
Building Sub-corpora Suitable for

Extraction of Lexico-Syntactic

Information

Ondřej Bojar

Institute of Formal and Applied Linguistics, ÚFAL MFF UK, Malostranské náměst́ı 25, CZ-11800

Praha, Czech Republic

obo@cuni.cz

Abstract.

Accuracy of automatic syntactic analysis of natural languages with relatively free
word order (such as Czech) can be hardly improved without building large and
precise lexicons of syntactic behavior of individual words (e.g. lexicons of verb va-
lency frames). The current treebanks available do not cover enough words. Larger
corpora lack the syntactic annotation and many sentences contained in them are
too complex to extract the information easily or even automatically. The system
AX (automatic extraction) was developed to perform selection of morphologically
analyzed sentences by means of custom hand-written rules. The rules can be eas-
ily formulated to perform linguistic-motivated filtration. The system AX allows to
perform partial syntactic analysis in order to check the occurrence of more complex
linguistic phenomena.

1 Motivation

At the current stage of the development, the accuracy of automatic syntac-
tic analyzers of natural languages (in particular Czech) is limited due to the
lack of large and precise lexicons of syntactic behavior of individual words
(verb valency frames are the most important example). Building such lex-
icons by hand is rather a time-consuming task and any kind of automatic
preprocessing would help.

The available data sources include corpora annotated on different levels
of linguistic description. Syntactic information can be easily extracted from
corpora annotated on the syntactic level (such as the Prague Dependency
Treebank, PDT1, Böhmová et al. (2001)) and some attempts to extract
for example verb subcategorization frames from treebanks were already per-
formed2. However the number of occurrences of individual lexical items in

1http://ufal.mff.cuni.cz/pdt/
2Such as (Sarkar and Zeman, 2000).

Proceedings of the Eighth ESSLLI Student Session
Balder ten Cate (editor)
Chapter 1, Copyright c© 2003, Ondřej Bojar

1

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

such corpora is usually not sufficient. Bojar (2002) shows that only a few
hundreds of verbs have enough occurrences in PDT and that more than 60%
of 26,000 verbs found in the Czech National Corpus (CNC3) are not cov-
ered in PDT at all. Therefore, it is necessary to extract the lexico-syntactic
information from larger corpora (such as the CNC) or any texts available.

However, not all sentences containing a given lexeme can serve as a good
example to extract the syntactic information (for instance, if two verbs are
present in one clause, their complements and adjuncts can be arbitrarily
intermixed). And moreover, as the syntactic annotation in these corpora is
missing, the sentences can often be too complex to be analyzed by any of
the available parsers at a reasonable level of accuracy.

I developed the system AX to simplify the task of selecting feasible
examples of sentences for extracting a specific lexico-syntactic information
(not just the verb valency frames). The sentences can be easily selected
on linguistically based criteria. Partial syntactic analysis of sentences is
possible, in order to be able to answer more complex linguistic questions
about the sentence.

In section 2 I describe the overall architecture of the system AX. Section
3 gives a brief description of the basic data structure, variant feature struc-
ture. Sections 4 and 5 describe the core of the scripting language AX: filters
to reject sentences and rules to perform (partial) syntactic analysis. In the
last section, I illustrate the use of the system to select sentences suitable for
extracting valency frames of Czech verbs and document the improvement of
accuracy of Czech parsers when applied only to the selected sentences.

2 The Architecture of AX

The system AX combines the idea of regular expressions and replacements
(see (Karttunen et al., 1996; Aı̈t-Mokhtar and Chanod, 1997) and others)
with the idea of feature structures (see below) known from unification-based
parsers. This combination leads to a formalism that is both, strong to
describe complex linguistic properties of sentences of natural language and
efficient in the process of parsing.

The user prepares a script of filters and rules to select sentences suitable
for a specific purpose. The system AX loads the script and then expects
sentences augmented with their morphological annotation (in format of the
PDT4) on the standard input. The input sentences may or may be not mor-
phologically disambiguated. For every input sentence, the system runs the
script and checks, if the sentence passed all the filters or has been rejected.
For sentences that pass (referred to with the term “selected sentences”), the
output of the final phase (see below) is printed out. This output is for some

3http://ucnk.ff.cuni.cz/
4See http://shadow.ms.mff.cuni.cz/pdt/Corpora/PDT 1.0/Doc/morph.html

2

Ondřej Bojar

purposes already suitable for collecting the lexico-syntactic information so
that no other parser to process the sentences is needed.

In the following, I describe the overall running scheme of AX. The input
sentence is internally stored as a sequence of feature structures that corre-
spond one to one to input word forms. (See section 3 for details.) The input
sentence is then processed through a pipe of consecutive blocks (phases) of
operation. Each of the blocks is either a filter, or a set of rules.

The input for each block is a set of sequences of feature structures (re-
ferred to with the term the set of “input readings” of the sentence). If the
block is a filter, it checks all the input readings and possibly rejects some
of them. If the block is a set of rules, it updates every input reading with
all applicable rules and returns a larger set of new readings (it “generates”
new readings).

Consecutive blocks are connected, so that the output set of readings from
the former block is used as the input set of readings for the latter block. The
first of the blocks receives as input the input sentence, the output from the
last block is printed out. The order and type of the blocks is up to the
author of the script. All the input sentences that were not rejected by any
of the filters are accepted and the output produced for each of them can also
be used to extract the lexico-syntactic information, if appropriate.

A sample flow of readings is demonstrated in figure 1.1.

Filter1 Ruleset1 Filter2 Ruleset2

Sentence1
Sentence2

Figure 1.1: Progress of sentences through an AX script. The first input
sentence was rejected by the first filter. The second sentence passed the
filter and several readings were obtained by the rules in ruleset 1. Some of
the readings were then rejected by filter 2 and some passed. Altogether four
different readings were then produced by the last ruleset.

3 Feature Structures with Variants

Feature structures (also called attribute-value matrices) allow representing
of various linguistic information in a compact and natural way.5. For the
purposes of this work, untyped feature structures with alternatives (variants)
of values are sufficient and serve well to represent very rich and often very

5For a detailed characteristic of typed feature structures see Penn (2000).

3

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

ambiguous morphological information6 as well as arbitrary user flags useful
in the process of filtering and generating new readings by rules.

The basic operation with two variant feature structures is unification.
The output of the unification is a feature structure that holds information
from both the input structures.7 For instance:

[

name Kamil

surname
{

Horak, Klement
}

]

and

[

surname Horak

age int(32)

]

unify and

the result is

[

name Kamil

surname Horak

age int(32)

]

Unification fails, if both the features contain an attribute of the same
name but a non-unifying value.

For every input word in a sentence, the morphological analysis gives
all possible lemmas and morphological attributes of the given word form.
This ambiguous morphological information can be stored in a single feature
structure with variants. See figure 1.2 on the facing page for an example.
The whole sentence of word forms can therefore be stored as a list of feature
structures of the same length.

4 Filters

Filters in the language AX are expressed in the form of regular expressions
of feature structures. The basic differences between common regular ex-
pressions (used for instance in many Unix tools) and regular expressions of
feature structures used in the language AX are:

• The primitive element of regular expressions is no longer a character,
but rather a feature structure. In scripting language AX, the feature
structure can be expressed either explicitly or by a shortcut name8.

• When searching for a subsequence of feature structures that matches
a given regular expression, the system checks whether the input struc-
ture unifies with the structure in the expression. (Rather than checking
two characters for equality.)

6In Czech, approx. 4,000 different tags are defined, half of which actually occurred in
the Czech National Corpus. For many word forms several dozens of morphological tags
are possible (7 different cases · 4 genders · 2 (sg/pl) = 56 possible tags).

7If more variants of a value are available, the output will carry out the intersection
(more precisely the product of unification of all possible combinations of input variants).

8For example, specific types of pronouns can syntactically serve as nouns or adjectives.
It is useful to define a shortcut of a feature structure that would match a noun or a noun-
like type of pronoun etc. In filters and rules, it is then possible to introduce the whole
structure only by its shortcut name.

4

Ondřej Bojar

cat verb

morfcat verb(presfut)

lemma string(”ḿıt”)

form string(”má”)

agr

[

num sg

pers third

]

tense pres

voice active

neg pos

,

cat pron

morfcat pron(poss)

lemma string(”můj”)

form string(”má”)

agr

case
{

nom, vok
}

gend fem

num sg

pers first

case
{

nom, aku, vok
}

gend neut

num pl

pers first

[

cat - verb, morfcat-verb(presfut), lemma - "mı́t", form - "má",

agr - [num-sg, pers-third], tense - pres, voice - active, neg-pos

|

cat - pron, morfcat - pron(poss), lemma - "můj", form - "má",

agr - [case - nom;vok, gend - fem, num - sg, pers - first

| case - nom; aku; vok, gend - neut, num - pl, pers - first]

]

Figure 1.2: This feature structure represents all the possible morphological
analyses of the word form má which can be a word form of two different
lemmas (mı́tverb and m̊ujpronoun in different cases, numbers and genders).
Below is the same feature structure expressed in syntax of the scripting
language of AX.

Details of the syntax of the filters are described in Bojar (2002), here I
give just a brief example of two different filters:

filter reject_more_than_two_verbs:

.* verb .* verb .*

end

keep "Keep only sentences with exactly one verb

or those not containing any conjunction":

!verb* verb !verb* | !conj*

end

The keyword filtermeans: reject the sentence if it (as a whole) matches
the given regular expression. The meaning of the keyword keep is: reject
the sentence if it doesn’t match the given expression.

5 Rules

Rules are used to modify the input readings of a sentence and generate new
readings. Rules have always this form:

5

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

rule <rule name> :

<replacement> ---> <input regular expression> ::

<constraints>
end

The rule is applied as follows:

• The input sequence of feature structures is searched in order to find
a subsequence that matches the <input regular expression> and the
<constraints>.

• The obtained subsequence of feature structures is replaced with the
<replacement>.

By default, the input sequence is searched for all possible subsequences
matching the regular expression and constraints, therefore the rule can pro-
duce for one input reading several output readings. In many situations, this
nondeterministic approach leads to more output readings than the user actu-
ally wants. For such cases, the user can write special keywords in the arrow
in the rule to make the rule substitute for instance only the first matching
subsequence of feature structures.

By default, the output of one rule within a ruleset is used as input for
another rule in the same ruleset (possibly reusing the rule itself). All possible
combinations of applying rules are attempted and all the possible outcomes
are collected to build the final output set of possible readings for this block
(phase) of operation. This nondeterministic behavior can be restricted in
several ways: rules can be limited in number of allowed applications9, an
output from one rule can be included in the final set only if no other rule
was able to change it, and others. A detailed description of all the options
is out of the scope of this paper.

In order to “compute” the <replacement> from the subsequence found
in the input, one can use variables. The variables can be used in all parts
of rules: from the <input regular expression> they get their initial value.
The value is then restricted or updated by the <constraints> and their final
value is given to the output in the <replacement>.

All the variables can hold a feature structure. The scope of the variables
is limited for one application of one rule, that is all the variables are local
for the rule and within one application.

The <constraints> are expressed as an unordered list of requirements on
variables values. All the requirements must be fulfilled for the rule to be ap-
plicable. The constraints can only require certain feature (sub)structures to

9In fact, the system AX will not start unless all non-shortening rules, i.e. the rules that
are able to produce output not shorter than the input reading, have this maximum number
of applications explicitly expressed as a function of the number of input structures. This
effectively blocks out the possibility to loop ad infinitum.

6

Ondřej Bojar

unify. By means of these requirements, output variables also get their value.
The following example shows a rule to perform a reduction: it combines an
adjective and a noun together:

rule out_noun ---> adj noun ::

adj.agr = noun.agr,

out_noun = noun

end

The constraint adj.agr = noun.agr guarantees the congruence of the
noun and the adjective in case, gender and number. The constraint out noun

= noun initializes the output variable with the feature structure of the noun
after it was already restricted in case, number and gender due to the con-
gruence requirement. In this way, the input morphological ambiguity is step
by step solved.

The output <replacement> may copy parts of the input subsequence.
This allows an easy formulation of rules that combine distant feature struc-
tures in the input sentence. The regular expression can then be used to
restrict what can stay between the two (or more) feature structures. As a
nice example I show the rule that combines two parts of a Czech verb – the
auxiliary part (býttobe , which can have several forms, such as jsemIam) and
the main verb (such as zaĺıt, which also can have several forms). The rule
also checks the parts for congruence10:

rule complex_past_tense:

complex \gap trace

---->

zalil {gap:!{verb,comma,conj}*} jsem

| jsem {gap:!{verb, comma, conj}*} zalil

::

zalil <- morfcat, voice -> ‘zalil‘,

zalil = [cat-verb],

jsem.cat = ‘jsem‘.cat,

jsem <- morfcat, lemma, neg -> ‘jsem‘,

jsem.agr = [pers-first;second],

zalil <- agr.num, agr.gend -> jsem,

complex = [cat-complexpast],

complex <- lemma, form, neg, morfcat -> zalil,

complex <- agr.pers, agr.num, agr.gend, mood -> jsem

trace = [cat-trace, form-"XtraceX"]

end

10The scripting language AX has a shorter form of expressing several unification re-

quirements on two variables at once. The constraint: “usnul <- cat, agr.num,

agr.gend -> jsem” is equivalent with these three: “usnul.cat = jsem.cat,

usnul.agr.num = jsem.agr.num, usnul.agr.gend = jsem.agr.gend”

7

Building Sub-corpora Suitable for Extraction of Lexico-Syntactic Information

The rules find such a subsequence of feature structures that begins with
the auxiliary verb and ends with the main verb (or vice versa). The gap
between the parts of verb must not contain any other verb, comma or con-
junction (introduced by means of shortcuts, see above). The gap gets a label
“gap”, so that it can be copied to the output replacement. As the output,
the rule produces a single feature structure representing the complex verb
followed a copy of the gap section and an auxiliary trace at the place where
the other part of the verb was found. Naturally, the trace can be omitted if
not needed by any other rules of filters.

6 A Sample AX Usage and Results

The system AX was used to select sentences suitable for extracting typical
complements of verbs, namely verb valency frames. The script for this
purpose contained 15 filters and 21 rules and selected sentences where the
complements of verbs would be easy to observe and excluded sentences that
are too difficult to parse. Approximately 15 to 20% of sentences from the
Czech National Corpus are selected by this script. I call them “very simple
sentences”.11

So far, the task of actually extracting verb valency frames from the se-
lected sentences was not performed, neither manually nor automatically.12

Anyway, the utility of the described sentence preselection can be illus-
trated by measuring the improvement of accuracy of parsers available for
Czech (Collins et al. (1999), Zeman (1997, 2002) and a parser by Zdeněk
Žabokrtský (unpublished)). All the parsers were tested on all the sentences
in the evaluation part of the Prague Dependency Treebank and separately
on the selected “very simple sentences” only.

The results show that the best parser available for Czech, the Collins
parser, is able to correctly observe 55% of verb frames13. When used on
very simple sentences only, this measure increases by 10%. A similar result
can be achieved by using the parser on short sentences only: in sentences
with at most ten words, the Collins parser correctly observes 68% of verb
frames. A combination of both filters, short and “very simple” sentences, is
however still 5% better, exceeding 73% of correctly observed verb frames.

11Optionally, sentences containing “suspicious word order patterns” (WOP) were also
rejected. Straňáková-Lopatková (2001) cautiously analyzes the risks of syntactic ambi-
guity of noun and prepositional phrases in Czech. She defines those WOPs, where there
it is not possible to decide whether a noun phrase depends on another noun phrase or
on the verb itself. These examples would spoil the observation of verb frames, but it is
easy to filter them out using the AX. Full description of the linguistically motivated filters
exceeds the scope of this paper, see (Bojar, 2002) for details.

12In (Bojar, 2002) I propose an algorithm to extract surface verb frames and describe
several open problems of the task of inferring verb valency frames from the surface ones.

13That is to correctly identify all immediate daughters of a verb in the dependency tree
and not mark any extra nodes as daughters of the verb.

8

Ondřej Bojar

Also quite interesting is the improvement of the traditional accuracy
measure, namely the number of correctly assigned dependencies. If used on
very simple sentences, the parsers achieve an accuracy of 5 to 10 percent
better, up to 88% for Collins. On short and “very simple” sentences, 91.4%
for Collins is achieved.

7 Conclusions

In this paper I described a system to perform selection of sentences from
corpora based on linguistically motivated criteria. The system allows an
easy formulation of filters and also rules for partial syntactic analysis of sen-
tences, if needed to check for more complex phenomena. The sentences can
be selected for many purposes: as an automated preprocessing to supply
lexicographers with more relevant examples of sentences as well as a first
step in a fully automatic extraction of lexico-syntactic information. If the
script of filters and rules is cautiously designed, already the output produced
from the system AX can serve as raw input to build a lexicon. The expres-
sive power of filters and rules of AX is better than any corpus searching
tool known to me. The system was used to select sentences suitable to ex-
tract verb valency frames and the utility of this selection was illustrated by
improvement of three parsers’ accuracy.

In future work, I will use the described system in a large scale to extract
valency frames of verbs from the whole Czech National Corpus. I will also
try to design an AX script to select sentences suitable for extraction of
valency frames of nouns.

8 Acknowledgments

The scripting language presented in this article was developed as a part of
my master thesis, Bojar (2002). I would like thank to the supervisor of
the thesis, RNDr. Vladislav Kuboň, Ph.D., as well as to all the researchers
and staff at the Center for Computational Linguistics, Charles University,
Prague. This work was partially supported by the grant GAČR 201/02/1456
and GAUK 300/2002/A INF-MFF.

References

Aı̈t-Mokhtar, Salah and Jean-Pierre Chanod. 1997. Incremental Finite-
State Parsing. In Proceedings of ANLP’97, pages 72–79, Washington,
March 31st to April 3rd.

Böhmová, Alena, Jan Hajič, Eva Hajičová, and Barbora Hladká. 2001.
The Prague Dependency Treebank: Three-Level Annotation Scenario.

9

References

In Anne Abeillé, editor, Treebanks: Building and Using Syntactically
Annotated Corpora. Kluwer Academic Publishers.

Bojar, Ondřej. 2002. Automatická extrakce lexikálně-syntaktických údaj̊u
z korpusu (Automatic extraction of lexico-syntactic information from
corpora). Master’s thesis, ÚFAL, MFF UK, Prague, Czech Republic. In
Czech.

Collins, Michael, Jan Hajič, Eric Brill, Lance Ramshaw, and Christoph Till-
mann. 1999. A Statistical Parser of Czech. In Proceedings of 37th ACL
Conference, pages 505–512, University of Maryland, College Park, USA.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory Grefenstette, and Anne
Schiller. 1996. Regular Expressions for Language Engineering. Natural
Language Engineering, 2(4):305–328.

Penn, Gerald. 2000. The Algebraic Structure of Attributed Type Signatures.
Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

Sarkar, Anoop and Daniel Zeman. 2000. Automatic Extraction of Subcat-
egorization Frames for Czech. In Proceedings of the 18th International
Conference on Computational Linguistics (Coling 2000), Saarbrücken,
Germany. Universität des Saarlandes.

Straňáková-Lopatková, Markéta. 2001. Homonymie předložkových skupin
v češtině a možnost jejich automatického zpracováńı (Ambiguity of
prepositional phrases in Czech and possibilities for automatic treatment).
Technical Report TR-2001-11, ÚFAL/CKL, Prague, Czech Republic. In
Czech.

Zeman, Daniel. 1997. A Statistical Parser of Czech. Master’s thesis, ÚFAL,
MFF UK, Prague, Czech Republic. In Czech.

Zeman, Daniel. 2002. Can Subcategorization Help a Statistical Parser?
In Proceedings of the 19th International Conference on Computational
Linguistics (Coling 2002), Taibei, Tchaj-wan. Zhongyang Yanjiuyuan
(Academia Sinica).

10

