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Abstract

Monadic Second Order logic (MSO) has been used as a formalism to
describe Government and Binding rules. It also lends itself to be used as
a query language. Main arguments are its expressive power and linear data
complexity. Particularly in the domain of tree banks, where the size of the
data is much bigger than the size of the query, the data complexity is an
influential factor.

It is known since the late 1960s that an MSO formula can be translated
into a tree automaton. These results also predict an more than exponential
blowup of the number of states of the tree automaton corresponding to the
number of quantifier alternations in the formula. If one refrains from writing
complicated formulae and thus avoids the theoretical blowup, one could hope
the result becomes practically usable to write a query tool for tree banks. It is
shown here that another problem arises: even with few quantifier alternations
the transition tables get too big very soon.

This is illustrated by a straightforward implementation of tree automata:
by taking the definition in its mathematical sense, and translating every el-
ement into an equivalent computer language construct. This was done in a
prototype Java version of the tool described above. I describe why this ap-
proach reaches its limits all too soon, due to the above problem.

1 Introduction

MSO lends itself to querying tree banks. One of its interesting strengths is its abil-
ity to express the transitive closure of any binary relation which is expressible in
the language: there is a formula in which a binary relation R(x,y) can be entered,
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which then expresses the transitive closure of this relation. Since MSO is an ex-
tension of first-order logic, any first-order relation can be expressed in it, and thus
also the transitive closure of any first-order relation.

Transitive closures appeaar quite often and very naturally in linguistics. The
need for them has most of the time been met by introducing atomic formulae which
directly express the transitive relation. E.g. for the ancestor relation, an atomic
formula x ≺∗ y is introduced, next to the more basic parent relation x ≺ y. The
limitation of this approach is that those relations are hard-coded in the signature.
There is no way to define new ones apart from extending the language. In the case
of a corpus query tool, this would mean the extra relation has to be implemented
by the programmer himself. In MSO, this can be done dynamically. As it is hard
to foresee the need for such relations, this can come in handy.

For example, one could imagine the need to express that two nodes are con-
nected by a path containing only possessive nodes, for example to find instances
of chained possessives as in The man’s sister’s daughter’s cat was killed on the
road. (Of course one could just have said: the man’s niece, but that would make
the example much less interesting. . . )

The basic relation could be expressed as follows, with x the parent node and y
the daughter:

R(x,y) :≡ x ≺ y∧POSS(x),

where POSS(x) is supposed to express x is a node which is a possessive, which
might either be marked as a node label or be expressed by another appropriate
formula. Then this can be inserted in the formula1 which computes the transitive
closure of a binary relation to obtain the desired relation, which again has x and y
as free variables:

∀X(∀z(R(x,z)→ z ∈ X)∧ (∀z,w(z ∈ X ∧R(z,w)→ w ∈ X))→ y ∈ X).

Here X is a second-order variable which stands for a set.
A formula containing free variables can be interpreted as a query for nodes, or

sets of nodes, satisfying the formula. What is needed is a procedure for finding
those nodes. This procedure is given by the process of translating an MSO for-
mula into an equivalent finite tree automaton, as described by Thatcher and Wright
(1968), Doner (1970). A tree automaton can be evaluated on a tree in linear time in
the size of the tree. This sounds promising in the light of the ever-growing modern
tree banks, making a low data complexity a precondition for a successful query
language.

1Due to Courcelle (1990).
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Another property of MSO which comes in nicely is that it is decidable over
trees2. This assures that, when a query gives no results, this effectively means no
tree in the tree bank satisfies the formula.

Unfortunately, the translation process itself is non-elementary in the length of
the formula: the number of states of the resulting automaton is a tower of exponen-
tials, whose height is linear in the number of quantifier alternations in the formula.

That is, the number of states is 2n. .
.n

p, where p, the number of quantifier alterna-
tions, is the number of times an existential (universal) quantifier is followed by a
universal (resp. existential) quantifier. For example, for the formula ∃x∀y x ≺∗ y,
expressing there is a root node, the number of quantifier alternations is 1. Note that
multiple quantifiers of the same type may follow each other without incrementing
this number.

Reinhardt (2002) explains that, when one wants to convert formulae in au-
tomata, the non-elementary blowup in the number of states is unavoidable, inde-
pendent of the way one attempts it. At the same time, Frick and Grohe (2002) show
that, under a generally assumed precondition3, there is no model-checking process
to evaluate an MSO formula, which does better than the automaton approach. This
justifies the focus on automata and is a motivation for looking for optimisations of
this approach.

As it is rather difficult to understand a formula with a lot of quantifier alterna-
tions, it is to be expected that the potential users of the program will not construct
such formulae. This gives hope that the theoretically predicted blowup will not
occur, or at least be restricted enough to remain manageable.

Unfortunately, another problem shows up in the implementation of such a tool,
which makes a simple implementation of tree automata impossible. I describe this
simple, naive implementation, and why it doesn’t work, even for relatively simple
formulae.

2 Automata and Logic

There are several definitions of tree automata to be found in the literature. Notable
differences are in whether initial states are used or not, and in whether the transition
function is defined as a partial function or a (complete) algebra.

The use of initial states is closely related to the definition of terms or trees: if
one wants to restrict automata to trees of a fixed branching degree, then variables
at the leaves are needed, and an initial state or initial assignment in the automaton

2More precisely, over graphs with bounded tree width.
3P = NP
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definition.4 If one allows trees of mixed branching, then it is possible to omit them.
Thus automata with an initial assignment can be regarded as a bit more expressive
than those without.5

On the other hand, whether to use a partial function for the transitions or a total
function or an algebra over the states is merely a matter of convenience.

The implementation of the tool mentioned above requires an initial state, as
the application works on binary trees6. It is not necessary to insist on complete
transition functions, but they will have to be completed for certain operations. The
following definitions are a combination of the definitions in Comon et al. (2002)
and Gécseg and Steinby (1984).

2.1 Automata and their properties

A ranked alphabet is a couple, (F ,Arity), where F is a finite set and Arity is a
mapping from F into N. The arity of a symbol f ∈ F is Arity( f ). The set of
symbols of arity n is denoted by Fn.

Let X be a set of variables. Assume X and F0 are disjoint. The set T (F ,X)
of terms over the ranked alphabet F and the set of variables X is the smallest set
defined by:
- F0 ⊆ T (F ,X);
- X ⊆ T (F ,X);
- if n ≥ 1, f ∈ Fn and t1, . . . , tn ∈ T (F ,X), then f (t1, . . . , tn) ∈ T (F ,X).

Terms can be regarded as labelled trees, where each symbol of f ∈ F repre-
sents a node with label f , and the arguments are its children; hence the name tree
automaton.

Definition (Tree Automaton)
A finite bottom-up tree automaton is a quintuple A = (F ,Q,Q f ,α,∆), where F is
a ranked alphabet, also called the signature, Q is the (finite) set of states, Q f ⊆Q is
the set of final states, α : X →Q is the initial assignment, and ∆ :

S
n∈NFn×Qn →Q

is a partial function. X is also called its frontier alphabet.

Automata following this definition are deterministic. If ∆ maps into sets of
states: ∆ :

S
n∈NFn ×Qn → 2Q, the automaton is called nondeterministic.

An automaton is called complete if ∆ is a complete function.

4Alternatively, one leaves out the arity of symbols, and allows arbitrary symbols at leafs. A
corresponding altering of the transition function is needed too.

5An intermediary approach is to define only one initial state; however, an initial assignment is
more general.

6See section 2.3 for the reason why.
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A run of an automaton on a term is defined as follows: Variables are mapped
to states by the initial assignment α. Now given a node labelled with f ∈ Fn,
suppose its children have been processed into states q1, . . . ,qn, then this node gets
mapped to ∆( f ,q1, . . . ,qn) if it is defined, or to an arbitrary element of the set if ∆
is nondeterministic.

A term is accepted by an automaton, if there is a run on the term that assigns a
final state to its root.

The language L(A) recognised by A is the set of terms accepted by A . A set
L of terms is recognisable if there exists an automaton for which L(A) = L. Two
automata are equivalent if they recognise the same language.

A deterministic automaton is minimal if it is the automaton with the smallest
number of states in its equivalence class. It was proved that there is a unique min-
imal deterministic automaton, but there can be several nondeterministic automata
with a minimal number of states.

A state is accessible if there is a term such that the automaton run on that term
results in that state. An automaton is reduced if all its states are accessible.

2.2 Manipulations of automata

I give a short sketch of the manipulations that can be done on automata, either
unary or binary. For an extensive description of these operations I refer to Comon
et al. (2002).

By considering every subset of the set of states as a state, and accordingly
recomputing the transition function, it is possible to construct an equivalent deter-
ministic automaton to every nondeterministic automaton. One sees that the deter-
minisation construction is exponential in the number of states. Often the blowup
can be avoided by considering only accessible states. The worst case, however,
does occur.

Completion of an automaton is straightforward: add a new ‘sink’ state and let
every transition that is not yet defined point to it. This operation is linear in the
number of transitions of the complete automaton, which is equal to

∑
n∈N

|Fn| · |Qn|. (1)

Note that this number is finite, since we restrict ourselves to finite signatures.
Reduction of an automaton can be implemented straightforwardly by starting

at the constants of the signature and the states reached by the initial assignment,
and incrementally computing all reachable states. There exists a more efficient
algorithm, linear in the number of states.
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One can minimise a deterministic automaton due to the algorithm following
from the Myhill-Nerode Theorem for tree languages. It has to be reduced and
complete first. Intuitively, states are equivalent if transitions containing them have
the same right-hand side if the states are exchanged. One can compute the equiv-
alence classes of states, and considering those equivalence classes to be the new
states gives the minimal automaton. There are a lot of minimisation constructions,
the fastest being O(|Q| · log |Q|).

For a given automaton A , an automaton recognising the complement of its
language can be constructed. This process is very easy, assumed A is determin-
istic and complete: simply complement the set of final states. If the automaton is
nondeterministic, it has to be determinised first.

For given automata A1 and A2, an automaton recognising the union of their
languages can be constructed. The straightforward construction is to simply take
the union of the states, final states, and transition functions. However, this does not
preserve determinism and completeness. When both automata are complete, there
is a more efficient construction which preserves determinism. Basically, it amounts
to taking the cross product of the states and a fitting cross product of the functions.
Thus its complexity is linear in the product of the sizes of the transition functions,
given in (1).

From the above it follows that intersection of automata is also possible. How-
ever, there is a construction that does not require determinisation, almost identical
to that for union, only the new final states are computed differently.

2.3 The Logic Connection

Monadic Second Order logic is an extension of first-order logic by variables repre-
senting sets. Quantification is possible over both first- and second-order variables.
We will only be concerned with weak MSO, i.e., the second-order variables will
only range over finite sets.

Free variables are encoded in the signature of the automaton. An ordering of
the variables is presumed. Each signature symbol is a vector of length the number
of free variable symbols in the formula being translated. A 1 in position i means
that a node labeled with that symbol is in the set denoted by the ith variable, a
0 means it isn’t. A third symbol, ⊥, is introduced, meaning no element of the
corresponding set has been encountered, yet. This entails that every variable is
percieved as a set, i.e. a second-order variable. First-order variables are addition-
ally restricted to be singletons. This can be done since the singleton property can
be expressed using only second-order variables.

A fixed arity is chosen for the signature symbols, corresponding to the maximal
branching degree for the trees to be searched. Arnborg et al. (1991) show it is
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possible to convert every formula on trees (or even graphs with bounded tree width)
into a formula on binary trees, thus it is safe to simply use 2.

It can be seen that by this encoding, the size of the signature is 3n, where n is
the number of free variables in the formula.

The encoding gives rise to the need for two additional operations, one for
adding and one for removing free variables. These are cylindrification and pro-
jection, respectively. Projection to i does what can be expected from the name: it
removes a variable from the signature by dropping the ith element of the symbol
vector, also reducing the number of arguments, if necessary. It can easily be seen
that this process potentially introduces nondeterminism.

Cylindrification to i is the inverse operation of projection: it adds a variable to
the signature symbol encoding at place i, by inserting a slot in the symbol vector,
which is filled up with a 0, a 1 or a ⊥.

With all the above, the translation of an MSO formula into an automaton is
easily explained: atomic formulae are translated into simple automata that are cal-
culated by hand; logical connectives correspond immediately to automaton ma-
nipulations: negation to complementation, conjunction to intersection, disjunction
to union and existential quantification to projection. Other connectives have to
be eliminated first by logical manipulations of the formula. Special care must be
taken for first-order variables by intersecting automata containing them with an
automaton expressing the singleton property.

Note that it follows from this incremental process that binding the free variables
by prefixing the formula with quantifiers does not help to reduce the memory usage:
the automaton for the quantified subformula, in which the variables are free, has
to be built first, and it has the larger signature size. A good heuristic is to expect
the maximal signature size to be 3N with N the total number of variables in the
formula, though this is not necessarily the case.

The high theoretical time complexity arises because projection most of the
times introduces nondeterminism and complementation asks for determinism, so
an exponential determinisation step is performed for every quantifier alternation
(remember that ∀ ≡ ¬∃¬).

3 Naive Implementation

When trying to implement tree automata, the first and easiest approach is to literally
implement the mathematical concepts as data structures.

In short, one takes an implementation of the set construct (i.e. a container data
structure that checks for uniqueness of its elements) and uses it to model the state
set, final states and signature of the automaton. Analogously, one takes an imple-
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mentation of a map (i.e. a data structure that maps keys to values) and uses it to
model the transition function and the initial assignment. The first takes a signature
symbol with a list of states as keys, the latter a variable symbol. Both take sets of
states as values (sets rather than single states in order to cope with nondetermin-
ism).

An implementation of this sort was made in Java, using the standard library in-
terfaces java.util.Set and java.util.Map together with their implementations
java.util.HashSet and java.util.HashMap. Additional classes were written
for the smaller units, such as states and symbols, and to fit all the pieces together.

4 Why It Doesn’t Work

Consider the following formula7,

∃x(SIMPX(x)∧∀y(x ≺∗ y →¬ON(y))),

expressing there is a node labelled SIMPX which has no descendant labelled ON.
Here SIMPX and ON are free second order variables, representing the nodes la-
belled with that symbol and ≺∗ denotes domination of nodes.

This formula leads to an automaton with a signature size of 9, with 7 states.
Formula (1) tells us this automaton has 441 transitions.

In terms of memory, a transition takes 3 references for the argument (symbol
+ 2 states), and at least one for the value. In Java, a reference generally takes 4
bytes (see Wilson and Kesselman 2001). Thus the transition function of the above
automaton alone takes at least 7056 bytes, or almost 7 kB. The surrounding data
structure and memory used for book-keeping is neglected in this computation. All
of the objects that are referenced have to be in memory too, which each take at
least 8 bytes (see the reference above). Together they account for enough to make
this automaton a little more than 7 kB.

Soon though the automata get too big. For the still rather simple conjunctive
formula expressing there is a node labelled SIMPX, which has a descendant also
labelled SIMPX, which on its turn has no descendants labelled ON:

∃x∃y(SIMPX(x)∧SIMPX(y)∧ x ≺∗ y∧¬(x = y)∧∀z(y ≺∗ z →¬ON(z))), (2)

intermediary automata are created with a signature size of 81 symbols and 432
states, which leads to 241 864 704 transitions taking 230 MB. The full automaton
representing this formula could not be constructed on a machine with 7 GB of
memory.

7The formulae are examples from Kepser (2003), see there for the rationale behind the formulae.
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Considering the above automaton is not judged very big in comparison to what
can be expected for formulae with a higher number of quantifier alternations (the
above formula has 1 quantifier alternation), it seems the naive approach of explic-
itly storing each transition is doomed to fail. One could argue that it is possible
to use more memory efficient data structures to store states, for example by simple
identifying integers, but there will always be a point where the sheer number of
transitions is too big to fit in an average computer’s main memory, if represented
this way.

5 Optimisations

5.1 Simple Optimisations

5.1.1 Signature Encoding

In the light of the space problems described above, it is a good idea to leave the
⊥ symbol out. This reduces the signature size to 2n, but makes projection a bit
trickier: care must be taken to prune branches consisting only of 0s. This pruning
is similar to the process of reduction. As usual, space is traded for time. It should
be investigated further whether a more optimal encoding of the variables in the
signature is possible.

Although after equation (1) the number of states is much more influential on the
space complexity than the signature size, this optimisation should not be neglected,
considering there is no way to influence the number of states, being directly con-
nected to the complexity of the formula.

5.1.2 Default State

It is observed that often a large portion of all transitions all lead to the same state.
Most of the time this is also a sink state, i.e. once the automaton has got in that
state, it cannot get out of it again. A first optimisation of the above implementation
is not to store the transitions that lead into this default state and return the default
state if no explicit transition is present. At first sight, this approach saves a lot of
space. But once union or intersection is performed, it loses its advantages: states
in the new automaton represent pairs of states of both old automata, and only the
state representing the pair (default,default) is an equivalent default state for
the new automaton. There are, however, a lot of states which represent pairs in
which only one of the two is the default state, and those still need to be explicitly
represented, such that the memory savings after union or intersection is relatively
low.
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5.2 Future Work

Both of the abovementioned simple optimisations have been applied to my pro-
gram, without much success: it still doesn’t succeed at compiling formula (2),
although it can be observed that it gets a bit further in the incremental process
before space runs out.

This indicates more radical methods are to be considered to reduce the size of
the automaton representation in memory. For string automata, a successful opti-
misation is to use binary decision diagrams (Bryant 1986; 1992) for the transition
function, as is discussed in Klarlund et al. (2002). A promising path is thus to
investigate whether and how this concept can be generalised to tree automata.

Another problem is the fact that the free variables of the formula are strongly
interweaved with the signature of the automaton. The signature is used as an en-
coding of those variables. Not only does this make the connection between the
automaton and the trees it is to be evaluated on less intuitive, it also makes the
size of the automaton dependent on the number of (free) variables in the formula.
That is an unwanted side-effect. Remember the initial hope that one could avoid
the theoretical complexity of the problem by having formulae with few quantifier
alternations; this is now complicated by this connection. However, this encod-
ing seems to be crucial for the translation process, so it is not to be expected that
substantial improvement can be achieved. Nevertheless, it is worth investigating
whether optimisations can be found in this area.

6 Conclusion

It was illustrated that the straightforward way to implement tree automata sketched
above, i.e. by explicitly storing each and every transition, is usable only for very
restricted applications. As soon as the combination of signature and states gets big-
ger, the amount of memory needed to represent the transition function gets unrea-
sonably big. When trying to convert monadic second order formulae into automata,
the approach is not feasible.

Another factor that greatly complicates the process is the strong connection
between the signature of the automata and the free variables of the formulae. This
makes the size of the automaton dependant on the number of variables in the for-
mula. Once again, this is an incitement to look for more efficient data structures
for the automata.
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