
Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 1 03/09/04 12:49 AM

Lecture 1. Introduction to Lambdas and NP semantics.

1. Introduction: What is formal semantics? ... 1
1.1. The Principle of Compositionality.. 1
1.2. Model-theoretic Semantics. .. 2
1.3. Example of compositionality argument: the structure of NPs with restrictive relative clauses.................... 3
1.4. Lexical and Structural Ambiguity .. 4

2. Lambdas .. 5
2.1. A first-order part of the lambda-calculus.. 5
2.2. The typed lambda calculus. .. 6

3. Montague’s semantics for Noun Phrases, Introduction. .. 7
Appendix: Montague’s intensionsal logic, with lambdas and types.. 7

A.1 Introduction .. 7
A.2. Intensional Logic (IL).. 8

A.2.1. Types and model structures. ... 8
A.2.2. Atomic expressions (“lexicon”), notation, and interpretation... 9
A.2.3. Syntactic rules and their model-theoretic semantic interpretation .. 9

HOMEWORK #1. Not necessary to hand in: completely optional. ... 10

1. Introduction: What is formal semantics?

1.1. The Principle of Compositionality.
 A basic starting point of generative grammar: there are infinitely many sentences in
any natural language, and the brain is finite, so linguistic competence must involve some
finitely describable means for specifying an infinite class of sentences. That is a central task
of syntax.
 Semantics: A speaker of a language knows the meanings of those infinitely many
sentences, is able to understand a sentence he/she has never heard before or to express a
meaning he/she has never expressed before. So for semantics also there must be a finite way
to specify the meanings of the infinite set of sentences of any natural language.
 A central principle of formal semantics is that the relation between syntax and
semantics is compositional.
 The Principle of Compositionality: The meaning of an expression is a function of
the meanings of its parts and of the way they are syntactically combined.
 Each of the key terms in the principle of compositionality is a “theory-dependent”
term, and there are as many different versions of the principle as there are ways of specifying
those terms. (meaning, function, parts (syntax))

 Some of the different kinds of things meanings could be in a compositional
framework:
(a) (early Katz and Fodor) Representations in terms of semantic features. bachelor:
[+HUMAN, +MALE, +ADULT, +NEVER-MARRIED (?!)]. Semantic composition: adding
feature sets together. Problems: insufficent structure for the representations of transitive
verbs, quantifiers, and many other expressions; unclear status of uninterpreted features.

(b) Representations in a “language of thought” or “conceptual representation” (Jackendoff,
Jerry Fodor); if semantics is treated in terms of representations, then semantic composition
means compositional translation from a syntactic representation to a semantic representation.

(c) The logic tradition: Frege, Tarski, Carnap, Montague. The basic meaning of a sentence is
its truth-conditions: to know the meaning of a sentence is to know what the world must be

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 2 03/09/04 12:49 AM

like if the sentence is true. Knowing the meaning of a sentence does not require knowing
whether the sentence is in fact true; it only requires being able to discriminate between
situations in which the sentence is true and situations in which the sentence is false.
 Starting from the idea that the meaning of a sentence consists of its truth-conditions,
meanings of other kinds of expressions are analyzed in terms of their contribution to the
truth-conditions of the sentences in which they occur.

1.2. Model-theoretic Semantics.
 In formal semantics, truth-conditions are expressed in terms of truth relative to
various parameters — a formula may be true at a given time, in a given possible world,
relative to a certain context that fixes speaker, addressee, etc., and relative to a certain
assignment of meanings to its atomic “lexical” expressions and of particular values to its
variables. For simple formal languages, all of the relevant variation except for assignment of
values to variables is incorporated in the notion of truth relative to a model. Semantics which
is based on truth-conditions is called model-theoretic.

Compositionality in the Montague Grammar tradition:
The task of a semantics for language L is to provide truth conditions for every well-formed
sentence of L, and to do so in a compositional way. This task requires providing appropriate
model-theoretic interpretations for the parts of the sentence, including the lexical items.

The task of a syntax for language L is (a) to specify the set of well-formed expressions of L
(of every category, not only sentences), and (b) to do so in a way which supports a
compositional semantics. The syntactic part-whole structure must provide a basis for
semantic rules that specify the meaning of a whole as a function of the meanings of its parts.

Basic structure in classic Montague grammar:
 (1) Syntactic categories and semantic “types”: For each syntactic category there
must be a uniform semantic type. For example, one could hypothesize that sentences express
propositions, nouns and adjectives express properties of entities, verbs express properties of
events.
 (2) Basic (lexical) expressions and their interpretation. Some syntactic categories
include basic expressions; for each such expression, the semantics must assign an
interpretation of the appropriate type. Within the tradition of formal semantics, most lexical
meanings are left unanalyzed and treated as if primitive; Montague regarded most aspects of
the analysis of lexical meaning as an empirical rather than formal matter; formal semantics is
concerned with the types of lexical meanings and with certain aspects of lexical meaning that
interact directly with compositional semantics, such as verbal aspect.
 (3) Syntactic and semantic rules. Syntactic and semantic rules come in pairs:
<Syntactic Rule n, Semantic Rule n>: in this sense compositional semantics concerns “the
semantics of syntax”.

 Syntactic Rule n: If α is an expression of category A and β is an expression of
category B, then Fi(α,β) is an expression of category C. [where Fi is some syntactic
operation on expressions]
 Semantic Rule n: If α is interpreted as α' and β is interpreted as β', then Fi(α,β) is
interpreted as Gk(α',β'). [where Gk is some semantic operation on semantic interpretations]

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 3 03/09/04 12:49 AM

1.3. Example of compositionality argument: the structure of NPs with
restrictive relative clauses.
Consider NPs such as “the boy who loves Mary”, “every student who dances”, “the doctor
who treated Mary”, “no computer which uses Windows”. Each of these NPs has 3 parts: a
determiner (DET), a common noun (CN), and a relative clause (RC). The question is: Are
there semantic reasons for choosing among three different possible syntactic structures for
these NPs?

a. Flat structure: NP
 9
 DET CN RC
 | | \
 the boy who loves Mary

b. “NP - RC” structure: The relative clause combines with a complete NP to form a new NP.
 NP
 3
 NP RC
 3 \
 DET CN \
 | | \
 the boy who loves Mary

c. “CNP - RC” structure: (CNP: common noun phrase: common noun plus modifiers)

 NP
 3
 DET CNP
 | 3
 | CNP RC
 | | \
 | CN \
 | | \
 the boy who loves Mary

Argument: we can argue that compositionality requires the third structure: that “boy who
loves Mary” forms a semantic constituent with which the meaning of the DET combines. We
can show that the first structure does not allow for recursivity, and that the second structure
cannot be interpreted compositionally. (The second structure is a good structure to provide a
basis for a compositional interpretation for non-restrictive relative clauses.)

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 4 03/09/04 12:49 AM

1.4. Lexical and Structural Ambiguity
Lexical ambiguity: bank1, bank2 : both CN (common noun), homonyms;
 open1 (ADJ), open2 (IV) (intransitive verb), open3 (TV) (transitive verb).

Structural ambiguity. Compositionality requires a “disambiguated language”. So we
interpret expressions with syntactic structure, not just strings.

(1) old men and women. Two meanings, two structures. “old” applies only to “men”, or to
“men and women”.

(a) NP (b) NP
 9 |
 NP and NP CNP
 | | 3
 CNP CNP ADJ CNP
 3 | | 9
 ADJ CNP women old CNP and CNP
 | | | |
 old men men women

(2) Problem: Every student read a book. (Quantifier scope ambiguity)

 Just one (surface) syntactic structure:

 S
 3
 NP VP
 3 3
 DET CNP V NP
 | | | 3
 every student read DET CNP
 | |
 a book

Predicate logic representations of the two readings:
 (i) œx (Student (x) 6 ›y (Book (y) & Read (x,y))
 (ii) ›y (Book (y) & œx (Student (x) 6 Read (x,y))

Compositional interpretation of the English sentence: ?? This has been a major issue with
respect to the relation of syntax and semantics since the 1960’s. It was a central issue in the
“Linguistic Wars” of Generative Semantics vs. Interpretive Semantics (Lakoff, Ross, Postal,
McCawley vs. Chomsky and Jackendoff), neither of which had an optimal solution, and it
remains controversial today. One part of the problem concerns the semantics of NPs, another
part concerns the representation of SCOPE. Montague made a major advance on the first
part, which we will study in this lecture and the next; there are still multiple approaches to
the scope issue.

The difficulty for compositionality if we try to use predicate calculus to represent “logical
form”: What is the interpretation of “every student”? There is no appropriate syntactic
category or semantic type in predicate logic. Inadequacy of 1st-order predicate logic for

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 5 03/09/04 12:49 AM

representing the semantic structure of natural language: Where in the following formula for
“Every man walks” is the meaning of “Every man”?

(3) œx (Man (x) → Walk (x))

In fact there is no subformula or other semantic constituent in that formula corresponding to
“every man”. We can solve this problem with the lambda-calculus and a richer type theory.

Categories of Predicate
 Calculus: Categories of NL:
 Formula - Sentence
 Predicate - Verb, Common Noun, Adjective
 Term
 Constant - Proper Noun
 Variable - Pronoun (he, she, it)
 ==========
 (no more) - Verb Phrase, Noun Phrase, Common Noun Phrase, Adjective
 Phrase, Determiner, Preposition, Prepositional Phrase, Adverb,

2. Lambdas
2.1. A first-order part of the lambda-calculus.
 To begin looking at the lambda calculus, we will start with just a “first-order” part of
it, as if we were just adding a bit of the lambda calculus to the predicate calculus (first-order
predicate logic). Then in section 2.2. we will look at the fully typed lambda calculus as given
in Montague’s Intensional Logic Rule 7 in the Appendix.

Lambda-abstraction rule, first version.
 8-abstraction applies to formulas to make predicates. This extends PC in a way that
allows us to represent more complex Common Noun Phrases, Adjective Phrases, some Verb
Phrases. For some other categories we will need the full version of the 8-abstraction rule.
Syn λ: If n is a Formula and v is a variable, then 8v[n] is a (1-place) Predicate (Pred-1)
Sem λ: || 8v[n]||M, g is the set S of all d 0 D such that || n ||M, g [d/v] = 1.
 Note: || ϕ || M, g [d/v] means: the semantic value of ϕ when the value of the variable v is d.
Examples. For all examples, assume that we start with an assignment g such that g(v) = John
for all v. In most of the examples below, the choice of initial assignment makes no
difference. And assume that I(b) = Bill, I(m) = Mary.

 (i) ›|| 8x[run(x)] ||M, g = the set of all individuals that run.

(ii) ›|| 8x[love(x, b)] ||M, g = the set of all individuals that love || b ||M, g , i.e. I(b), i.e. Bill.

(iii) ›|| 8x[love(x, y)] ||M, g = the set of all individuals that love || y ||M, g , i.e. g(y), i.e. John.

(iv) ›|| 8x[fish (x) & love(x, b)] ||M, g = the set of all fish that love Bill.

(v) to represent “walks and talks”: 8y[(walk (y) & talk(y))]

(vi) to represent “Mary walks and talks” with constituents that correspond to surface syntax:
 8y[(walk (y) & talk(y))] (m)

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 6 03/09/04 12:49 AM

 Syntactic Structure of the formula in (vi):

 Form
 3
 Pred-1 Term
 3 |
 8y Form m
 9
 Form & Form

By 8-conversion (see below), the formula in (vi) is equivalent to (walk(m) & talk(m)).

(vii) to represent the CNP “man who loves Mary”:
 Syntactic structure:

 CNP
 3
 CNP REL: who loves Mary
 | |
 man S: z loves Mary

Rule for combining CNP and REL: 8y[CNP’(y) & REL’(y)] (combining “translations”)

Compositional translation of the syntactic structure above into 8-calculus: (read bottom-to-
top)
 8y[man(y) & 8z[love (z,m)] (y)]
 3

 man 8z[love (z,m)]
 | |
 man love (z, m)

By 8-conversion (see below), the top line is equivalent to: 8y[man(y) & love (y,m)]

2.2. The typed lambda calculus.

The full version of the typed lambda calculus fits into Montague’s intensional logic with its
type theory; see the Appendix for a complete statement of Montague’s intensional logic. The
parts we will use the most will be the type theory, the lambda calculus (Rule 7), and the
rule of functional application (Rule 6). Montague’s intensional logic includes the predicate
calculus as a subpart (see Rule 2), but not restricted to first-order: we can quantify over
variables of any type.

Types: (See Appendix): Basic types e, t. Functional types <a,b> (also written as a→b)

Lambda-abstraction, full version.
In general: 8-expressions denote functions.
8v["] denotes a function whose argument is represented by the variable v and whose value
for any given value of v is specified by the expression ".

Example: 8x[x2 + 1] denotes the function x 6 x2 + 1.
 Function-argument application: 8x[x2 + 1] (5) = 26

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 7 03/09/04 12:49 AM

8-expressions provide explicit specification of the functions they name, unlike arbitrary
names like f, g. (The 8-calculus was invented by the logician Alonzo Church. The
programming language LISP, invented by John McCarthy, was modelled on the 8-calculus.)

Syntactic and Semantic Rule: (a restatement of Syntactic and Semantic Rules 7 of IL)
Syn7’: If " is an expression of any type a and v is a variable of type b, then 8v["] is an
expression of type b 6 a (the type of functions from b-type things to a-type things.)
Sem7’: || 8v["]||M, g is that function f of type b 6 a such that for any object d of type b,
 f(d) = || " ||M, g[d/v].

Lambda-conversion: A principle concerning the application of 8-expressions to
arguments.

Examples: 8x[x2 + 1] (5) = 52 + 1 = 26
 8x[run(x)](b) / run(b)
 8y[(walk(y) & talk(y))] (m) / (walk(m) & talk(m))
 8z[love (z,m)] (y) / love (y,m)

 Lambda-conversion Rule: 8v["]($) / "N , where "N is like " but with every free
occurrence of v replaced by $.

 (Note: Occurrences of v that are free in " are bound by 8v in 8v["].)

3. Montague’s semantics for Noun Phrases, Introduction.

Indicated by translations of English expressions into the 8-calculus. P is a variable ranging
over sets, i.e. a predicate variable. (In full Montague grammar with intensionality, the
analysis uses variables over properties, so sometimes we talk as though P were a variable
over properties.)

John 8P[P(j)]
John walks 8P[P(j)] (walk) / walk (j)
every student 8P[œx (student(x) 6 P(x))]
every student walks 8P[œx (student(x) 6 P(x))] (walk) / œx (student(x) 6 walk(x))
a student 8P[›x (student(x) & P(x))]
the king 8P[›x (king(x) & œy (king(y) 6 y = x) & P(x))]
 (the set of properties which the one and only king has)
More on this next time!

Appendix: Montague’s intensionsal logic, with lambdas and types.

A.1 Introduction
Tools like Montague’s Intensional Logic (IL) are important in making a more satisfactory
compositional analysis of natural language semantics possible. What are the differences
between Montague’s IL and the predicate calculus (PC)? Here are some of the most
important differences for the “extensional part” of IL (ignoring possible worlds, times, and
intensions):

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 8 03/09/04 12:49 AM

 (i) The rich type structure of IL.
 (ii) The central role played by function-denoting expressions. All of the types except the
basic types e and t are functional types, and all of the expressions of IL except those of types
e and t are expressions which denote functions. Functions may serve as the arguments and as
the values of other functions. In particular, all relations are also represented as functions.
 (iii) The inclusion of the operation of “functional application” or “function-argument
application”, the application of a function to its argument.
 (iv) The use of lambda-expressions. The lambda-operator is the basic tool for building
expressions which denote functions.

A.2. Intensional Logic (IL).
A.2.1. Types and model structures.

A.2.1.1. Types
Montague’s IL is a typed intensional language; unlike the predicate calculus, which has
variables of only one type (the type of entities or individuals), and expressions only of the
types of individuals, truth-values, and n-ary relations over individuals, IL has a rich system of
types which makes it much easier to achieve a (relatively) close fit between expressions of
various categories of a natural language and expressions of IL. The types serve as syntactic
categories for the expressions of IL; because of the role of IL as an intermediate language in
the semantic interpretation of natural language, the same types are referred to as semantic
types for expressions of natural language.
The types of Montague’s IL are as follows:
Basic types: e (entities), t (truth values)
Functional types: If a,b are types, then <a,b> is a type (the type of functions from a-type
things to b-type things.) Note: We use interchangeably the two notations <a,b> and a 6 b,
both of which are common in the literature.
Intensional types: If a is a type, then <s,a> is a type (the type of functions from possible
worlds to things (extensions) of type a.)

 (In some systems, the basic type t is taken as intensional, interpreted as the type of
propositions rather than of truth-values. In general, we will mostly ignore intensionality in
these lectures, working most of the time with extensional versions of our fragments and
mentioning intensionality only where directly relevant. But that is only for simplicity of
exposition; in general, a thoroughly intensional semantics is presupposed.)

A.2.1.2. Model structures.
In the first lecture, we introduced the simple model structure M1 for interpreting the
predicate calculus. A model M for the typed intensional logic IL has much more structure,
but that structure is built up recursively from a small set of primitives.

Model structure for IL: M = <D, W, #, I>. Each model must contain:
 A domain D of entities (individuals)
 A set W of possible worlds (or possible world-time pairs, or possible situations)
 # : an ordering (understood as temporal order) on W
 I: Interpretation function which assigns semantic values to all constants.

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 9 03/09/04 12:49 AM

The domains of possible denotations for expressions of type a (relative to D,W) are defined
recursively as follows:
De = D
Dt = {0,1}
D<a,b> = {f | f: Da 6 Db }(i.e. the set of all functions f from Da to Db.)
D<s,a> = {f | f: W 6 Da }(i.e. the set of all functions f from W to Da .)
The semantic interpretation of IL also makes use of a set G of assignment functions g,
functions from variables of all types to values in the corresponding domains.

Each expression of IL has an intension and, at each w in W, an extension. The intension is
relative to M and g; the extension is relative to M, w, and g. But we will not discuss
intensions and extensions in this lecture.

A.2.2. Atomic expressions (“lexicon”), notation, and interpretation.
The atomic expressions of IL are constants and variables; there are infinitely many constants
and infinitely many variables in each type. Montague introduced a general nomenclature for
constants and variables of a given type, using c and v with complex subscripts indicating type
and an index. In practice, including Montague’s, more mnemonic names are used. Our
conventions will be as follows:

Constants of IL will be written in non-italic boldface, and their names will usually reflect the
English expressions of which they are translations: man, love, etc. Their types will be
specified. Variables of IL will be written in italic boldface, usually observing the following
conventions as to types:
Type e: w,x,y,z, with and without subscripts or primes (this modifier holds for all types.)
Type <e,t>: P, Q
Various relational types such as <e,<e,t>>: R
The type of generalized quantifiers: T

The interpretation of constants is given by the interpretation function I of the model, and the
interpretation of variables by an assignment g, as specified in Rule 1 below.

A.2.3. Syntactic rules and their model-theoretic semantic interpretation
The syntax of IL takes the form of a recursive definition of the set of “meaningful
expressions of type a”, MEa, for all types a. The semantics gives an interpretation rule for
each syntactic rule.

Note: when giving syntactic and semantic rules for IL, as for predicate logic, we use a
metalanguage which is very similar to IL; but we are not boldfacing the constants and
variables of the metalanguage. The metalanguage variables over variables are most often
chosen as u or v.

The first rule is a rule for atomic expressions, and the first semantic rule is its interpretation:
Syntactic Rule 1: Every constant and variable of type a is in MEa.
Semantic Rule 1: (a) If " is a constant, then 5"5M,w,g = I(")(w).
 (b) If " is a variable, then 5"5M,w,g = g(").

Note: The recursive semantic rules give extensions relative to model, world, and assignment.
Read “5"5M,w,g ” as “the semantic value (extension) of alpha relative to M, w, and g.” The

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 10 03/09/04 12:49 AM

interpretation function I assigns to each constant an intension, i.e. a function from possible
worlds to extensions; applying that function to a given world w gives the extension.

Syntactic Rule 2. (logical connectives and operators that apply to formulas, mostly from
propositional and predicate logic, plus some modal and tense operators.) If n,R 0 MEt, and u
is a variable of any type, then ¬n, n&R, nwR, n → R, n↔R (also written as n/R), ›un,
œun, ~n, PASTn 0 MEt. Note: “ ~n” is read as “Necessarily phi”.

Semantic Rule 2:
(a) ¬n, n&R, nwR, n→R, n↔R (also written as n/R), ›un, œun as in predicate logic.
(b) 5~n5M,w,g = 1 iff 5n5M,w’,g = 1 for all w’ in W.
(c) 5PASTn 5M,w,g = 1 iff 5n5M,w’,g = 1 for some w’ # w. (This is a simplification; here we
are treating each w as a combined “world/time index”, possibly a situation index; w’ # w if
w’ is a temporally earlier slice of the same world as w.)

Syntactic Rule 3: (=): If ", $ 0 MEa, then "=$ 0 MEt.
Semantic Rule 3: 5" = $5M,w,g = 1 iff 5"5M,w,g = 5$5M,w,g.

 (The next two pairs of rules, concerning the “up” and “down” operators [v"] and [w"], are crucial for
intensionality, but we will omit them here.)

The next two pairs of rules, function-argument application and lambda-abstraction, are
among the most important devices of IL, and we will make repeated use of them.

Function-argument application:
Syntactic Rule 6: If " 0 ME<a,b> and $ 0 MEa, then "($) 0 MEb.
Semantic Rule 6: 5"($)5M,w,g = 5"5M,w,g (5$5M,w,g)

Lambda-abstraction:
Syntactic Rule 7: If " 0 MEa and u is a variable of type b, then 8u["] 0 ME<b,a>.
Semantic Rule 7: 58u ["]5M, w,g is that function f of type b 6 a such that for any object d of
 type b, f(d) = 5n5M, w,g[d/u].

===

HOMEWORK #1. Not necessary to hand in: completely optional.
Problems 1 and 2 are the most basic. There is an extra page of “homework help” for this
homework. To work on your own: First try to do it without looking at the help, then look at
the help, and then try it again if you did it wrong the first time. We have xeroxes of the
answers to all of these questions – ask us for the answer sheet if you are interested.
==
1. (a) Write down the translation into the 8-calculus of “A student walks and talks”. This
handout already shows the translations of “a student” and “walks and talks”. Put them
together by “function-argument application”.
 (b) Apply 8-conversion to simplify the formula. There will be two applications, and the
resulting formula should have no 8‘s.
 (c) Write down the translation of “A student walks and a student talks”; simplify by 8-
conversion.
 (d) The two formulas (if you did parts (a-c) correctly) are not equivalent. Describe a
situation (a model) in which one of them is true and the other one is false.
2. In the predicate calculus, the sentence “No student talks” can be represented as follows:

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 11 03/09/04 12:49 AM

 ¬›x [student(x) & talk(x)] or equivalently as ∀x[student(x) → ¬talk(x)]
But in the predicate calculus, there is no way to represent the meaning of the NP “no
student”. Using the 8-calculus in the way illustrated above for the NPs “every student”, “a
student”, “the king”, write down a translation for the NP “no student”. (There are two
logically equivalent correct answers; write down either or both.)

3. Write out the semantic derivation of John walks two ways, once using Montague’s generalized
quantifier interpretation of John, once using the type-e interpretation of John.

4. Write the translation for every, by abstracting on the CNP in the given translation of every
man. Hint: the translation of every, like that of every DET, should begin with λQ, where Q is a
variable of type e → t, the type of the CNP with which the DET “wants to” combine.

5. Work out the translations, using lambda-conversion for simplification of results, of the
following. Always apply lambda-conversion as soon as it is applicable, so that the formulas
do not become more complex than necessary.
 (a) Every violinist who loves Prokofiev is happy.

(b) Not every violinist is unhappy.

Note on exercise 5(b). (Not every violinist is unhappy.)
 Note: Work this out two ways, which should come out equivalent. First pretend that the
not is sentential negation, although according to the rules of English syntax, this is not a
possible position for a sentential not. So the first syntactic structure should begin as follows:

 (i) S
 3
 NEG S
 3
 NP VP

Then figure out what the type and translation should be for a not which can apply to NPs of
type (e 6 t) 6 t, and work out the translation for the sentence under an NP-negation analysis,
where the syntactic structure begins as follows:
 (ii) S
 3
 NP VP
 3
 NEG NP

There is a third possibility, which is to apply not to every; if you have figured out how to do
(i) and (ii), you’ll be able to figure out how to do the third; it’s just more lambdas. Don’t do it
unless you really want to. What might be more interesting would be to work on linguistic
arguments to try to decide how many of the three are real possibilities for English, and/or the
same question for the corresponding Russian sentence.

Formal and Lexical Semantics, Lecture 1
Barbara Partee and Vladimir Borschev, Mathesius Series, Prague, March 2004

Mathesius 04 1.doc 12 03/09/04 12:49 AM

HELP FOR HOMEWORK #1
Help with Problem 1. Instead of giving an answer, here is an answer to a similar problem,
which we’ll call Problem 1*.
Problem 1*. (a) Write down the translation into the λ-calculus of “Every student walks and
talks”. The handout already shows the translations of every student and walks and talks. Just
put them together by function-argument application.
 (b) Apply λ-conversion to simplify the formula. There will be two applications, and the
resulting formula should have no λ‘s.
 (c) Write down the translation of “Every student walks and every student talks”; simplify
by λ-conversion.
 (d) Are the two formulas equivalent? Give an argument.
Answer.
(1*) (a) every student : λP[∀x (student(x) → P(x))]
 walks and talks: λy[(walk (y) & talk(y))]
 every student walks and talks: λP[∀x (student(x) → P(x))] (λy[(walk (y) & talk(y))])

 (b) Simplify the expression by two applications of λ-conversion.
 Step 1: λP[∀x (student(x) → P(x))] (λy[(Walk (y) & Talk(y))]) ≡
 ∀x (student(x) → λy[(Walk (y) & Talk(y))] (x))
 Step 2: ∀x (student(x) → λy[(walk (y) & talk(y))] (x)) ≡
 ∀x (student(x) → (walk (x) & talk(x)))

 (c) Every student walks and every student talks:
 λP[∀x (student(x) → P(x))] (walk) & λP[∀x (student(x) → P(x))] (talk)
 ≡ ∀x (student(x) → walk(x)) & ∀x (student(x) → talk(x))

It doesn’t matter whether the same variable x is used in both formulas or not; this is
equivalent to: ∀x (student(x) → walk(x)) & ∀y (student(y) → talk(y))

 (d) Use first-order predicate logic to argue that the last formula in (b) and the last
formulas in (c) are equivalent. Both formulas require that every student have both properties.

Note: If two formulas ARE equivalent, you should use what you know about predicate logic
to try to prove the equivalence (either or formal proof or an informal argument). If two
formulas are NOT equivalent, then you should construct a model (often a very small model is
enough) in which one of the formulas is true and the other one is false: that’s always the best
and simplest way to show non-equivalence.

