Some Computational Experiments with Czech

Ondřej Bojar obo@cuni.cz

December 7, 2006

Outline

- Background: Computer Science at Charles University in Prague
 - Student software project: Simulated family house
 - My master's: Picking nice examples
- Properties of Czech, analysis of Czech, available data
- Some of my previous experiments
- PhD research (ongoing): Constructing verb valency frames
- Experiments towards MT
 - This year's JHU summer workshop: Moses
- My task here: tree-based machine translation
- Summary of keywords

Background: Computer Science

Master Study at Charles University culminates with two (separate) tasks:

Software Project

Joint work of 3–6 students.

Should take 1 year, never takes less than 1.5 or 2.

The goal: experience team work on a large scale project, submit a usable piece of software.

Master Thesis: Picking nice examples of linguistic phenomena

Our Project: The Ents (2000–2002)

The Goal: A simulation of human-like environment (a family house) with userand computer-controlled inhabitants (ents).

The Result:

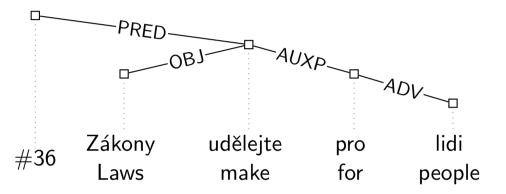
- 6 students, 2 years (student style of intensive work)
- a distributed (client-server) unix application
- \bullet > 100,000 lines of code in C, C++, Pascal, Mercury, Perl
- 5000 lines of code in a new scripting language E
- 500 pages of documentation in Czech

My contribution: E scripts + NLP module implemented in Mercury:

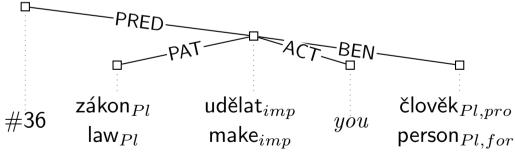
- understanding definite descriptions of objects in the environment
- concretization a process of further communication to identify an object uniquely
- \Rightarrow ents respond to commands in Czech

My Master's: Picking Nice Examples (2002/3)

Motivation:


- Accuracy of parsing Czech is limited, especially around the verbs.
- Valency of verbs is (supposedly) crucial for many NLP tasks.
- \Rightarrow Goal: Automatically extract nice examples, i.e. sentences easy to parse.

The result:


- a scripting language for partial parsing and filtering sentences Engine in Mercury, regular expressions over untyped feature structures.
- a script of 15 filters and 21 rules for Czech:
 - selects 10–15% of sentences
 - improves parsing accuracy by 5-10% absolute (correct dependencies) or 10-15% absolute (correct verb modifications)

Analysis of Czech

Analytic (surface syntactic):

Tectogrammatical (deep syntactic):

Morphological (ambig.):

	•	3 /
Form	Lemma	Morphological tag
zákony	zákon	NNIP1A
zákony	zákon	NNIP4A
zákony	zákon	NNIP5A
zákony	zákon	NNIP7A
udělejte	udělat	Vi-P2A
udělejte	udělat	Vi-P3A4
pro	pro-1	RR4
lidi	člověk	NNMP1A
lidi	člověk	NNMP4A
lidi	člověk	NNMP5A
,		

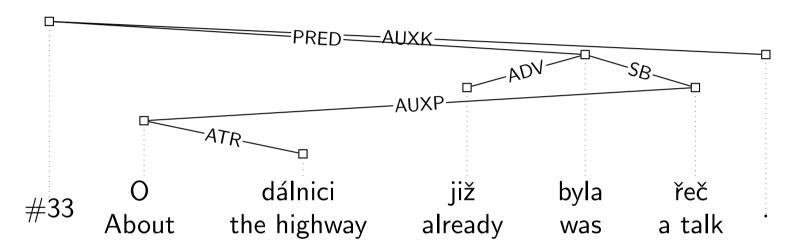
Properties of Czech language

	Czech	English
Rich morphology	\geq 4,000 tags possible, \geq 2,300 seen	50 used
Word order	free	rigid

rigid global word order phenomena: clitics

Name and in a time and a second

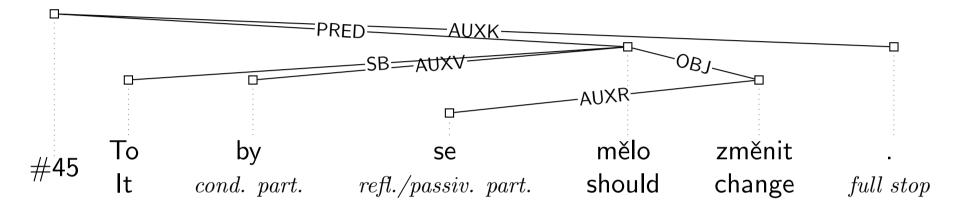
• rigid local word order phenomena: coordination, clitics mutual order

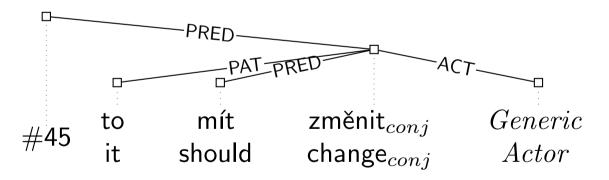

16 000

ivonprojective sentences	10,920 2	23.3%
Nonprojective edges	23,691	1.9%
Known parsing results	Czech	English
Edge accuracy	69.2-82.5-8	6% 91%
Sentence correctness	15.0 - 30.9	% 43%

Data by (Collins et al., 1999), (Holan, 2003), Zeman (http://ckl.mff.cuni.cz/~zeman//projekty/neproj/index.html) and (Bojar, 2003). Consult (Kruijff, 2003) for measuring word order freeness.

99.00/


Nonprojectivity



Non-projectivity:

- does not seem to cause delays in reading experiments (Bojar et al., 2004)
- disappears at the deep syntactic level (Veselá, Havelka, and Hajičová, 2004)
- parsing $(O(n^2))$ solved only recently (McDonald et al., 2005)

Analytic vs. Tectogrammatical

- hide auxiliary words, add nodes for "deleted" participants
- resolve e.g. active/passive voice, analytical verbs etc.
- "full" tecto resolves much more, e.g. topic-focus articulation or anaphora