathematical Model of Tree
Transformations. Project Euromatrix - Deliverable 3.2, ÚFAL, Charles
University, December.

David Chiang and Kevin Knight. 2006. An Introduction to Syn-
chronous Grammars. Part of a tutorial given at ACL 2006,
http://www.isi.edu/~chiang/papers/synchtut.pdf, June.

Ralph Debusmann and Marco Kuhlmann. 2007. Dependency grammar:
Classification and exploration. Project report (CHORUS, SFB 378).

Jason Eisner. 2003. Learning Non-Isomorphic Tree Mappings for Machine
Translation. In Proceedings of the 41st Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), Companion Volume, pages
205–208, Sapporo, July.

6

Haim Gaifman. 1965. Dependency Systems and Phrase-Structure Systems.
Information and Control, 8(3):304–337.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve De-
Neefe, Wei Wang, and Ignacio Thayer. 2006. Scalable inference and
training of context-rich syntactic translation models. In ACL ’06: Pro-
ceedings of the 21st International Conference on Computational Linguis-
tics and the 44th annual meeting of the ACL, pages 961–968. Association
for Computational Linguistics.

Jan Hajič, Jarmila Panevová, Eva Hajičová, Petr Sgall, Petr Pajas,
Jan Štěpánek, Jǐŕı Havelka, Marie Mikulová, Zdeněk Žabokrtský, and
Magda Ševč́ıková Raźımová. 2006. Prague Dependency Treebank 2.0.
LDC2006T01, ISBN: 1-58563-370-4.

T. Holan, V. Kuboň, K. Oliva, and M. Plátek. 1998. Two Useful Measures
of Word Order Complexity. In A. Polguere and S. Kahane, editors, Pro-
ceedings of the Coling ’98 Workshop: Processing of Dependency-Based
Grammars, Montreal. University of Montreal.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi. 1975. Tree adjunct
grammars. J. Comput. Syst. Sci., 10(1):136–163.

Aravind K. Joshi, K. Vijay Shanker, and David Weir. 1990. The Con-
vergence of Mildly Context-Sensitive Grammar Formalisms. Technical
Report MS-CIS-90-01, University of Pennsylvania Department of Com-
puter and Information Science.

Tomasz Jurdziński, Friedrich Otto, Frantǐsek Mráz, and Martin Plátek.
2008. On the complexity of 2-monotone restarting automata. Theor.
Comp. Sys., 42(4):488–518.

Marco Kuhlmann and Mathias Möhl. 2007. Mildly context-sensitive de-
pendency languages. In Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics, pages 160–167, Prague, Czech
Republic, June. Association for Computational Linguistics.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. 2005.
Non-Projective Dependency Parsing using Spanning Tree Algorithms.
In Proceedings of HLT/EMNLP 2005, October.

Joakim Nivre. 2005. Dependency Grammar and Dependency Parsing. Tech-
nical Report MSI report 05133, Växjö University: School of Mathematics
and Systems Engineering.

Martin Plátek. 2001. Two-way restarting automata and j-monotonicity. In
SOFSEM ’01: Proceedings of the 28th Conference on Current Trends in
Theory and Practice of Informatics Piestany, pages 316–325, London,
UK. Springer-Verlag.

Chris Quirk, Arul Menezes, and Colin Cherry. 2005. Dependency Treelet
Translation: Syntactically Informed Phrasal SMT. In ACL ’05: Pro-
ceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 271–279. Association for Computational Linguistics.

7

