English-Hindi Translation in 21 Days

Ondřej Bojar, Pavel Straňák, Daniel Zeman

ÚFAL MFF, Univerzita Karlova, Praha

Data

- Parallel (en-hi)
 - TIDES (50k training sentences, 1.2M hi words)
 - EILMT (7k training sentences, 181k hi words)
 - EMILLE (200k en words)
 - Daniel Pipes (322 texts)
 - Agriculture (17k en ~ 13k hi words)
- Monolingual (hi)
 - Hindi news web sites (18M sentences, 309M words)

Impact of additional data

- Larger parallel data helps
 - Test data: EILMT
 - Training & dev data:

± 88.8.	2.05
	$8.88 \pm$

• EILMT+TIDES
$$19.27 \pm 2.22$$

• EILMT+TIDES+20k web sents 20.07 ± 2.21

Impact of additional data

- Larger Hindi LM data does not help
 - Test data: EILMT
 - Parallel training data: EILMT + TIDES + 20k
 web sentences
 - LM training data:
 - EILMT + web (>300M words): 18.82 ± 2.13
 - EILMT (181k words): 20.07 ± 2.21
 - Out of domain
 - Incompatible tokenization?

Moses setup

- Alignment heuristics: grow-diag-final-and (GDFA)
 - 4 times more extracted phrases than GDF
 - BLEU + 5 points (table)

Alignment heuristics

	EILMT	all
grow-diag-	13.82 ± 1.46	14.67 ± 1.46
final grow-diag- final-and	18.88 ± 2.05	20.07 ± 2.21

Alignment heuristics: CS-EN

	CS to EN	EN to CS
grow-diag-	17.37 ± 0.46	14.40 ± 0.88
final grow-diag- final-and	17.67 ± 0.44	14.50 ± 0.87

Moses settings

- Alignment using first four characters ("light stemming")
 - helps with GDF (not significantly)
 - does not help with GDFA (not significantly)
- MERT tuning of feature weights
 - (not included in official baseline)

Rule-based reordering

- Move finite verb forms to the end of the sentence (not crossing punctuation, "that", WH-words).
- Transform prepositions to postpositions

 TectoMT, Morče tagger (perceptron), McDonald's MST parser

Reordering example

Technology is the most obvious part: the telecommunications revolution is far more pervasive and spreading more rapidly than the telegraph or telephone did in their time.

Technology the most obvious part is: the telecommunications revolution far more pervasive is and spreading more rapidly than the telegraph or telephone their time in did.

Unsupervised stem-suffix segmentation

- Factors in Moses
 - Lemma + tag: but we do not have a tagger
 - Stem + suffix: unsupervised learning is language independent
 - A tool by Dan Zeman (Morpho Challenge 2007, 2008)

Core Idea

- Assumption: 2 morphemes: stem+suffix
 - Suffix can be empty
- All splits of all words
 - (into a stem and a suffix)
- Set of suffixes seen with the same stem is a paradigm
 - In a wider sense, paradigm = set of suffixes + set of stems seen with the suffixes

Paradigms get filtered

- Remove the paradigm if:
 - There are more suffixes than stems
 - All suffixes begin with the same letter
 - There is only one suffix
- Merge paradigms A and B if:
 - B is subset of A
 - A is the only superset of B

Paradigm Examples (en)

- Suffixes: e, ed, es, ing, ion, ions, or
- Stems: calibrat, decimat, equivocat, ...
- Suffixes: e, ed, es, ing, ion, or, ors
- Stems: aerat, authenticat, disseminat, ...
- Suffixes: 0, d, r, r's, rs, s
- Stems: analyze, chain-smoke, collide, ...

Paradigm Examples (hi)

- Suffixes: 0, ា, ាំ, ាំ
- Stems: अहात, खांच, घुटन, चढ़ाव, ...
- Suffixes: 0, ं, ंगे, गा
- Stems: कराए, दर्शाए, फेंके, बदले, ...

- Suffixes: 0,ि,ियां, ियां
- Stems: अनुभूत, अभिव्यक्त, ...

Learning Phase Outcomes

- List of paradigms
- List of known stems
- List of known suffixes
- List of stem-suffix pairs seen together

How can we use that to segment a word?

Morphemic Segmentation

- Consider all possible splits of the word
 - 1. Stem & suffix known and allowed together
 - 2. Stem & suffix known but not together
 - 3. Stem is known
 - 4. Suffix is known
 - 5. Both unknown

We use 4 (longest known suffix)

Impact of our preprocessing

	EILMT	TIDES
Baseline Moses, Distance	18.88±2.05	10.06±0.76
Reordering		
Baseline Moses, Reorder-	19.77±2.03	10.95±0.75
ing Using en+hi Forms		
Suffix LM+Reord	20.09±2.18	10.18±0.74
Rule-based Reordering +	21.01±2.18	10.29±0.69
Suffix LM+Reord		

