AX	
Lexico-syntactic Information from Corpora Josefův Důl, 21.1.2003	
Ondřej Bojar	
	AX – 1/13

Motivation

- Distant goals:
 - Machine translation, grammar checking, text summary,
- Steps in processing sentences:
 - Morphological analysis (\sim done)
 - Syntactic analysis (difficult, lexico-syntactic information needed)
 - Deeper analyses (more difficult, out of scope of this presentation)

Information for Verbs

- Verbs "organize" the sentence, let's start with them.
- Verbs "require" specific (types of) complements (modifications).
- Observed frame = list of sons in a dependency tree.
- Surface frame = list of "typical" complements of (a type of) a verb. (e.g. protestovat proti_čemu, not protestovat kdy)
- Steps in automatic extraction of surface frames:
 - Obtain observed frames.
 - Filter the complements to obtain surface frames.
 - (Further inference to obtain valency frames.)

Surface \simeq Subcategorization frame, Subcategorization \neq Valency frame

Data Available

- Prague Dependency Treebank (PDT)
 - Syntactic anotation (manual).
 - ${\sim}1.5$ million words, ${\sim}98$ thousand sentences.
 - Observed frames "free of charge".
- Czech National Corpus (CNC)
 - Morphological anotation (automatically disambiguated).
 - ${\sim}100$ million words, ${\sim}1.8$ million sentences.
 - Observed frames are hard to extract

(Sample input sentence: Nové předpisy vyžadují mj. též povinnost určit u každého kvantitativního výsledku měření jeho nejistotu.)

Data for Individual Verbs

		Observations in CNC	PDT	
	Verbs	(min, \varnothing , max)	Observations	Examples
1	1	11 253 207	1737	být
2	1	2 175 254	513	mít
3	2	570 234, 851 099,5, 1 131 965	116, 159,5, 203	moci, muset
4	21	140 362, 243 575,3, 522 307	21, 106,3, 524	říci, chtít, jít, dát, uvést
5	53	68 535, 92 773,1, 126 411	2, 45,2, 133	čekat, zůstat, znamenat
6	99	40 248, 50 606,4, 68 004	1, 31,8, 99	představit, věnovat, vyjít
7	164	23011, 30707,7, 40210	1, 18,7, 79	číst, přicházet, končit
8	317	10970, 15861,7, 22982	1, 10,5, 83	dokončit, svědčit, přejít
9	818	3 551, 6 137,0, 10 966	1, 4,5, 29	uznávat, reprezentovat
10	20 800	0, 241,7, 3548	0, 1,8, 79	ztroskotat, rýsovat
10	20800	0, 241,7, 3 548	0, 1,8, 79	ztroskotat, rysovat

More Syntactically Anotated Data

- Simple scheme:
 - (Get more texts, e.g. from the Internet.)
 - Morphologically anotate and disambiguate the sentences.
 - Employ one of the parsers available for Czech to get the dependency trees.
 - Extract the desired lexico-syntactic information.
- But current parsers are not accurate enough (we shall see).

Better Anotated Data

- Parsers are not accurate enough, so:
 - Morphologically anotate (+disambiguate) the sentences.
 - Choose "simple" sentences, easier to parse.
 - Employ one of the parsers...
- The filtration must be *linguistically motivated*.
 - Keep sentences containing the observed phenomenon.
 - Filter out all the sentences where the phenomenon is "hidden" and/or interferes with other phenomena.
 - (Partial parsing needed for some of the decisions.)
- Goal dependent filtration ⇒ a "scripting" language would help creating different filters ⇒ system AX.

AX Goals: • Easy formulation of filters to reject sentences. Easy implementation of partial syntactic analysis of input sentences. • Overall scheme: • Input sentence = list of feature structures. 1 input word = 1 fs of (ambiguous) morphological information. The script is a pipeline of *filters* and *rewriting rules*. Blocks of rules update the lists of feature structures, generate different "readings" of the sentence. Not limited to CFG or CSG. Nondeterministic rules allowed. Filters reject inacceptable lists of feature structures.

Sample rules and filters

```
# Find a sublist of fss matching given RE
     # And replace with output fs or fss or copy 1, 2...
rule "Simple noun phrase:" nounph --> (adv{0,2} adj)* noun ::
  adj = [cat-adj], noun = [cat-noun], adv = [cat-adv],
  adj.case = noun.case, # check constrains on rule
  adj.num = noun.num,  # check constrains on rule
  adj.gend = noun.gend, # check constrains on rule
 nounph = noun,
                 # fill the output fs
end
filter "Reject readings containing two or more verbs
       or a conjunction:"
  ^ .* [cat-verb] .* [cat-verb] .* $
   .* [cat-conj] .* $
end
```

Filtration to Observe Verb Frames

- Reject complicated punctuation and numbers (colon...).
- Combine analytical verb forms (usnuli jsme).
- Ignore sentences with more autosemantic verbs.
- Fold simple coordination, reject complicated.
- Accept only sentences with simple structure: H or H1=H2 or H or H
- (Optional) Reject sentences with "suspicious" word order patterns (WOP).

 VV

 ${
m VV}$

 \Rightarrow "very simple sentences, vss." (\sim 15–20 % of sents. in corpora)

Parsers on vss

		Statistical		Hand-made	
Correct Dependencies	Words	Collins	Zeman	Žabokrtský	
All Sentences	126 030	82,51 %	69,15%	73,8 %	
Very simple sentences	20 028	87,70%	79,40%	82,3 %	
and no suspicious WOP	11 030	87,89 %	79,31 %	83,6%	
Correct Sentences	Contonooo		_	v _	
Collect Selitences	Sentences	Collins	Zeman	Zabokrtský	
All Sentences	7 319	30,95 %	Zeman 15,00 %		
				Žabokrtský 18,4 % 31,6 %	

• \Rightarrow 5–10% better measured by correct dependencies.

• \Rightarrow 15–20 % better (~twice) measured by sentences without a mistake.

Parsers on vss (contd.)

	Statistical		Hand-made	
Verbs	Collins	Zeman	Žabokrtský	
16 329	55,32 %	33,11 %	39,5 %	
2 472	61,37 %	41,87 %	44,8%	
1 546	64,68 %	47,02%	53,8 %	
Verbs	Collins	Zeman	Žabokrtský	
Verbs 16 329	Collins 73,73 %	Zeman 55,86 %	Žabokrtský 74,7 %	
	16 329 2 472	Verbs Collins 16 329 55,32 % 2 472 61,37 %	VerbsCollinsZeman16 32955,32 %33,11 %2 47261,37 %41,87 %	

Т

• \Rightarrow 10–15 % better measured by correct observed frames.

Summary

- We need syntactic lexicons.
- Treebanks are excellent source, but:
 - expensive to build.
 - small (i.e. many lexemes are rare).
- Use "non-tree" corpora (bigger):
 - + parsers available to obtain syntactic anotation.
 - but select sentences containing an example of the observed phenomenon easier to analyze.
- AX is the system to filter sentences.
 - In fact powerful enough to build partial or full parsers.