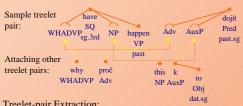


Phrase-Based and Deep Syntactic English-to-Czech SMT

Ondřej Bojar, Jan Hajič, {bojar, hajic}@ufal.mff.cuni.cz, Charles University in Prague, MFF, ÚFAL


Transfer at Various Layers

Synchronous Tree Derivation

Synchronous Tree-Substitution Grammars (STSG, Eisner, 2003)

- Decompose source tree into treelets.
- 2. Translate treelets.
- 3. Join target-side treelets attaching treelet roots to frontier nodes
- 4. Linearize a-tree or generate plaintext from t-tree.

Treelet-pair Extraction:

- 1. Annotate sentence-parallel corpus up to t-layer:
 - Automatic: TectoMT environment (Žabokrtský, 2008) utilizes various taggers, parsers
- Manual: Prague Czech-English Dependency Treebank (PCEDT 2.0, in progress)
- 2. GIZA++ to obtain node-to-node alignments.

Lack of n-gram LM in t-to-text generation.

3. Extract all treelet pairs compatible with node alignment.

Search for the most likely synchronous derivation: Stack-based top-down beam search similar to Moses.

- 1. Generate translation options (target-side treelets). Various back-off methods, e.g. frontiers disregarded and generated on the fly. Output attributes generated as in factored translation (mapping and generation steps).
- Attach translation options to frontiers.

Log-linear model of the following features

- STSG model: p(treelet pair | frontier states)
- Direct and reverse translation models:
- $\Pi_{treelet\ pairs}\ p(\ target\ treelet\ |\ source\ treelet\)$
- Direct and reverse models for factored attribute generation.
- n-gram language model for e*ca and e*cp (trees directly linearized)
- Binode language model for e*ct:
- $\Pi_{edge\ e}$ $p(\ child(e)\ |\ governor(e)\)$ Number of internal nodes covered...

Problems of Deep Transfer

Cumulation of errors at every step of analysis (2×tagging, 2×parsing to a-layer, rules/parsing to t-layer). Data loss at treelet pair extraction: natural divergence and annotation errors ⇒ incompatible tree structures and node alignment ⇒ many treelet pairs not extracted

Current implementation requires fully generated target treelets ⇒ too many options for target node attributes given little context

- ⇒ too many similar target treelets created

We support final LM-based rescoring but there is too little variance in n-best lists.

> hypotheses on n-best list differ in less relevant attributes only

Too many model parameters, esp. with factored output nodes ⇒ MERT fails to coverge

Empirical Results BLEU scores for various tree-based transfer configurations:

WMT 07 DevTest, automatic t-layer by Klimeš (2006), compared to phrase-based MT (Bojar, 2007).

Tree-based Transfer	LM Type	BLEU	
ерср	n-gram	10.9±0.6	
eaca	n-gram	8.8±0.6	
epcp	none	8.7±0.6	
eaca	none	6.6±0.5	
etca	n-gram	6.3±0.6	
etct factored, preserving structure	binode	5.6±0.5	
etct factored, preserving structure	none	5.3±0.5	
eact, target side atomic	binode	3.0±0.3	
etct, atomic, all attributes	binode	2.6±0.3	
etct, atomic, all attributes	none	1.6±0.3	
etct, atomic, just t-lemmas	none	0.7±0.2	
Phrase-based (Moses) as reported by Bojar (2007)			

12.9+0.6 Factored to improve target morphology 14.2±0.7 n-gram

BLEU scores for our WMT 08 submissions:

WMT 07 DevTest and WMT 08 tests, compared to etct (factored,

preserving structure) with automatic t-layer by	WMT 07	WMT 08	
Žabokrtský (2008).	DevTest	NC Test	News Test
Moses	14.9±0.9	16.4±0.6	12.3±0.6
Moses, CzEng data only	13.9±0.9	15.2±0.6	10.0±0.5
etct, TectoMT annotation	4.7±0.5	4.9±0.3	3.3±0.3

Phrase-Based Setup

Moses configuration for English-to-Czech translation:

Parallel corpus: CzEng 0.7, about 1M parallel sentences. Word alignment: GIZA++ on Czech and English lemmas

Truecasing: Uppercased names preserved, sentence capitalization removed

Decoding steps

English truecased form	Czech truecased form	+ 3×LM
	Czech morphological tag	+ 3×LM

- 3-grams of word forms (CzEng target side, 15M tokens),
- 3-grams of word forms (NC Test domain, 1.8M tokens).
- 4-grams of word forms (Czech National Corpus, 365M tokens),

3×7-gram models of morphological tags (same data sources). Lexicalized reordering using monotone/swap/discontinuous

bidirectional model on source and target word forms Minimum error-rate training (MERT) optimizing for BLEU.

Summary

- Implemented a complex syntax-based system for English-to-Czech MT.
- STSG top-down decoder applied at various layers of language description.
- · Significant improvement of "etct" using various methods of back-off, including factored translation of node attributes.

- The more complex setup, the worse BLEU scores due to cumulation of errors, data loss and combinatorial explosion (\ipproxsearch errors).
- · Best English-to-Czech quality currently achieved by factored phrasebased MT with a big target-side LM.