
Projective and Non-Projective Turkish Parsing

Ruket Çakıcı
University of Edinburgh

ICCS, School of Informatics
2 Buccleuch Place

Edinburgh EH8 9LW, UK
R.Cakici@sms.ed.ac.uk

Jason Baldridge
University of Texas at Austin

Department of Linguistics
1 University Station B5100

Austin, TX 78712-0198, USA
jbaldrid@mail.utexas.edu

Abstract

We evaluate several dependency parsing models on the METU-Sabancı
Turkish Treebank through two main approaches: generative probabilistic
phrase-structure parsers and discriminative dependency parsers. We find
that the non-projective Maximum Spanning Tree parser of McDonald et al.
(2005) is the best parsing model, in part because it recovers crossed depen-
dencies more effectively than projective algorithms. We also show that the
choice of tag set is very important and that using morphological information
boosts performance, especially when the parser is not given gold standard
POS tags. We also discuss some improvements to the treebank itself.

1 Introduction

In the rapidly growing body of work regarding building treebanks and parsers, there
is an increasing emphasis on dependency structures rather than phrase structures.
There has been a consequent surge in interest in dependency parsing, e.g. for
Swedish (Nivre, Hall, and Nilsson, 2004), Czech (McDonald et al., 2005; Nivre
and Nilsson, 2005), and Turkish (Eryiğit and Oflazer, 2006). Early work on wide-
coverage dependency parsing made use of both dependency-based models (Eisner,
1996) and phrase structure based models (Collins et al., 1999). These models could
naturally handle analyses that involved only projective dependencies. Subsequent
work has focused on algorithms that capture the crossed dependencies that occur
in languages like Czech and Turkish; e.g. pseudo-projective methods (Nivre and
Nilsson, 2005) and fully non-projective methods (McDonald et al., 2005).

In this paper, we develop parsing models for Turkish using the METU-Sabancı
dependency treebank (Atalay, Oflazer, and Say, 2003; Oflazer et al., 2003). We

19
Hajič, J. and Nivre, J. (eds.): Proceedings of the TLT 2006, pp. 19–30.
© Institute of Formal and Applied Linguistics, Prague, Czech Republic 2006



20

TLT 2006

investigate different representations of analyses and we use both a phrase structure
parser and a non-projective dependency parser. We show that representing dis-
tinctions about derivational morphology and nominal case provides large improve-
ments in the accuracy of recovering word-word dependencies. The non-projective
maximum spanning tree parser of McDonald et al. (2005) is superior under all
conditions, and is especially well suited for crossed dependencies.

2 The METU-Sabancı Treebank

Like Czech, Turkish is highly-inflected and has more word order flexibility than
languages like English. It is an agglutinating language, so a single word can be a
sentence with tense, modality, polarity, and voice. It allows both local and long-
distance scrambling. The former means that arguments of verbs may swap order
within a clause, and the latter means that an argument may appear in a higher clause
than that of the verb which subcategorises for it.

The METU-Sabancı Treebank is a subcorpus of the METU Turkish Corpus (Ata-
lay, Oflazer, and Say, 2003; Oflazer et al., 2003) that includes material taken from
three daily newspapers, 87 journal issues and 201 books. The treebank has 5620
sentences and 53,798 tokens. The average sentence length is about eight words.1
We exclude nine sentences that are annotated incorrectly, since there was no way to
correct them within the current design principles of the treebank. Figure 1 provides
an example of how sentences are represented in the treebank. The dependencies
are surface ones, so phenomena such as traces and pro-drop are not modelled. Each
word can can have only one parent, but words can have more than one dependent.
Links are represented from dependent to head in this paper.

Kapinin kenarindaki duvara dayanip bakti bir an .

lean looked one momentDoor+GEN Side+LOC+REL wall+DAT

POSSESSOR MODIFIER OBJECT

SENTENCE

DET

bize

MODIFIER MODIFIER

us

OBJECT

Figure 1: The graphical representation of word-word dependencies for the sentence
(He) looked at us leaning on the wall next to the door, for a moment.

The syntactic relations used to model the dependency relations include labels
1One Turkish word typically corresponds to several English words, since the morphological in-

formation which exists in the treebank represents additional information including part-of-speech,
modality, tense, person, case, causativity, passive voice etc.



21

Projective and Non-Projective Turkish Parsing

such as SUBJECT, OBJECT, POSSESSOR, MODIFIER, SENTENCE, and COORDI-
NATION. Punctuation marks are excluded from dependency structures unless they
participate in a relation, such as the use of comma in coordination. The label SEN-
TENCE links the head of the sentence to the punctuation mark or a conjunct in case
of coordination.2

Morphology is represented in Inflectional Groups (IGs). Words with more
than one IG either have derivational morphology or valency altering suffixes (e.g.
causative and passive forming morphemes for verbs). Figure 1 shows the OBJECT
linked to the second IG of değiştirmez because değiş is intransitive; it only has an
object because of the causative morpheme.

(1) Yerini pek degis tirmez .
�� �

Obj
Mod. Sentence

(1,“yer+Noun+..+Acc”) (1,“pek+Adv”) (1,“degis+Verb”)(2,“Verb+Caus+Neg+..”)

IGs thus play a role in dependency structure. Different IGs can be heads of
different dependents. Dependencies always emanate from the final IG of a word.
We believe a parser that is capable of recovering the correct IG-IG dependencies
for raw Turkish text is desirable, but difficult to accomplish. It is not trivial to
obtain accurate IG information from raw text since both morphological analysis
and disambiguation are necessary. We thus focus on word-word dependencies,
like nearly all work in dependency parsing.

We have made many changes to the treebank in order to have improve con-
sistency and correctness, including: (a) fixing incorrect morphological analyses of
common words (e.g. evet “yes”, bile “even”); (b) connecting tokens that previously
were not part of the overall dependency structure; (c) changing dependency links or
labels of some relatively non-frequent types (e.g. intensifiers, appositions) so they
are consistently annotated; and (d) fixing some incorrect dependency links. There
are some sentence boundary and tokenisation errors which we did not change in
order to keep the number of sentences in the treebank unchanged.

3 Constituency Models

In order to use a phrase-structure parser with the treebank, it is necessary to create
constituent trees out of the annotated dependency structures.

2This is essentially like identifying the final punctuation mark as the root symbol, which is how
we treat it when evaluating parser output – see section 5.



22

TLT 2006

3.1 Creating constituent structures

Collins et al. (1999) outline three choices when creating constituent structures
from dependencies: (a) branching factor, (b) choice of non-terminal labels, and (c)
the set of POS tags to be used. A fourth choice is how to handle non-projective
dependencies. We create the flattest possible trees and use the POS tags to create
non-terminal labels as explained in Collins et al. (1999). Tags are derived from
the morphological analyses in the treebank; there are 15 in the most basic tag set.

In 344 sentences, there is at least one crossed dependency. This makes the
mapping process non-trivial. These dependencies could be faithfully represented in
constituent structures using mechanisms such as traces, but doing so would involve
considerable effort and care. One of our goals is to compare the straightforward
application of a phrase-structure approach to a natively non-projective dependency-
based model. The way we map dependency structures to constituent trees, puts
such dependents immediately adjacent to their heads. This gives the correct head-
child dependencies but changes the word order from that in the original sentence.

Punctuation is ignored by the translation process unless it is sentence final
punctuation that the sentence head is dependent on or a dependency link emanates
from it (e.g commas in coordination). The treebank is modified for the sake of con-
sistency such that if there are both a conjunctive word and a punctuation mark next
to each other, the word is taken to be the head of the conjunction. In our experi-
ments, we have excluded punctuation without dependency links from all scoring.

3.2 Modifications to the baseline constituent structures

The POS tags we use for the parser are derived from the IGs, which we use to
create four distinct tag sets. Our basic tag set uses only the POS tags in a word’s
last IG. For example the POS tag is Verb for (2), and Noun for (3).

(2) istemiyorum “I don’t want...”: IG=’[(1,"iste+Verb+Neg+Prog1+A1sg")]’

(3) kurtulmak “escaping”:
IG=’[(1,"kurtul+Verb+Pos") (2,"Noun+Inf+A3sg+Pnon+Nom")]’

However, this is inadequate for representing subordination and extraction because
it is not possible to discriminate between a subordinated clause and a NounP (noun
phrase) in the constituent structures we derive from the dependencies.

We thus create enriched POS tags for our second configuration by concate-
nating the original tag of the morphological stem and the final tag. Words with
only one inflectional group are unaffected by this change. This gives Verb for (2)
and Verb_Noun for (3). This kind of information is expected to help subcategori-
sation choices for some words such as subordinated verbs and thereby help with



23

Projective and Non-Projective Turkish Parsing

S(TOP)

VerbP

Verb_NounP

Verb_NounP

Vahdettin’in/NOUN imparatorluğu/NOUN satmayı/VERB_NOUN

düşünmediğini/VERB_NOUN

okuyorsunuz/VERB

.

Figure 2: The tree produced using extended tags for the sentence Vahdettin’in im-
paratorluğu satmayı düşünmediğini okuyorsunuz, “You read that Vahdettin was not
planning to sell the empire”.

predicting the relation between such words and their dependents. This means that
Vahdettin’in and imparatorluğu will be correctly identified as being dependent on
the subordinated verb satmayı instead of being clustered as a noun group. The same
holds for the subordinated verb düşünmediğini and the rest as shown in Figure 2.

The third configuration has only the case information for nouns. In this config-
uration all nouns (derived and root) gets this information via tags such as Noun_Acc,
Noun_Dat, Noun_Loc, Noun_Abl, Noun_Gen, etc.

Finally, the fourth configuration includes both case information for nouns and
the extended tags in the first configuration. We only alter the root nouns (ie. we do
not include the case information for the derived nouns.)

4 Parsing Models

4.1 Head-driven generative parsing

Collins (1997) describes several lexicalised head-driven generative parsing models
that are now widely known and used. They incorporate varying levels of structural
information, such as distance features, the complement/adjunct distinction, subcat-
egorisation and gaps. The core idea is to decompose the calculation of context-free
rule probabilities by first generating a head and then generating its left and right
modifiers independently.

We use Dan Bikel’s multi-lingual parsing engine (Bikel, 2002) to train such
models for parsing Turkish. We use Collins’ model 1, so the features are standard
ones: words, tags and distance over heads and modifiers. We also use the first-
order bigram dependencies described in (Collins et al., 1999). With this extension,



24

TLT 2006

the generation of a modifier is dependent on the previous modifier as well as the
parent and the head. We use Bikel’s default approximation of the previous modifier,
where it is either (a) the START symbol (no previous modifiers), (b) a coordinating
conjunction, (c) a punctuation mark, or (d) MISC for all other modifiers.

We train the parser on the trees mapped from the dependencies, as described
in section 3, and then parse unseen sentences with and without their POS tags.
Dependencies are then recovered from the trees derived by the parser by reversing
the dependency structure to constituent tree mapping.

4.2 Discriminative dependency parsing

Eisner’s cubic generative algorithm (Eisner, 1996) solves the dependency parsing
task directly. McDonald et al. (2005) provide a discriminative version of Eisner’s
dependency parser that scores alternative analyses using large-margin constraints
determined with the Margin Infused Relaxed Algorithm (MIRA) (Crammer and
Singer, 2003). For English, this parser performs on par with using a Collins model
to recover dependencies.

McDonald et al. (2005) formalise dependency parsing as the problem of find-
ing a maximum spanning tree in a directed graph. Again, MIRA is used to deter-
mine the weights of dependency links as part of this computation. This algorithm
has two major advantages: it runs in O(n2) time and it handles non-projective
dependencies directly. McDonald et al. show that this algorithm significantly
improves performance on dependency parsing for Czech, especially on sentences
which contain at least one crossed dependency.

We use McDonald’s MSTParser with the same four tag sets as we do with the
Bikel parser. It uses features that incorporate almost all the different ways in which
the words and POS tags of a head and dependent (and words/tags in between them)
can be related (McDonald, Crammer, and Pereira, 2005). The basic features are
unigram features for the words and part-of-speech for both the parent and the child
on their own, and bigram features mixing the words and parts-of-speech of both
the parent and the child. Furthermore, there are extended features which encode
trigrams of the parts-of-speech of the parent, child and words between them, and
there are similar extended features for the words surrounding the parent and child.

Because MIRA is a discriminative approach, many more features can be in-
cluded without running into problems due to independence assumptions. We thus
extended the parser to optionally use a wider range of features; specifically, we
use word stems and suffixes to create many new combined features. Examples in-
clude parent and child unigram features containing parts-of-speech with suffixes
and words with suffixes, and likewise for bigram features. Extended features con-
tain the various combinations of stems and affixes of words in the context along



25

Projective and Non-Projective Turkish Parsing

with the parent and child. We obtain the stems from the treebank itself, and as suf-
fixes we use the remainder of the word after removing the stem.3 Performance with
these features should indicate whether even such a basic morphological analysis is
useful for parsing morphologically rich languages like Turkish.

5 Experiments

We report on experiments comparing various configurations which vary the parser,
the tagger, and the tag-sets. We use two parser configurations: Collins’ phrase-
structural model (Bikel’s implementation) and the non-projective MIRA model
(McDonald’s implementation). There are four different tag sets (see Section 3.2):
(a) the basic ones [BAS], (b) extended tags (tag of the stem plus tag of final in-
flectional group) [EXT], (c) case for nouns [CAS] and (d) the combination of (b)
and (c) [EC]. Furthermore, we consider an enriched feature set for MSTParser that
incorporates stems and suffixes. For tagging, we use either tags produced by a tag-
ger4 [TT] or gold tags from the treebank [GT]. Note that the tagger is trained on the
relevant tag set; for example, it produces full tags like Noun_Acc for the CAS set.

We perform 10-fold cross-validation over all 5611 sentences in the treebank.
Model performance is given for both word-level and sentence-level dependency
accuracy.5 We provide unlabelled scores for the Collins parser, we give both la-
belled and unlabelled for MSTParser. Unlabelled word and sentence accuracy are
abbreviated as UP and SUP, respectively. LP and SLP are likewise used for labelled
accuracy. Scores are globally determined rather than averaged over all individual
folds. We take word-final punctuation in the Turkish treebank to constitute the root
symbol (familiar from other work on dependency parsing) in our evaluation. We
do this because the word-final punctuation is given a dependency link to a dummy
root symbol, but this happens unambiguously for all sentences. This link is thus
trivial to identify, so we exclude it from consideration for scoring all our models.

Turkish is a predominantly head-final language, so the toughest baseline is one
for which all dependencies point to the word immediately to the right.6 This base-
line correctly captures 63.2% of the unlabelled dependencies. The left branching
baseline is 6.1%, highlighting the rarity of adjacent leftward links.

3More precisely, we remove a prefix with the same number of characters as the stem in order to
handle sound changes. For example, the word tutsağım has the stem tutsak; from this we get the
suffix ım.

4We use the OpenNLP tagger (opennlp.sf.net).
5We score our models with the evaluation script used for the CoNLL-X dependency parsing

shared task, and evaluate significance with Dan Bikel’s significance tester.
6Recall that in the Turkish treebank, dependencies point toward the head, not away from it as in

some other dependency formats.



26

TLT 2006

Table (a) in Figure 3 shows the performance of the Collins model under the
various configurations. Even with the most basic tag set, the parser easily beats the
right-linking baseline. Using the richer tag sets helps considerably, mirroring the
results of Collins et al. (1999) for Czech based on similar strategies. Because many
Turkish words convey what would require several words in English, it is too crude
to just label them with simple tags like Noun. The extended tags (EXT), such as
Noun_Verb, are crucial for getting the syntactic distribution of such words correct.
Case information on tags (CAS) is also fundamental; for example, nominative and
genitive nouns appear in very different contexts, so collapsing them as in the basic
tag set keeps the parser from being able to handle them appropriately. From the
basic tag set BAS to the most complete EC, performance is improved by 6%.

Unsurprisingly, performance suffers when using tags from the tagger rather
than the gold standard tags. However, the drop is not great, and the 77.4% accuracy
achieved by the model using the EC tags is well above the 63.2% baseline — and
it is obtained with only access to the raw words. Note that the parser is capable
of tagging for itself – for the same configuration using parser tags instead of the
tagger’s, the performance is 74.6%. This is actually not in line with many previous
results, where it is often found to be better to let the parser tag for itself. This
is probably due to the fact that both the corpus and the tag sets are small, so the
maximum entropy tagger is able to model the tags themselves more effectively
than the parser, which obtains its probabilities directly from frequencies and is
thus more reliant on larger amounts of data.

Model UP SUP
BAS-TT 71.9 35.6
BAS-GT 73.6 37.5
EXT-TT 74.0 36.3
EXT-GT 76.2 39.0
CAS-TT 76.2 38.5
CAS-GT 77.8 40.7
EC-TT 77.4 38.9
EC-GT 79.3 41.5

Model UP SUP LP SLP
BAS-TT 79.0 39.1 61.5 19.6
BAS-GT 81.5 42.7 65.9 22.9
EXT-TT 80.0 40.5 62.6 20.1
EXT-GT 83.2 44.6 67.9 23.5
CAS-TT 79.8 40.7 64.7 21.7
CAS-GT 82.5 44.5 70.0 26.6
EC-TT 80.6 41.7 65.3 22.3
EC-GT 84.5 46.9 72.1 28.2

(a) (b)

Figure 3: Performance of the Collins model (a) and the maximum spanning tree
model (b) with different tag sets.

Table (b) in Figure 3 shows the results for the maximum spanning tree parser.
Across the board, this parser clearly beats the Collins parser on recovering unla-
belled dependencies. When given gold tags, the MST parser given access to the



27

Projective and Non-Projective Turkish Parsing

Model UP SUP LP SLP
BAS-TT 80.6 41.2 62.3 19.4
BAS-GT 83.3 45.5 66.7 22.9
EC-TT 81.3 42.6 65.8 22.5
EC-GT 84.9 47.7 72.3 28.2

Figure 4: Performance of MST non-projective model with the BAS and EC tag sets
using stem and suffix features.

same tag set beats the Collins parser by over 5%. It also shows less variance to the
choice of tag set, with only a 3% difference between BAS and EC, compared to 6%
for the Collins parser. However, its performance when using tags from the tagger
rather than gold tags is relatively more affected than the Collins parser. Nonethe-
less, its absolute performance even with tagger tags is still well above that of the
Collins parser.7

The labelled scores for the MST parser also show some interesting patterns.
Most obvious is that labelled performance is more heavily affected than unlabelled
when the parser is given tags from the tagger. This is not surprising since some
tags correlate closely with some labels, such as the tag Noun_Nom (nominative-
case noun) and the label SUBJECT. On a similar note, we see that the CAS tag set
(where case is given) improves labelled accuracy from 65.9% for the basic set to
70.0%, a more significant jump than the 67.9% provided by the EXT tag set.

Table 4 provides the results for when the MST parser is given the stems and
suffix features in addition to the word and tag features that come out of the box.
The additional features provide a significant boost in performance (p < 0.05) for
all configurations. Most interestingly, the performance when using the tagger tags
is a more marked improvement over the model with stems and suffixes. The stems
and suffixes essentially provide a means to lexicalise the model with less sensitivity
to data sparsity than full words on their own. They thus help keep the model from
choosing poorly when it is given an incorrect tag from the tagger. This indicates
that lexical information is both useful and sufficient despite the small size of the
treebank, in contrast with Eryiğit and Oflazer (2006), whose statistical dependency
model pays attention only to tags and distance measures.

The projective dependency parser (Eisner’s algorithm) actually performs very
similarly to the non-projective one. For example, with gold tags, the EC tag set and
the stems and suffixes features, it achieves 84.8%/48.1% UP/SUP and 72.2%/28.5%

7Performance would presumably not be as degraded if the parser was trained on tags from the
tagger rather than gold tags. That way, the material that the parser trains on is deficient in similar
ways to the material it is tested on.



28

TLT 2006

LP/SLP, not significantly different from the performance attained by the non-projective
parser (see EC-GT in 4). This is actually not very surprising, given that only 2.5%
of the dependencies in the treebank are crossed. Nonetheless, we can see the im-
portance of the non-projective algorithm more clearly by scoring both models on
just the 344 sentences that had at least one crossed dependency. For these, the
non-projective parser with the EC tag set and the stem and suffix features achieves
76.3%/64.0% unlabelled/labelled accuracy. The projective parser with the same
tags and features obtains 75.1%/62.9%. This mirrors what McDonald et al. (2005)
found for Czech, though the difference they found was greater: 81.5% for the non-
projective versus 74.8% for the projective.

The first result on Turkish dependency parsing is Oflazer (2003) who tests a
finite state parser on 200 sentences in the METU-Sabancı Treebank. Eryiğit and
Oflazer (2006) present a statistical dependency parser for Turkish evaluated on
a subset of the treebank. Our work is different from theirs in four ways. First,
we focus on word-word dependencies whereas they are concerned with dependen-
cies that include the sub-word level (we argue that morphological segmentation
and analysis must be handled automatically to produce a useable parser for the IG
level). Second, we parse all sentences rather than just projective ones with only
rightward links. Third, we provide results for parsing with automatic POS tagging
as well as for gold-standard POS tags. Finally, we provide results for labeled as
well as unlabeled dependencies.

In the treebank, there are 3501 sentences which have only rightward links.8
These are the sentences Eryiğit and Oflazer (2006) used in their evaluation. Their
best model achieved 81.2% word-word UP on these sentences. Our best pro-
jective model (EC-GT) gets 85.6%/53.1% UP/SUP and 72.6%/31.6% LP/SLP on
these sentences. This large improvement should be considered in the light that our
model can posit leftward links, a degree of freedom that is not granted to Ery-
iğit and Oflazer’s model. Not surprisingly, on these test sentences, the projective
parser is slightly, but significantly, better than the non-projective one’s performance
of 85.4%/52.3% UP/SUP and 72.2%/30.9% LP/SLP. The Collins model achieves
81.6%/47.8% UP/SUP on the rightward-linking sentences.

It should be noted that some work on dependency parsing uses only gold stan-
dard POS tags as input to the parser. Our absolute best result of 84.9% by EC-GT
with stems and suffixes can thus be compared to other work which assumes infor-
mation beyond just the word string, including the results presented in Eryiğit and
Oflazer (2006) for Turkish. Yet for a parser to be useful outside the context of the
experimental sandbox, it needs to be able to deal with just the words. Our best con-

8This is a slightly different number than that given by Eryiğit and Oflazer (2006) (3398) This
might be because we do not count crossed dependencies on the IG level.



29

Projective and Non-Projective Turkish Parsing

figuration for this more stringent criterion is the MST parser with the EC tag set,
tags from the tagger, and without features based on stems and suffixes (the former
of which we obtain from the treebank, not automatically). This model, shown as
EC-TT in Figure 3, obtains 80.6% UP.

6 Conclusion and Future Work

We have demonstrated a range of dependency parsing regimes for Turkish. All our
models perform well above a right-linking baseline, even when using tags from a
tagger rather than gold standard ones. Simple extensions to the tag set provided
large improvements to parsing accuracy for all models. The discriminative de-
pendency parsers of McDonald et al. (2005) easily outperform the Collins-style
phrase-structure parser. This can in part be attributed to the small size of the cor-
pus – generative models need lots of examples to count, whereas discriminative
training iteratively targets a direct reduction in classification error. But we also
think the difference can be attributed to the fact that the dependency parsers attack
the problem directly and do not need the extra level of indirection of phrase struc-
ture trees, which can have complications such as training on phrase structures with
uncrossed orders and then testing on sentences with crossed dependencies.

We also extended the MST parser with features based on word stems and suf-
fixes in addition to full words and tags. These features infuse morphology into
the parsing model, which would be expected to be important in a morphologically
rich language like Turkish. Our results show significant improvements with these
features, especially when the parser was supplied tags from a tagger.

Even though the non-projective MST algorithm and the projective Eisner al-
gorithm (both using MIRA) achieve similar performance overall, we showed that
the former is significantly better on the subset of sentences in the Turkish treebank
which have at least one crossed dependency.

Our results are the first for parsers evaluated on word-word dependencies on all
sentences in the Turkish treebank. Our focus was on providing a broad comparison
of different approaches, so we did not attempt to optimise parameters such as as
training iterations and beam widths. We expect improvements could be gained by
paying attention to these factors, but leave that for future work.

We are planning to focus on how proper treatment of morphology would af-
fect performance on dependency parsing. We will also train a supertagger with
a CCG lexicon derived from the treebank so that we can use CCG categories for
morphemes as further features in parsers.

The corrected and extended version of the treebank will be made available to
the academic community in the near future.



30

TLT 2006

References
Atalay, Nart B., Kemal Oflazer, and Bilge Say. 2003. The annotation process in the Turk-

ish Treebank. In Proceedings of the EACL Workshop on Linguistically Interpreted
Corpora, Budapest, Hungary.

Bikel, Daniel. 2002. Design of a multi-lingual, parallel-processing statistical parsing
engine. In Proceedings of the 2nd International Conference on Human Language
Technology Research, San Francisco.

Collins, M., J. Hajic, L. Ramshaw, and C. Tillmann. 1999. A statistical parser for Czech.
In Proceedings of the 37th Annual Meeting of the Association for Computational Lin-
guistics (ACL’99), College Park, Maryland, USA.

Collins, Michael. 1997. Three generative, lexicalised models for statistical parsing. In
Proc. of the 35th Annual Meeting of the ACL, pages 16–23, Madrid, Spain.

Crammer, Koby and Yoram Singer. 2003. Ultraconservative online algorithms for multi-
class problems. Journal of Machine Learning Research.

Eisner, Jason. 1996. Three new probabilistic models for dependency parsing: An ex-
ploration. In Proceedings of the 16th International Conference on Computational
Linguistics (COLING-96), pages 340–345, Copenhagen, August.

Eryiğit, Gülşen and Kemal Oflazer. 2006. Statistical dependency parsing of Turkish. In
Proceedings of the 11th Annual Meeting of the EACL, pages 89–96, Trento, Italy.

McDonald, Ryan, Koby Crammer, and Fernanda Pereira. 2005. Online large-margin
training of dependency parsers. In Proceedings of ACL 2005, Ann Arbor, MI, USA.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-projective
dependency parsing using spanning tree algorithms. In HLT-EMNLP 2005, Vancou-
ver, B.C.

Nivre, Joakim, Johan Hall, and Jens Nilsson. 2004. Memory-based dependency parsing.
In CoNNL 2004, pages 49–56, Boston, Massachusetts, USA.

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In ACL
2005, pages 99–106, Ann Arbor, MI, USA.

Oflazer, Kemal. 2003. Dependency parsing with an extended finite-state approach. Com-
putational Linguistics, 29(4):515–544.

Oflazer, Kemal, Bilge Say, Dilek Zeynep Hakkani-Tür, and Gokhan Tür. 2003. Building
a Turkish Treebank. In Abeille Anne, editor, Treebanks: Building and Using Parsed
Corpora. Kluwer, Dordrecht, pages 261–277.


