
247
Hajič, J. and Nivre, J. (eds.): Proceedings of the TLT 2006, pp. 247–258.
© Institute of Formal and Applied Linguistics, Prague, Czech Republic 2006

Systemic Functional Corpus Resources: Issues in
Development and Deployment

Elke Teich, Richard Eckart, Monica Holtz

Darmstadt University of Technology
Institute of Linguistics and Literary Studies

Department of English Linguistics
Hochschulstrasse 1, 64289 Darmstadt, Germany

E-mail: {LASTNAME}@linglit.tu-darmstadt.de

1 Introduction

As the concern with linguistically interpreted corpora of authentic natural language
texts is growing, the research activities in this field are becoming increasingly di-
versified – both in terms of the types of linguistic phenomena dealt with and in
terms of the linguistic theories engaging in it.

Recently, linguistic phenomena other than syntactic ones, notably semantic and
discourse phenomena, have received more attention. Here, existing resources are
often taken as a backbone in an attempt to create an explicit link between syntactic
and semantic annotation (e.g., PropBank [2] which takes the Penn Treebank [12]
as a basis). Also, there is a growing number of linguistic theories that have come to
acknowledge the need to work with authentic linguistic data including Dependency
Grammar [5], LFG [10] and HPSG [16]. The motivations for this are theory testing,
on the one hand, and building models for NLP applications (e.g., probabilistic
parsers), on the other.

In this paper we discuss the development and deployment of corpus resources
based on Systemic Functional Linguistics (SFL) [11]. SFL has a strong tradition in
text analysis and interpretation. Its focus is on register variation, where a register
is said to be characterized by the greater-than-random co-occurrence of particular
linguistic features. However, with few exceptions (e.g., [13]) SFL has so far primar-
ily worked with text samples instead of corpora, thus missing the chance of further
developing its theory in the direction of probabilistic grammar. We therefore see a
need on the part of SFL for high-quality corpus resources and tools that support the
development and deployment of such resources.



248

TLT 2006

Our primary motivation in developing SFL-based corpus resources lies in this
need. More concretely, we are currently building up an archive of English academic
texts (articles from journals and conference proceedings) from selected scientific
disciplines (including biology, mechanical engineering, computer science). The
final size of this text archive will be around 10 million tokens. Portions of this
archive will be compiled into corpora and lexico-grammatically annotated for pur-
poses of register analysis, for example for investigating recent change in language
(emerging registers), as well as for learning register-specific grammars. From the
perspective of treebanks and linguistically interpreted corpora more generally, our
goal is to contribute an additional angle on the analysis of linguistic data so as to
further the common understanding of issues in linguistic data representation and
deployment.

The paper is organized as follows. We start with a brief synopsis of the main
features of SFL theory and present the particular requirements on SFL-based cor-
pora (Section 2). We then describe our current practice in corpus annotation, also
pointing out shortcomings of this practice (Section 3). Finally, we present our cur-
rent solution to corpus representation and give an example of corpus deployment
for linguistic analysis (Section 4). We conclude with a summary and issues for
future work which include the development of tools for annotation, the refinement
of the data model underlying corpus representation and the development of facili-
ties for linguistic analysis (query, statistical analysis) as well as grammar modeling
(Section 5).

2 Systemic Functional Linguistics (SFL)

2.1 SFL Model

SFL theory considers language a stratified resource with the strata of context, se-
mantics, lexico-grammar and phonology (for spoken language) (cf. [11]). At the
core is the lexico-grammatical stratum and this is also our main concern in corpus
annotation. What is special about Systemic Functional Grammar (SFG) is its strong
functional bias. This is formulated in terms of the concept of metafunction. There
are three metafunctions: the ideational – expressing propositional types of linguis-
tic information (e.g., predicate-argument structure); the interpersonal – expressing
interactional and evaluative types of linguistic information (e.g., mood, modality,
polarity); and the textual – expressing information about linguistic properties of
discourse organization (e.g., theme-rheme, given-new).

An SFG is organized as a feature lattice1 with features from all three meta-

1In this regard, SFG is quite similar to HPSG.



249

Systemic Functional Corpus Resources: Issues in Development and Deployment

Figure 1: An SFG system network for English MOOD

Features Process-type: mental; Mood: declarative; Theme: Marked
Clause in the next step the receiver needs to know the details
ideational Time Senser Process Phenomenon
inter- Residue Mood Residue
personal Adjunct Subject Finite Predicator Complement
textual Theme Rheme

Topical

Figure 2: Example of an SFG function structure (clause rank)

functions that hold simultaneously for a given grammatical unit (e.g., a clause or
a phrase) and carry constraints on the grammatical structure of that unit. For ex-
ample, a feature declarative will constrain the grammatical structure of a clause
to include a Subject and a Finite element, where the Subject is ordered before the
Finite (for English).

The grammatical feature lattice is called system network (see Figure 1 for an
example). The system network represents the paradigmatic linguistic organization
and constitutes the core of an SFG. Applying an SFG in analysis involves choos-
ing the features that describe a given linguistic instance from the system network
and spelling out the constraints on the grammatical structure associated with the
selected features in the form of a function structure. The function structure rep-
resents syntagmatic linguistic organization and unifies information from the three
metafunctions into one representation, which also includes the set of features se-
lected. For an example see Figure 2. Similar analyses are carried out for lower
ranks, notably groups/phrases and words.



250

TLT 2006

2.2 Requirements on SFL-based Corpora

The concern with multiple dimensions of linguistic analysis in SFL poses particular
demands on the representation, annotation and deployment of SFL-based corpora.

Traditional corpora (e.g., Brown, LOB or BNC) are typically annotated at the
word rank only (word class and grammatical category encoded in the form of PoS
tags). Treebanks go one step further in linguistic interpretation annotating phrase or
dependency structure (e.g., [12, 5]). Neither traditional corpora nor treebanks were
originally designed to include other aspects of linguistic description. This causes
difficulties when additional types of annotations need to be added, as for exam-
ple reported in [2] for the Propbank extension of PennTree in terms of predicate-
argument structure.

Corpora annotated on the basis of SFL need to acknowledge more than one de-
scriptional dimensions from the start. For grammatical annotation both the paradig-
matic (system network) and the syntagmatic (function structure) aspects of linguis-
tic organization and the metafunctions (ideational, interpersonal, textual) need to
be covered. This has implications for the annotation as well as the representation
and subsequent deployment of SFL-based corpus resources:

Annotation. Tools for annotation are needed that support the definition of an-
notation schemes in the form of fully explicit systemic functional grammars (sys-
tem networks plus constraints on structure).2 Also, assuming a human annotator,
the annotation process needs to be supported to ensure correctness of application
of the annotation schemes.

Representation. A function structure superimposes three different views on
a given string. In many cases, these cannot be expressed by a single tree, since
each may divide a given string differently, thus creating overlapping segments (see
again the example in Figure 2). For representation, one thus needs to opt for a more
expressive data model, as e.g., proposed by [4] or [17].

Deployment. For use in linguistic analysis, an SFL-based corpus has to be
queryable according to the needs of the user. Adequate query techniques have to
be defined and implemented (cf. [19]).

The following sections describe our current practice in building and working
with SFL-based corpus resources and discuss the needs for extension and improve-
ment of existing tools.

2This is comparable to grammar development support in parsing or generation (cf. the grammar
development tools for SFGs included in the KPML generation system [3]).



251

Systemic Functional Corpus Resources: Issues in Development and Deployment

3 Existing Tools

Most systemic functional annotation has to be done manually since automatic SFG

analysis is beyond the capabilities of currently available tools [13]. Apart from PoS
tagging and some basic phrase structure parsing which we carry out automatically
using the TnT tagger [6] and LTChunk [9], annotations of the kinds described in
Section 2 have to be done manually.

To support annotation and subsequent query, a number of tools are available,
but none of them allows the specification of a fully-fledged SFG. The best known
among these tools is Systemic Coder [15]. Systemic Coder provides support for
defining annotation schemes in the form of system networks and guides the user
through the annotation scheme in the process of annotation. However, the interpre-
tation of function structure specifications in the system network definitions is not
supported. Another limitation of Systemic Coder is that only one level of segmen-
tation can be dealt with at a time, i.e., discontinuous segments (e.g., preposition
stranding) as well as embedded units (e.g., relative clauses) present a problem.
Once a corpus has been annotated, it can be queried for features or feature combi-
nations and a concordance is returned. Also, it is possible to derive some simple
statistics, again querying for the features. The annotated data are stored in XML.

A more recent tool, LBIS Coder [18], additionally allows to interpret constraints
on structure. Also, it is more flexible concerning segmentation, covering e.g., em-
bedded units. The corpus data are stored in XML. However, LBIS Coder does not
offer the possibility of statistical analysis.

Finally, there is the SysFan tool [20]. SysFan can handle multiple annotations
at a time and the annotator can specify structural constraints with the features.
However, there is no support for checking the application of those constraints,
which makes this functionality practically useless. The annotated corpus is stored
as a relational database and can be queried accordingly. SysFan’s commitment to
a proprietary relational database makes it hard to export data to applications that
follow a different philosophy, e.g., a semi-structured XML-based data design.

For the time being we live with these imperfections. We create feature anno-
tations with Systemic Coder, export the XML and then add function structure an-
notations manually using a generic XML editor. Each annotation created is treated
as an independent layer. To relate the different layers to each other we have devel-
oped our own tool, AnnoLab [7], which is based on a multi-layer data model. The
problem of potentially conflicting segmentations at annotation time is thus avoided
because annotations are kept separately and are related to each other only at query
time. The AnnoLab tool and its underlying data model are described in the next
section.



252

TLT 2006

4 A Modular, Flexible Approach

We have examined a number of different approaches of dealing with multi-layer
annotations and from those synthesized a modular data model [8]. This model
divides the representation of annotations into four tiers:

• The signal tier contains the signals, instances of primary data, such as text
or speech.

• The structure tier contains the structures that are superimposed on the pri-
mary data, e.g. a function structure or a parse tree. These structures are
called layers and are made up of typed elements. Each layer provides a set
of ways in which these elements can relate to each other, e.g. a tree-layer
offers a parent-child relation and a sibling relation.

• The feature tier contains features associated with structure elements of the
signal tier. Features carry a name and a value.

• The location tier allows mapping between the signal tier and the structure
tier. The signals of the signal tier and the layers of the structure tier are
connected in a stand-off fashion by means of segments. A segment describes
a region of the primary data by means of anchors marking its boundaries.

Figure 3 illustrates how we apply this model to represent a multi-layer SFL

annotation. It shows five annotation layers, one for each metafunction and one for
each PoS and phrase structure. The layers are made up of annotation elements,
such as Clause, Subject or Process, some of which carry features such as Process-
type: Mental or Part-of-Speech: Verb.3 The leaf elements are associated with one
or more segments which connect the annotations to the text string.

Figure 3: Multi-layer SFL, phrase-structure and PoS annotation

3Due to limited space only the feature value is shown in Figure 3.



253

Systemic Functional Corpus Resources: Issues in Development and Deployment

In order to make use of a resource annotated on the basis of this data model,
we have collected a set of query operators and associated them with the four tiers.

At the signal tier, query operators can be of two different kinds. Location-based
operators take segments as parameters and return pieces of primary data addressed
by these segments. Content-based operators match against the primary data and
return segments addressing the matching sections.

At the structure and feature tiers, query operators come in the form of axes
along which it is possible to navigate through the annotation layers. These axes are
induced by the element-to-element relations of the layer. Some of the axes induced
by a tree-layer are the child/parent, descendant/ancestor, following/preceding sib-
ling and following/preceding element axes. One axis also allows to access the
features associated with an element.

At the location tier, queries operate on segments. The query operators defined
allow to test for overlaps, adjacency, containment or alignment as well as union
and intersection of segments.

The central design aspect of the data model is to highlight opportunities for
modularizing annotation processing systems. For instance, an annotation system
that works for textual signals can in principle be easily extended to support audio
signals: both are linear in nature and can be used in combination with the same
location, structure and feature devices. Only that part of the system dealing with
the signal aspects has to be modified. Similarly, when an annotation requires a
particular annotation structure in the layers, only the implementation of the struc-
ture tier has to be adapted. The approach allows for implementations of support
for different kinds of signals (text, audio, video), location mappings (intervals, ar-
eas, spaces), layer structures (tables, trees, graphs) and features (simple features or
feature structures) to exist in parallel and be plugged together to suite a particular
task.

The design of the data model and query operators was greatly influenced by the
XML data model and the associated XPath and XQuery languages. The reason for
using these as a foundation is their inherent suitability for the task of annotation,
especially the annotation with trees.

Based on the conception of the modular data model we have implemented an
XML-based workbench for multi-layer annotation called AnnoLab. While XML
and XPath/XQuery are not immediately suitable for all our annotation needs, they
are reasonably suitable for representing and querying individual annotation layers.
To support multi-layer annotation, we have replaced XML’s text nodes by seg-
ments, transforming them into a stand-off annotation. In this way, AnnoLab can
treat any XML-based annotation containing the annotated text in the text-nodes,
e.g. Systemic Coder files, as an annotation layer. Figure 4 gives an impression of
the resulting XML code.



254

TLT 2006

<layer name="Interpersonal Metafunction">
<Clause Type="Declarative">

<Residue>
<Adjunct><segment start="1" end="16"/></Adjunct>
<Predicator><segment start="37" end="43"/></Predicator>
<Complement><segment start="45" end="55"/></Complement>

</Residue>
<Mood>

<Subject><segment start="18" end="29"/></Subject>
<Finite><segment start="31" end="35"/></Finite>

</Mood>
</Clause>

</layer>

Figure 4: Ideational layer in stand-off XML format

AnnoLab offers a set of XQuery functions implementing the query operators
we have defined for each of the tiers. That means, it offers all the power of XQuery
and adds the capability of querying multiple annotation layers. Not only can it be
used to query SFL-annotated resources, but also to analyze them simultaneously
with non-SFL-annotations.

One of the points of interest in register analysis is thematic patterning. The
Theme occupies the initial position in the clause and is thus a crucial indicator
of what a text is about. Typically (i.e., most frequently), in English the Theme
position is occupied by the Subject. If other choices are made (e.g., Adverbial),
these appear marked. To investigate thematic patterns in an annotated corpus, we
need to make reference to more than one layer of annotation, the layer encoding
textual information and the layer encoding interpersonal information, in order to
check how the Themes are filled. Figure 5 shows a sample cross-layer query that
looks for Themes that are not coexistent with the Subject.

get-text(
layer("Textual Metafunction")//Theme[
not(overlaps(., layer("Interpersonal Metafunction")//Subject))])

Figure 5: Query example using segment overlaps

The first step of the query searches for all Theme elements in the Textual Meta-
function layer. Each of these is tested for overlap with a Subject element from the
Interpersonal Metafunction layer. The overlaps function collects all segments as-



255

Systemic Functional Corpus Resources: Issues in Development and Deployment

sociated with the current Theme element and tests if one of them overlaps with any
segment associated with a Subject element. All Theme elements that pass this test
are dropped. The rest is finally passed to the location-based signal query opera-
tor get-text, which retrieves the text addressed by the segments associated with the
remaining elements.

A number of pre-defined XQuery templates are included in AnnoLab, into
which user queries (such as the one shown in Figure 5) are embedded and executed
as subqueries. These templates take care of refining the search results and display-
ing them for example as a Keyword-in-Context concordance, cross-reference table
or statistical report. Additionally, AnnoLab can display multiple annotation lay-
ers in a side-by-side view, aiding in the comparison of annotations as for instance
required to analyze inter-annotator agreement.

AnnoLab is implemented in Java and is based on the open-source native XML
database eXist [14] and the web development framework Cocoon [1].

5 Summary and Conclusions

In this paper we have discussed the issues involved in developing and deploying
corpora based on Systemic Functional Linguistics (SFL). Our motivation for em-
barking on this endeavor is to have available a data set for carrying out quantitative
linguistic analyses as required by register analysis, on the one hand, and to provide
a basis for developing a model for probabilistic Systemic Functional Grammar and
a corresponding parser, on the other.

The current state of our work can be summarized as follows.
Annotation. In contrast to comparable efforts in providing theory-rich corpus

resources (e.g., the LinGo or Prague treebanks), we cannot draw on any automatic
SFG-based parsing, so we have to carry out annotation manually. To create a high-
quality resource, we go through the necessary steps for quality assurance (e.g.,
develop annotation guidelines, check interannotator agreement etc). Also, we are
working towards an annotation tool that more adequately implements the particular
needs of SFG analysis. As a supplement to manual annotation we employ PoS
tagging and phrasal chunking. Also, we are exploring the possibilities of providing
a more sophisticated structural analysis externally. Here, Dependency Grammar
and Combinatory Categorial Grammar are suitable candidates, since they adopt
structural segmentations compatible with those of SFG.

Representation. We have developed a data model for SFL-based corpora that
conforms to the state-of-the-art in corpus representation. This model follows a
multi-layer design that appropriately reflects the requirements of systemic-functional
linguistic analysis and serves as a basis for corpus query [8].



256

TLT 2006

Deployment in linguistic analysis. We have implemented a tool for linking
multiple layers of annotation. This tool also provides a basic query functionality
including query across layers [7]. Query is currently being developed further so as
to cover additional analysis needs.

Acknowledgement. This work is supported by a research grant from DFG (Deutsche
Forschungsgemeinschaft).

References

[1] Apache Cocoon Project. Available online from: http://cocoon.apache.org/,
viewed June 2006.

[2] Olga Babko-Malaya, Ann Bies, Ann Taylor, Szuting Yi, Martha Palmer,
Mitch Marcus, Seth Kulick, and Libin Shen. Issues in synchronizing the
English Treebank and PropBank. In Frontiers in Linguistically Annotated
Corpora, pages 70–77, Sydney, Australia, July 2006. COLING-ACL 2006,
Association for Computational Linguistics.

[3] John A. Bateman. Enabling technology for multilingual natural language gen-
eration: the KPML development environment. Journal of Natural Language
Engineering, 3(1):15–55, 1997.

[4] Steven Bird and Mark Liberman. A formal framework for linguistic annota-
tion. Speech Communication, 33(1-2):23–60, 2001.

[5] Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora Vidová-Hladká. The
Prague Dependency Treebank: A three-level annotation scenario. In Anne
Abeillé, editor, Treebanks: Building and Using Parsed Corpora, pages 103–
127. Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[6] Thorsten Brants. TnT - a statistical part-of-speech tagger. In Proceedings
of the Sixth Applied Natural Language Processing (ANLP-2000), pages 224–
231, Seattle, WA, 2000.

[7] Richard Eckart. A framework for storing, managing and querying multi-
layer annotated corpora. Diploma thesis, Technische Universität Darmstadt,
Darmstadt, July 2006.

[8] Richard Eckart. Towards a modular data model for multi-layer annotated
corpora. In Proceedings of the COLING/ACL 2006 Main Conference Poster



257

Systemic Functional Corpus Resources: Issues in Development and Deployment

Sessions, pages 183–190, Sydney, Australia, July 2006. Association for Com-
putational Linguistics.

[9] Steven Finch and Andrei Mikheev. A workbench for finding structure in
texts. In W. Daelemans and M. Osborne, editors, Proceedings of the Fifth
Conference on Applied Natural Language Processing (ANLP-97), pages 372–
379, Washington D.C., 1997.

[10] Anette Frank, Louisa Sadler, Josef van Genabith, and Andy Way. From tree-
bank resources to LFG f-structures. Automatic f-structure annotation of tree-
bank trees and CFGs extracted from treebanks. In Anne Abeillé, editor, Tree-
banks. Building and using syntactically annotated corpora, pages 367–389.
Kluwer Academic Publishers, Dordrecht, Boston, London, 2003.

[11] Michael A. K. Halliday. An introduction to functional grammar. Arnold,
London, 3. edition, 2004. revised by Matthiessen, Christian M. I. M.

[12] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: the Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

[13] Christian M. I. M. Matthiessen. Frequency profiles of some basic grammat-
ical systems: an interim report. In G. Thompson and S. Hunston, editors,
System and corpus: exploring connections, pages 103–142. Equinox, Lon-
don, 2006.

[14] Wolfgang Meier. eXist – Open Source native XML database.
http://exist.sourceforge.net/index.html, 2006.

[15] Michael O’Donnell. From corpus to codings: Semi-automating the acqui-
sition of linguistic features. In Proceedings of the AAAI Spring Symposium
on Empirical Methods in Discourse Interpretation and Generation, Stanford
University, California, March 1995.

[16] Stephan Oepen, Dan Flickinger, Kristina Toutanova, and Christopher D.
Manning. LinGO Redwoods. A rich and dynamic treebank for HPSG. In First
Workshop on Treebanks and Linguistic Theories (TLT 2002), pages 139–149,
Sozopol, Bulgaria, 2002.

[17] C. Michael Sperberg-McQueen and Claus Huitfeldt. Goddag: A data struc-
ture for overlapping hierarchies. In DDEP/PODDP, pages 139–160, Munich,
2000.



258

TLT 2006

[18] Toru Sugimoto, Noriko Ito, Shino Iwashita, and Michio Sugeno. A computa-
tional framework for text processing based on systemic functional linguistics.
In 1st Computational Systemic Functional Grammar Conference, pages 2–11,
University of Sydney, July 2005.

[19] Elke Teich, Silvia Hansen, and Peter Fankhauser. Representing and query-
ing multi-layer corpora. In Proceedings of the IRCS Workshop on Linguistic
Databases, pages 228–237, Philadelphia, 11-13 December 2001. University
of Pennsylvania.

[20] Canzhong Wu. Modelling Linguistic Resources: a systemic-functional ap-
proach. PhD thesis, Department of Linguistics, Macquarie University, Syd-
ney, Australia, 2000.


