
(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

The Project ENTs: Towards Modeling Human-like
Artificial Agents

Ondřej Bojar1, Cyril Brom1, Milan Hladík1, Vojtěch Toman1

1Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, Prague, Czech Republic

{ obo@ruk, brom@ksvi.mff, vtoman@ksi.ms.mff }.cuni.cz
milan_hladik@centrum.cz

Abstract. The Project ENTs aims at providing a universal high-level tool for
prototyping human-like artificial agents. The main features of this tool are a
virtual test-bed environment and E language, which enables description of
human-like agents’ behaviours using various techniques, in particular reactive
planning and BDI-architecture. In this paper, we present first generation of this
tool together with an example agent—an artificial gardener that acts in a virtual
family house. We then briefly discuss applicability of this tool and introduce
some requirements for its second generation.

1 Introduction

An agent is an encapsulated computational system, that is situated in some
environment, and that is capable of flexible, autonomous behaviour in order to meet
its design objective [25]. Human-like agents (h-agents in following text) are agents
designed to simulate human behaviour in a virtual environment similar to natural
world. Such agents are used in educational applications, interactive drama, computer
games or cognitive science.

H-agents typically consist of a simulated body, sensors, efectors and a control unit
(mind). One of the key problems in the field of h-agents simulation is how to design
their mind, and thus their behaviour. It is because environments of h-agents are
typically large and dynamic, h-agents must carry out complex tasks, and are persistent
(they can not simply stop acting when a sub-task fail). Various approaches to control
h-agents have been used so far; such as BDI-architecture [15] or subsumption
architecture [5], hierarchical or any-time planning [8, 21], hierarchical rule-based
system [16], finite state machines [26] or even neural networks [12]. Various
techniques can be also used to create subsidiary components of h-agents’ mind—for
example linguistic module or emotional block discussed in this paper.

Although there are many individual applications featuring h-agents and special
programming languages used to control them, it is hard to find any high-level tool that
would simplify the development. In fact, not only computer experts create h-agents.
From the development process point of view, designers and testers participate on the
design, or debugging and parameterization of h-agents, respectively. From the
academic point of view, students or non-computer researchers (like artists, librarians,

2 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

psychologists etc.) also create h-agents from time to time. Some pragmatic reasons,
why these people find it difficult to develop h-agents, follow:

a) Non-computer researchers usually cannot code in C++ or Java, therefore they are

not able to build new h-agent or their environments from scratch.
b) Students are often not able to see “the gap” between theory (i.e., artificial

intelligence algorithms) and practice (i.e., implementation). Students cannot test
their knowledge in practice and later they do not know how to use their knowledge.

c) Due to complexity of h-agents’ mind, programmers or designers sometimes need to
prototype it (it means to test several approaches and choose the best one).
Languages like C++ or Java are not a good tool for prototyping.

d) Researchers and programmers must often focus on supplementary low-level issues
instead of their goals, repeatedly reinventing what has been already invented (for
example how to design behaviour using reactive planning or how to program path-
finding).

To address these issues we aimed at creating a universal high-level tool for
prototyping human-like agents. The main goals were 1) to enable prototyping, thus to
simplify and speed up the design (to solve a), b) and c)), 2) to let users focus on their
main objective, not to supplementary issues (addressing d)). We did not attempt to
integrate existing tools and libraries, preferring to create a high-level test-bed for
artificial intelligence. We focused mainly on a control unit of h-agents.

In this paper we present the first generation of this tool. Its main features are 1) a
neat virtual environment with a graphical user interface (GUI), 2) a universal high-
level E language for prototyping h-agents’ mind, 3) a library of predefined
behaviours, and 4) a linguistic and memory module. Later we discuss how we have
met our goals and suggest requirements on second generation of the tool.

The rest of the paper proceeds as follows: We recall some theoretical background
and related works on h-agents simulation in section 2. Section 3 details the first
generation of project ENTs. Section 4 presents a prototyped h-agent—a gardener—
controlled by reactive planning. In section 5, we evaluate the results and present some
requirements for second generation of the tool.

2 Related work

In this section we present an overview of h-agents’ mind architectures and summarize
some related works comprising both tools and applications featuring h-agents. We
also compare presented applications with project ENTs.

Reactive behaviour is a term used for reflexive behaviour responsible for quick
reactions to unpredictable events, while deliberative behaviour involve deliberative
reasoning about how to commit tasks. According to these criteria we will divide h-
agents in this section.

For h-agents created by our application we will use the term ent (this world comes
from entity).

The Project ENTs: Towards Modeling Human-like Artificial Agents 3

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

2.1 Deliberative agents

Deliberative h-agents are such h-agents that act not only reactively, but also
intentionally. These h-agents are typically based on cognitive paradigm.

Fig. 1. Elementary block scheme of deliberative h-agent. Gray blocks are optional. (*)Under-
standing filter is for example a linguistic module, (**)an example of additional block is
an emotional module or vegetative system block.

In both continuous and discrete time environments, it is usually not possible to
deliberately plan behaviour of h-agents using STRIPS-like method [20], because the
simulation can not be paused until the plan is finished, and an agent must also be
reactive in some way; in such case the plan would have to be recomputed.

Therefore plans how to achieve goals must be somehow explicitly prescripted and
pure planning can be allowed only at times. The key function of a mind would be then
an opportunistic switching among prescripted plans to find the one, which
corresponds the best with the current situation in the environment. Another alternative
is to use any-time planning.

Well-known approach is Belief-Desire-Intention architecture (BDI) [25]. The mind
of BDI-h-agents updates the internal world model (i.e., beliefs), generates
opportunities accordingly (i.e., desires) and chooses among them (i.e., commits
intentions). System JAM [13], which is a second-generation descendant of Procedural
Reasoning System [10], provides an interpreter for BDI-architecture. H-agents like
synthetic actors for interactive improvisational plays [15] are created in JAM.
Expression power of JAM language is similar to E language.

Another example of interpreter based on BDI-architecture paradigm is Jason [3].
Based on similar techniques, Mateas presents ABL/Hap language [19] for designing
h-agents in virtual storytelling. Comparing with project ENTs, JAM, Jason and
ABL/Hap are architectures or high-level programming languages, rather than
complex tools with virtual environments.

An alternative to BDI is a hierarchical rule-based system. An example is Soar—
the implementation of unified theory of cognition [16]. Soar offers not only rule-
based system, but also associative memory, meta-level reasoning and learning, as well
as debugging tools. The disadvantage of Soar is that it is “low-level” and highly
unintuitive for non-computer experts and therefore not applicable for prototyping
(what is one of the goals of project Ent). An example of Soar-h-agent is Steve [23] or
Quakebot [17].

Also some advanced planning techniques can be used to control h-agents.
Hierarchical planning is used in Cavazza’s h-agents for virtual storytelling [8] and

4 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

anytime planning is used in Nareyek’s project Excalibur [21] that is aimed at h-agents
operating in computer games. Both projects seem very promising, but they are not
available in present time—therefore no additional comparison is possible.

Reactive planning represents a trade-off between planning and reactive techniques.
Based on it, Bryson developed a methodology for behaviour-oriented design [7], and
proved it to be successful in primates agents simulation. As she suggests, her method
can be also applied in JAM or Soar, and as we show in section 4, also in E.

2.2 Reactive agents

Pure reactive h-agent is an h-agent that reacts only to external or internal events
(caused by an environment or an agent’s body, respectively). If an h-agent follows
some goals, they are implicitly hidden in its architecture. Architecture of these h-
agents is often based on connectionist paradigm or on a so-called novel approach in
artificial intelligence. H-agents behaviour is typically created in “bottom-up” manner.

Various types of networks can be used to control reactive h-agents. Neural network
controls animals in the computer game Creatures [12], Tyrrell uses hierarchical
networks [24], Maes uses flat networks [18]. Unlike ents, agents controlled by
networks are not h-agents in the sense that they do not carry out any complex tasks,
but animal-like predator avoidance, eating or mating. Therefore their application
domain is different than the one of ents. In addition, Tyrrell suggested that flat
networks are much more complicated to design then hierarchical ones, and Bryson
proved her reactive planning to be easier to design than Tyrrell’s hierarchical
networks [6].

Novel approach to artificial intelligence came with Brooks and his robotic
subsumption architecture [5]. Brooks opposed to the cognitive approach, because of
the complexity of the external environments to be represented in a central manner. He
and his followers do not use central world representation, instead they decompose
behaviour into independent blocks that operate concurrently, and each block holds its
own information, if it needs it. Because of complexity of h-agents environments, it
seems meaningful to take inspiration from this approach, as proven by project Fear
[9], a platform for prototyping h-agents in first-person shooters games. It combines
subsumption architecture with several different techniques like neural networks or
genetic algorithms. Fear is a well-documented complex tool, but serves only
programmers of computer games—it uses 3D Quake environment and its h-agents are
programmed in C++. Another example of a tool based on subsumption architecture is
InViWo toolkit [22].

Main disadvantage of novel approach is that overall behaviour emerges from
interaction of individual blocks and therefore it is difficult to design h-agents to fulfill
complex tasks (see [25] for discussion). It is problem both in Fear and InViWo—
these tools are too “low-level” for non-computer experts. This is also reason why we
follow cognitive approach. Nevertheless, cognitive approach has also some
disadvantages, and in the section 5 we will discus possibilities of combination of
several approaches.

The Project ENTs: Towards Modeling Human-like Artificial Agents 5

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

3 Project ENTs

This section describes the first generation of project ENTs. We will start with an
overall description, then we will focus on the environment and the body of h-agents,
and finally on the mind of h-agents. The whole project is detailed in [2].

3.1 Application architecture

Project ENTs consists of three parts: 1) environment server (ES), 2) graphical user
interface (a GUI) and 3) simulator of individual ents. All three parts have been
developed as independent applications for Linux platform, so a user can use them
separately. ES is a server to which several GUIs and ents can be connected. ES can
instantiate different world models. Each GUI is able to simulate one user avatar.

Simulation time goes in discrete time steps. Space is divided into rooms separated
by doors, each room is divided to square tiles. Every tile can contain various objects.

Fig. 2. Architecture of the first generation of project ENTs

3.2 Virtual environment and the h-agents’ body

The purpose of ES is to simulate artificial environment, it means to simulate all
objects, and acting and moving of ents’ bodies. A user can instantiate different world-
models. As an example, a model of family house is included in the current release.

ES recognizes about 100 types of objects. This set has been chosen to enable
modeling of worlds similar to natural human environment. The set is fixed. The ent
can take or manipulate with most objects.

Bodies of ents are described just by several attributes (like position, hunger, thirst
or sleepiness). All ents are autonomous, embodied h-agents, subject to constraints of

6 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

the environment, and therefore all their attributes are controlled by ES. Attributes like
hunger or thirst that represent the needs of the ent are automatically increased in time
and the ent can satisfy them just by acting in the world. The same rules stands for
human avatar.

Ents have two hands and they face no particular direction in their environment (the
illusion of orientation is caused by the GUI—see Fig. 3).

Fig. 3. A world of ents. From the left: a user-avatar and an ent holding a book.

Sensing and acting. The ent (or the human avatar) senses events and objects only
from the room it is located in (it can not see objects in closed containers). Sensing is
passive. Whenever the ent comes into a room, it receives complete information about
position and the state of objects in the room from ES. During next simulation steps it
receives only changes from previous state—we call this information delta.

Atomic instruction (a-instruction) is a basic action the ent can do. All a-instructions
last one time step. In every time step, the ent sends one a-instruction to ES. ES returns
information about its success together with the delta in the next time step.

An example of an a-instruction is:
aWatering(who, withWhat, whichBed)

Each parameter uniquely identifies an actor (an ent), an object, or a subject,
respectively. In this example who identifies the ent, withWhat identifies the can the
ent is holding (i.e., the subject), and whichBed identifies the bed which is being
watered (i.e., the object).

ES recognizes about 70 predefined a-instructions.

The Project ENTs: Towards Modeling Human-like Artificial Agents 7

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

3.3 The mind of an ent

The idea behind architecture of ents mind is based on cognitive paradigm. That means
the environment state is mapped into a symbolic representation transmitted to the ent
as percepts (in a delta). When percepts are received, they are stored in a central
memory of the ent to be later used by a control unit. A-instructions are generated from
scripts written in E language in accordance with the information stored in ent’s
memory (i.e., actual and past percepts, and internal state of the ent). The overall
architecture is based on Fig. 1.

Memory. Central memory consists of a list of records called memory-sentences (m-
sentences). They represent facts about the world and the ent, such as:

to_be_what_where_since(object, position, time)

Each m-sentence has its plausibility; the information about the relevance of the m-
sentence. Memory module automatically decreases the plausibility in time; the ent can
forget the m-sentence eventually. All m-sentences are based just on percepts or are
created by an internal component of the ent—no secret connection from the memory
to outer world is provided.

E language. The core of ent’s mind is an interpreter of E language. The basic
construct of the language is a behaviour-script (b-script). Highest-level b-scripts are
called top-level and have priorities. Priorities are functions of time and are either
constant or so-called trapezoidal (see Fig. 5 for the example). Some b-scripts
(including top-level ones), can have prerequisites—we call these b-scripts interrupts.
The purpose of interpreter is to decompose top-level b-scripts to a-instructions.

At one time, more top-level b-scripts can be active, but only one can be executed at
a time—the one with the highest priority. A top-level b-script became active iff (a) its
prerequisites became valid and (b) its trapezoidal priority is increased to more than
zero (thus, top-level b-scripts without prerequisites and with constant priority is active
all the time—see “bumming around” at the Fig. 5). Top-level b-scripts are tied up by
a simple scheduler written in E.

In each time-step, the interpreter performs an internal cycle. In each loop of the
cycle the interpreter can perform one of the following: activate an interrupt,
instantiate a sub-b-script, ask the memory, run a computational script, or send an a-
instruction. By sending an a-instruction the current time-step ends and the cycle is
finished.

Sub-b-scripts can have more variants—the interpreter performs “a meta-level
reasoning” by computing a utility function for each of the variant. Active top-level b-
scripts with variants of sub-b-scripts can be seen as a set of AND-OR trees.

Statements of E language include: if-then construction, for-cycles, RERUN,
COMMIT and FAIL statements and optional Prolog-like backtracking. Custom C-
extensions are also possible. Denotation of RERUN is to restart a b-script and to
reinitialize local variables, while denotation of COMMIT and FAIL is to interrupt a b-
script as satisfied or failed, respectively.

8 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

Basic data type of E is a handle and a list. The handle is an integer number or
identifies uniquely an object (e.g., the ent, the carrot etc.) or a group of objects (e.g.,
any carrot or all carrots). The list is a list of more objects, with their properties
optionally.

By means of b-scripts, various cognitive techniques can be implemented; including
BDI-architecture and reactive planning. Library of low-level behaviours like path-
finding or object-finding is provided, as well as a debugger of b-scripts.

Linguistic module. The user (it means his or her avatar) can talk with ents in a
simplified variety of Czech language. Although only sentences from predefined set of
templates can be used, the conversation can be more complicated than Eliza-chats.
For example, declension is implemented, as well as a concretization—that means
finding out which object is exactly the current conversation topic (see Fig. 4).

The purpose of linguistic module is to map natural language sentences to the m-
sentences (and vice versa), and to manage a communication, in particular a process of
concretization. The linguistic module is an optional extension and custom modules
can be provided.

4 Example of an ent—a gardener

The current implementation includes a model of a family house with prescripted
ents—a gardener and a musician. This section briefly describes some top-level tasks
of a gardener, in particular a task of watering a garden based on reactive planning.

In the Fig. 5 are depicted priorities of morning tasks of the gardener. Trapezoidal
priority of watering causes that the gardener, after waking up, goes to water all beds.
When the timeout expires at about 8 a.m., the gardener switches to bumming around.
If it wants to eat or to go to the toilet (or is asked by a user to perform a command),
watering or bumming is interrupted by appropriate goal with higher priority.

To evaluate E universality, we have written b-scripts using several techniques,
namely BDI, reactive planning and hierarchical planning. B-script for watering
presented here is inspired by reactive planning methodology developed by Bryson [7].

The final goal of watering is: there are no known dry beds. Its subtasks are: to find
a watering-can, to fill the can, to find a bed, and to water the bed. They can appear in
any order or even with a cycle (due to more beds and the fact that the can may be
emptied). In addition, watering may be interrupted by a goal with higher priority (like
going to eat). For path-finding or object-funding subtasks are used predefined scripts
from E-library.

After the task is finished, the ent must perform cleaning: to empty and put down the
can. The code-schema for the watering is on the Fig. 6. Notice local interrupts, which
restart the watering (by RERUN statement). They are activated in order given by their
local priorities (which do not influence the priorities of top-level interrupts). Thanks
to restarting technique, cycles can appear in the behaviour.

The Project ENTs: Towards Modeling Human-like Artificial Agents 9

F
c
C

F
a

5

T
h
p
c

watering a garden
(true)

eating
(an interrupt: if hunger > 12)

toilet
(an interrupt: if toilet > 15)

bumming around
(true)

70

50

5

30

0

time

prio.

5:30 7:30 9:30
User: Take the blue can.
Ent: Which one: the one in the

garden, or the one in the
cellar?

User: The one in the garden.
(Ent goes for can and takes it.)
User: Put it to the case.
Ent: Which case: the one in...?
User: To <this one>.(User points

at the case by mouse.)
(Ent puts the can to the case.)
(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

ig. 4. Conversation with an ent—
oncretization process (translated from
zech language).

Fig. 5. Priorities of morning top-level
tasks of the gardener. Values of priorities
are written on the left. Notice trapezoidal
priority of watering and prerequisities of
interrupts.

top_levelGoal_WaterAllBeds :-

 // if everything is watered, try to put the can and commit
 if GOAL_COND then { try sgPutCan, COMMIT } fi,

// if you are not holding a can, find it and take it; then activate a local interrupt
// that tests whether the can is still at hands -- if not, restart the watering

 if ! holdCan then sgFindAndTakeCan fi,

 localHook(! holdCan, localPrioMax-1, { RERUN }, id1),

// if you are not holding an empty can, fill it; then activate a local interrupt that
// tests whether can is not empty -- if it is, restart the watering

 if holdCan and canInHandEmpty then sgFillCan fi,

 localHook(holdCan and canInHandEmpty, localPrioMax-2,

 { RERUN }, id2),

 // follows the same for other subgoals...
 ...

ig. 6. Schema of a b-script for watering a garden. Subgoals start with sg. Local interrupts are
ctivated by localHook statements and their prerequisities are checked in every time-step.

 Evaluation and future work

he project ENTs has proven to be successful in deliberative h-agents prototyping,
owever some final goals (see section 1) have been achieved only partially. The main
oint is the lack of tool universality. In this section we go through some issues the
ritics may point to, and suggest solutions for second generation of the tool.

10 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

Cognitive paradigm and robustness of E. Imagine what happens when an ent comes
to the garden. It receives an update of 2197 carrots and the speed of the system goes
down. This problem (and other similar ones) could be solved by techniques not based
on cognitive paradigm (such as active sensing or distributed memory)—but these
techniques are not supported in our tool, in particular by E language and memory
module.
Solution: When we perceive each individual h-agent as a multi-agent system [25],
various different techniques and paradigms can be combined, for example every
component could have its own memory. Such a distributed system with no central
element could profit from advantages of subsumption architecture [5], while avoiding
its disadvantages. In addition, each component can theoretically be coded in different
language (not only in E). See [4] for more detailed discussion on this topic.

Environment flexibility. Even though a user of ENTs can instantiate different world
models, the world topology and the set of objects and a-instructions remain fixed.
Solution: Imagine a user who wants to add new object and new a-instruction to an
environment. How an h-agent recognizes them? A theory of affordances is applied
here—each object “manifests” in the environment its attributes and actions the agent
can do with it [11, 14]. For topology we aimed at following way-point approach—the
ent follows nodes (way-points) in a graph [9].

Reusability. Although every ent is an independent program, it is hard to connect it to
an external environment. Thus, ents cannot be used in another projects.
Comment: This is a never-ending problem with interfaces, and in fact, our tool is
focused on prototyping, and not as a universal interface. Nevertheless we plan to use
world-agent standards for artificial intelligence in computer games [1].

Considering all the above-mentioned problems, we come to the following conclusion:
The reason, why project ENTs achieves some of its goals only partially, lies in its
relatively small flexibility and robustness. Specifically, it utilizes on purely cognitive
approach (neither connections, nor novel approach) and its three main components
(ES, simulator of individual ents and a GUI) are designed as monolithic blocks, rather
than multiple-component systems.

It is quite clear that a fully universal tool for prototyping all types of h-agents will
probably never exist, but we believe the universality of our tool will increase
significantly with solutions suggested above.

6 Conclusion

In this paper we have presented a first generation of project ENTs—a tool for human-
like artificial agents prototyping. Modular virtual environment and a universal E
language for cognitive behaviour-design have been introduced as main parts of this
tool. The contribution of this tool is twofold. First, students and researchers can use it
as a test-bed for cognitive human-like agents. Second, the whole tool serves as a large

The Project ENTs: Towards Modeling Human-like Artificial Agents 11

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

case-study for more general application. Requirements for the second generation of
the tool would not have been available without previous experience. These
requirements have been also presented.

Acknowledgments. The application ENTs was developed as a student project at
Faculty of Mathematics—Physics, Charles University, Prague. Thanks to Vladislav
Kuboň for supervising the project and to David Voňka and Mikuláš Vejlupek for their
contribution. Thanks also to Rudolf Kryl, Tomáš Bureš and Kamamúra-Group for
their suggestions and comments.

References

1. Artificial Intelligence Interface Standards Committee (AIISC): www.igda.org/ai
2. Bojar, O., Brom, C., Hladík, M., Toman, V., Vejlupek, M., Voňka, D.: Documentation of

project ENTs. http://www.enti.lit.cz. Faculty of Mathematics—Physics,
Charles University. Prague (2002) (in Czech)

3. Bordini, R. H., Hübner J. F.: Jason: A Java-based agentSpeak interpreter; project
homepage: http://jason.sourceforge.net/

4. Brom, C.: Towards Architecture of Human-like Artificial Agent: Project ENTs. In:
WDS'04 Proceedings of Contributed Papers, Prague, Matfyzpress (to appear)

5. Brooks, A. R.: Intelligence without reason. In: Proceedings of the 1991 International Joint
Conference on Artificial Intelligence, Sydney (1991) 569-595

6. Bryson, J.: Hierarchy and Sequence vs. Full Parallelism in Action Selection. In: The Sixth
International Conference on the Simulation of Adaptive Behavior (SAB00). MA. MIT
Press, Cambridge (2000) 147-156

7. Bryson, J.: The Behavior-Oriented Design of Modular Agent Intelligence. In: Müller, J. P.
(eds.): Proceedings of Agent Technologies, Infrastructures, Tools, and Applications for E-
Services, Springer LNCS 2592 (2003) 61-76

8. Cavazza, M., Charles, F., Mead, S. J.: Developing Re-usable Interactive Storytelling
Technologies. In: IFIP World Computer Congress 2004, Toulouse, France (to appear)

9. Champandard, A.J.: AI Game Development: Synthetic Creatures with learning and
Reactive Behaviors. New Riders, USA (2003)

10. Georgeff, M., Lansky A. L. Reactive Reasoning and Planning. In: Proceedings of the 6th
National Conference on Artificial Intelligence, Seattle, Washington (1987) 677-682

11. Gibson, J.J., The Theory of Affordances, In R. Shaw, J. Bransford (eds.): Perceiving,
Acting and Knowing. Hillsdale, NJ: Erlbaum (1977)

12. Grand, S., Cliff, D., Malhotra, A.: Creatures: Artificial life autonomous software-agents
for home entertainment. In: Johnson, W. L. (eds.): Proceedings of the First International
Conference on Autonomous Agents. ACM press (1997) 22-29

13. Huber, M. J.: JAM: A BDI-theoretic mobile agent architecture. In: Proceedings of the 3rd
International Conference on Autonomous Agents (Agents'99). Seatle (1999) 236-243

14. Kallmann., M., Thalmann, D.: Modeling Objects for Interaction Tasks. In: Proceedings of
EGCAS 98 (1998) 73-86

15. Klesen, M., Szatkowski, J., Lehmann, N.: A Dramatised Actant Model for Interactive
Improvisational Plays. In: Proceedings of Intelligent Virtual Agents (IVA 01), Springer
LNAI 2190, Berlin (2001) 181-194

16. Laird, J. E., Newell, A., Rosenbloom, P. S.: SOAR: An Architecture for General
Intelligence. In: Artificial Intelligence, 33 (1) (1987) 1-64

12 O. Bojar, C. Brom, M. Hladík, V. Toman

(to appear in: SOFSEM 2005, Student Research Forum, Liptovský Ján, Slovak Republic)

17. Laird, J. E.: It Knows What You’re Going To Do: Adding Anticipation to a Quakebot.
AAAI Technical Report SS-00-02 (2001)

18. Maes, P.: A bottom-up mechanism for behaviour selection in an artificial creature. In:
Meyer J.-A., Wilson, S. (eds.): From Animals to Animats. Cambridge, MA, MIT Press
(1991) 478-485

19. Mateas, M.: Interactive Drama, Art and Artificial Intelligence. Ph.D. Dissertation.
Department of Computer Science, Carnegie Mellon University (2002)

20. Lažanský, J.: Plánování. In: Mařík, V., Štěpánková, O., Lažanský, J.: Umělá inteligence
(1), 8. Academia, Prague (1993) 184-216 (in Czech)

21. Nareyek, A.: Intelligent agents for computer games; Project Excalibur homepage:
http://www.ai-center.com/projects/excalibur/

22. Richard, N., Codognet, P., Grumbach. A.: The InViWo Toolkit. In: Proceedings of
Intelligent Virtual Agents (IVA 01), Springer LNAI 2190, Berlin (2001) 195-209

23. Rickel, J., Johnson, W. L.: Animated Agents for Procedural Training in Virtual Reality:
Perception, Cognition, and Motor Control. In: Applied Artificial Intelligence, 13. (1999)
343-382

24. Tyrrell, T.: Computational Mechanisms for Action Selection. Ph.D. Dissertation. Centre
for Cognitive Science, University of Edinburgh (1993)

25. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons (2002)
26. Waveren, J. M. P. van: The Quake III Arena Bot. Master thesis. Faculty ITS, University of

Technology Delft (2001)

