
M A T E M A T I C K O - F Y Z I K Á L N Í F A K U L T A

P R A H A

U N I V E R S I T A S C A R O L I N A P R A G E N S I S

TECTOMT, DEVELOPER'S GUIDE

ZDENĚK ŽABOKRTSKÝ, ONDŘEJ BOJAR

úfal/ckl technical report

 TR-2008-38

 TECTOMT,

DEVELOPER'S GUIDE

Zdeněk Žabokrtský
Ondřej Bojar

ÚFAL/CKL Technical Report TR-2008-39
ISSN 1214-5521

December 2008

Copies of ÚFAL/CKL Technical Reports can be ordered from:

Institute of Formal and Applied Linguistics (ÚFAL MFF UK)

Faculty of Mathematics and Physics, Charles University

Malostranské nám. 25, CZ-11800 Prague 1

Czech Republic

or can be obtained via the Web: http://ufal.mff.cuni.cz

Table of Contents
1. Introduction...2

1.1. What is TectoMT?..2
1.2. What is not TectoMT?..2
1.3. What was the motivation for creating TectoMT?..2
1.4. Who can use TectoMT?...3
1.5. Related documents..3
1.6. How to cite TectoMT?..3
1.7. Acknowledgments..3

2. TectoMT Architecture Overview..4
2.2. Directory structure...6

3. Data Structure Units in TectoMT...8
3.1. Documents, Bundles, Trees, Nodes, Attributes ...8
3.2. 'Layers' of Linguistic Structures...8
3.3. TectoMT API to linguistic structures..9
3.4. Fslib representation behind the API..10
3.5. TMT File Format ...11

4. Processing units in TectoMT...12
4.1. Hierarchy of Processing Units...12
4.2. Blocks..12
4.3. Scenarios..14
4.4. Applications...14
4.5. Common Development Environment...14

5. Debugging Tips..16
5.1. Auto-Diagnose (Automatically Create Minimal Testcase)..16

6. Processing Large Data, Grid Computing..17
6.1. qrunblocks: Parallel Processing on a Grid ...17

6.1.1. Basic Usage...17
6.1.2. Grid Parameters, e.g. Priority...18
6.1.3. Passing Parameters to qrunblocks Jobs..18
6.1.4. Collecting Output or Checking Status...18
6.1.5. Retrying Failed Files and Automatic Retry..18

6.2. Suggested Dataflow for Huge Datasets ..19
7. Quality Assurance...20

7.1. Viewing Results of Daily Tests...20
7.2. E-mail Notifications..20
7.3. Fixing a Bug!..20
7.4. Running Tests on Command-Line...20
7.5. Adding a New Test...20
7.6. Adding a Test to the Daily Suite...21

8. General Instructions for TectoMT Developers..22
9. TODOs...23

1

1. Introduction

1.1. What is TectoMT?
TectoMT is a highly modular NLP (Natural Language Processing) software system
implemented in Perl programming language under Linux. It is primarily aimed at Machine
Translation, from English to Czech in the first phase, making use of the ideas and
technology created during the Prague Dependency Treebank project. At the same time, it
is also hoped to significantly facilitate and accelerate development of software solutions of
many other NLP tasks, especially due to re-usability of the numerous integrated
processing modules (called blocks), which are equipped with uniform object-oriented
interfaces.

This document describes TectoMT from the technical viewpoint. The theoretical
background related to the translation itself (the question of lexical transfer etc.) are not
discussed here.

1.2. What is not TectoMT?
TectoMT -- as a whole -- is not an end-user application, and will never be. It is an
experimental development environment, too large and too complex to become a widely
used robust product; also, authors rights and specific licenses associated with some of the
integrated components must be respected. However, building and public releasing of real
end-user applications (consisting of selected TectoMT components) is possible and
supported by the current TectoMT architecture.

1.3. What was the motivation for creating TectoMT?
When we started developing the pilot version of TectoMT in autumn 2005, our motivation
for building the system was twofold.

First, we believe that the abstraction power offered by the tectogrammatical layer of
language representation (as introduced by Petr Sgall in 1960's and recently implemented
within the Prague Dependency Treebank project, t-layer for short) can contribute to the
state-of-the-art in Machine Translation. Not only that the system based on "tecto" should
not loose its linguistic interpretability in any phase and thus it should allow for simple
debugging and monotonous improvements. Compared to the popular n-gram translation
models, there are advantages also from the statistical viewpoint. Namely, abstracting from
the repertoires of language means (such as inflection, agglutination, word order, functional
words, intonation), which are used to varying extent in different languages for expressing
non-lexical meanings, should make the training data contained in available parallel corpora
much less sparse (data sparseness is a notorious problem in MT), and thus better
machine-learnable.

Second, even if the first assumption might be wrong, we are sure it would be helpful for me
and our colleagues at the institute to be able to integrate existing NLP tools (be they ours
or external) into a common software framework. Thus we could ultimately get rid of the
endless format conversions and frustrating ah-hoc tweaking of other people's source

2

codes whenever one wants to perform any single operation on any single piece of
linguistic data.

1.4. Who can use TectoMT?
'Can' relates to two meanings here: (a) 'to be able' and (b) 'to be allowed.'

Ad (a): As mentioned above, TectoMT is rather a development software framework, far
from the end-user application shape. It can be effectively used only by programmers with
at least a basic experience in Linux/bash, including e.g. writing/understanding simple
Makefiles, and with advanced knowledge of Perl, including OO-programming. Experience
in working with (and customizing of) the tree editor TrEd might be also very useful, as well
as knowledge of PML (xml-based Prague Markup Language) and especially knowledge of
the layered annotation scenario of the Prague Dependency Treebank.

Ad (b): As for licensing, most TectoMT source codes are available under GNU General
Public License, version 2.0, which is always explicitly noted in the files. However, the
license status of the system as a whole is not formally clear at this moment, as there will
always be some components in TectoMT which we are allowed to use but not to freely
distribute or re-license under GNU GPL. So all TectoMT developers are asked not to
distribute TectoMT as a whole or its parts outside UFAL, unless they carefully checked all
the licence issues.

1.5. Related documents
 Official TectoMT website: http://ufal.mff.cuni.cz/tectomt/

 TectoMT tutorial: https://wiki.ufal.ms.mff.cuni.cz/external:tectomt:tutorial

 Online version of this document: http://ufal.mff.cuni.cz/tectomt/guide/guidelines.html

1.6. How to cite TectoMT?
The users of TectoMT are kindly asked to refer to the first published work about TectoMT:

Zdeněk Žabokrtský, Jan Ptáček, and Petr Pajas. 2008. TectoMT: Highly modular MT
system with tectogrammatics used as transfer layer. In Proceedings of the Third Workshop
on Statistical Machine Translation, pages 167– 170, Columbus, Ohio, June. Association for
Computational Linguistics.

1.7. Acknowledgments
The work on this project was partially supported by 1ET101120503, MSM 0021620838 and
FP6-IST-5-034291-STP (Euromatrix).

3

2. TectoMT Architecture Overview
2.1. Main design decisions
The implementation of TectoMT is based on the following design decisions:

 Modularity is emphasized in TectoMT. Any non-trivial NLP task should be
decomposed into a sequence of subsequent steps, implemented as so called
blocks. The sequences of blocks (strictly linear, without branches) are called
scenarios.

 Each block should have a well-documented, meaningful, and — if possible — also
linguistically interpretable functionality, so that it can be easily substituted with an
alternative solution (another block), which attempts at solving the same subtask
using a different method/approach. Since granularity of the task decomposition is
not given in advance, one block can have the same functionality as an alternative
solution composed of several blocks (e.g., some taggers perform also
lemmatization, whereas another taggers have to be followed by separate
lemmatizers). As a rule of thumb, the size of a block should not exceed several
hundred lines of code.

 Each block is a Perl module (more specifically, a Perl class with an inherited
interface). However, this does not mean that the solution of the task itself has to be
implemented in Perl too: the module itself can be only a wrapper for a binary
application or a Java application, or a client of a web service running on a remote
machine, etc.

 In order to allow a fully automatic, repeated and parallelized execution of block
sequences, blocks can rely on no user interaction. They can communicate
exclusively via the prescribed API. Of course, this does not exclude the possibility of
using them later in an interactive application.

 TectoMT is implemented in Linux. Full portability of the whole TectoMT to other
operating systems is not realistic in the near future. But again, this does not exclude
the possibility of releasing platform independent applications made of selected
components. So, naturally, platform independent solutions should be searched
whenever possible. Needless to say that hardware-architecture independent
solutions should be preferred too.

 Processing of any type of linguistic data in TectoMT can be viewed as a path
through the Vauquois triangle (with vertical axis corresponding to the level/layer of
language abstractions and horizontal axis possibly corresponding to different
languages). It should be always clear with which layers a given block works. By
default, TectoMT mirrors the system of layers as developed in the PDT
(morphological layer, analytical layer for surface dependency syntax,
tectogrammatical layer for deep syntax), but other layers might be added too. By
default, sentence representation at any level is supposed to form a tree (even if it is
a flat tree on the morphological level and even if co-reference links might be seen
as non-tree edges on the tectogrammatical layer).

 TectoMT is neutral with respect to the methodology employed in the individual
blocks: fully stochastic, hybrid, or fully symbolic (rule-based) approaches can be

4

used. The only preference is following: the solution which reaches the best
evaluation result for the given subtask (according to some measurable criteria) is
the best.

 Any block in TectoMT should be capable of massive data processing. It makes no
sense to develop a block which needs in average more than a few hundred
milliseconds per processed sentence (rule of thumb: the complete translation block
sequence should not need more than a couple of seconds per sentence). Also,
memory requirements of any block should not exceed reasonable limits, so that
individual developers can run the blocks using their "home computers".

 TectoMT is composed of two parts. The first part (the development part), which
contains especially the processing blocks and other in-house tools and Perl
libraries, is stored in an SVN repository so that it can be developed in parallel by
more developers (and also outside the UFAL Linux network). The second part (the
shared part), which contains downloaded libraries, downloaded software tools,
independently existing linguistic data resources, generated data, etc., is shared
without versioning because (a) it is supposed to be changed more or less only
additively, (b) it is huge, as it contains large data resources, and (c) it should be
automatically reconstructable (simply by redownloading, regeneration or
reinstallation of its parts) if needed.

 Typically, TectoMT processing of linguistic data is composed of three steps: (1)
convert your data (e.g. a plain text to be translated) into the tmt data format (PML-
based format developed for TectoMT purposes), (2) apply the sequence of
processing blocks, using the TectoMT object-oriented interface to the data, (3)
convert the resulting structures to the desired output format (e.g., HTML containing
the resulting translation).

 The main difference between the tmt data format and the PML applications used in
PDT 2.0 is the following: in tmt, all representations of a textual document at the
individual layers of language description are stored in one single file. As the number
of linguistic layers in TectoMT might multiplied by the number of processed
languages (two or more in the case of parallel corpora) and by direction of their
processing (source vs. target during translation), manipulation with a growing
number of files corresponding to a single textual document would become too
cumbersome.

5

2.2. Directory structure
As already said, TectoMT system is composed of (1) the small versioned development
part, and (2) the large unversioned part called share.

The development (versioned) part is structured as follows (of course, the subdirectory
listings are not complete):

tectomt/ # you can name this root directory as you like, but $TMT_ROOT system variab
le must point here
|
+--libs/ # "in-house" Perl modules (developed for TectoMT purposes)
| +--core/ # core classes for general processing units and processed ling. structures
| | +--TectoMT/
| | | +--Block.pm, Scenario.pm # processing blocks and their sequences
| | | +--Document.pm, Bundle.pm # representation of documents and sentence bundles
| | | +--Node.pm # general node
| | | +--Node/ # specific types of nodes
| | | +--T.pm # general t-layer nodes
| | | +--SEnglishT.pm # t-layer node on English (source) side
| | +--Report.pm # module for printing error, warning and debug mes
sages
| +--blocks/ # processing blocks, derived from TectoMT::Blocks
| | +--SEnglishA_to_SEnglishT/ # blocks from converting English a-layer to t-
layer
| | +--SEnglishT_to_TCzechT/ # English (source) t-layer to Czech (target) t-
layer
| | +--Tutorial/
| | +--BlockTemplate.pm
| +--other/
|
+--config/
| +--init_devel_environ.sh
| +--TectoMT_TredMacros.mak
| +--tred_stylesheets/
|
+--tools/
| +--general/
| | +--brunblocks
| +--format_convertors/
| | +--plaintext_to_tmt/plaintext_to_tmt.pl
| | +--tmt_to_pedtpml/tmt_to_pedtpml.pl
| +--format_validators/
|
+--pml_schemas/ # specifications of PML schemas used in TectoMT
| +--tmt_schema.xml # PML schema of the tmt format
|
+--applications/
| +--analysis/
| | +--cs/
| | +--en/
| +--demo/
| | +--alignment.scen
| | +--Makefile
| +--tutorial/
|
+--evaluation/
| +--compare_czech_taggers/
|
+--personal/ # space for experiments of the individual users
| +--klimes/

6

| +--ptacek/
| +--zabokrtsky/
|
+--tests/
|
+--release_building/ # packaging of "TectoMT-independent" applications for users outside
UFAL
+--tmp/ # mount point for temporary data directory
+--share/ # mount point for unversioned part -see next figure

The shared (unversioned) part of TectoMT is structured as follows:

tectomt/
+--share/ # either a regular directory or a symlink
 +--data/
 | +--models/
 | +--morpho_analysis/
 | | +--cs/
 | | +--en/
 | +--tecto_transfer/
 | +--cs2en/
 | +--en2cs/
 +--external_libs/ # Perl modules implemented elsewhere (esp. CPAN)
 +--external_tools/ # software tools implemented elsewhere
 +--releases/ # archive of releases of applications for users outside UFAL
 +--tred/ #

7

3. Data Structure Units in TectoMT

3.1. Documents, Bundles, Trees, Nodes, Attributes
In TectoMT, linguistic representations of running texts are organized in the following
hierarchy:

 One physical file corresponds to one document.

 A document consists of a sequence of bundles, mirroring a sequence of natural
language sentences (typically, but not necessarily, originating from the same text).
Attributes (attribute-value pairs) can to attached to a document as a whole.

 A bundle one sentence in its various forms/representations (esp. its representations
on various levels of language description, but also possibly including its counterpart
sentence from a parallel corpus, or its automatically created translation, and their
linguistic representations, be they created by analysis / transfer / synthesis).
Attributes can be attached to a bundle as a whole.

 All sentence representations are tree-shaped structures - the term bundle stands for
'a bundle of trees'.

 In each bundle, its trees are "named" by the names of layers, such as SEnglishM
(see the next section). In other words, there is at most one tree for a given layer in
each bundle.

 Trees are formed by nodes and edges. Attributes can be attached only to nodes.
Edge's attributes must be equivalently stored as the lower node's attributes. Tree's
attributes must be stored as attributes of the root node.

 Attributes can bear atomic values or can be further structured (besides atomic
values also lists, structures etc.), as allowed by PML.

For those, who are acquainted with the structures used in PDT 2.0, the most important
difference lies in bundles: the level added between documents and trees, which comprises
all layers of representation of a given sentence. As one document is stored as one physical
file, all layers of language representations can be stored in one file in TectoMT (unlike in
PDT 2.0).

3.2. 'Layers' of Linguistic Structures
The notion of 'layer' has a combinatorial nature in TectoMT. It corresponds not only the
layer of language description as used e.g. in the Prague Dependency Treebank, but it is
also specific for a given language (e.g., possible values of morphological tags are typically
different for different languages) and even for how the data on the given layer were
created (whether by analysis from the lower layer or by synthesis/transfer).

Thus, the set of TectoMT layers is Cartesian product {S,T} x {English,Czech} x
{W,M,P,A,T}, in which:

 {S,T} distinguishes whether the data was created by analysis or transfer/synthesis
(mnemonics: S and T correspond to (S)ource and (T)arget in MT perspective).

8

 {English,Czech...} represents the language in question

 {W,M,P,A,T...} represents the layer of description in terms of PDT 2.0 (W - word
layer, M - morphological layer, A - analytical layer, T - tectogrammatical layer) or
extensions (P - phrase-structure layer).

TectoMT layers are denoted by stringifying the three coordinates: for example, analytical
representation of an English sentence acquired by sentence analysis is denoted as
SEnlishA. This naming convention is used on many places in TectoMT: for naming trees in
a bundle (and corresponding xml elements), for naming blocks, for node identifier
generating, etc.

Unlike layers in PDT 2.0, the set of TectoMT layers should not be understood as totally
ordered. Of course, there is a strong intuition based the abstraction axis of languages
description (SEnglishT requires more abstraction than SEnglishM), but the intuiting might
not be sufficient in some cases (SEnglishP and SEnglishA represent roughly the same
level of abstraction).

3.3. TectoMT API to linguistic structures
The linguistic structures in TectoMT are represented using the following object-oriented
interface/types:

 document - TectoMT::Document

 bundle - TectoMT::Bundle

 node - TectoMT::Node

 document's, bundle's, and node's attributes - Perl scalars in case the PML schema
prescribes an atomic type, or an appropriate class from Fslib correspondingly to
the type specified in the PML schema.

Classes TectoMT::{Document,Bundle,Node} have their own documentation, here we list
only the basic methods for navigating through a TectoMT document (Perl variables such as
$document are used only for illustration purposes, but there are no global/predefined
variables like this in TectoMT). "Contained" objects encapsulated in "container" objects can
be accessed as follows:

 my @bundles = $document->get_bundles - an array of bundles contained in
the document

 my $root_node = $bundle->get_tree($layer_name); - the root node of
the tree of the given type in the given bundle

There are also methods for accessing the container objects from the contained objects:

 my $document = $bundle->get_document; - the document in which the
given bundle is contained

 my $bundle = $node->get_bundle; - the bundle in which the given node is
contained

 my $document = $node->get_document; - composition of the two above

There are several methods for traversing tree topology, such as

9

 my @children = $node->get_children; - array of the node's children

 my @descendants = $node->get_descendants; - array of the node's
children and their children and children of their children ...

 my $parent = $node->get_parent; - parent node of the given node, or undef
for root

 my $root_node = $node->get_root; - the root node of the tree into which the
node belongs

Attributes of documents, bundles or nodes can be accessed by attribute getters and
setters:

 $document->get_attr($attr_name); $document-
>set_attr($attr_name, $attr_value);

 $bundle->get_attr($attr_name); $bundle->set_attr($attr_name,
$attr_value);

 $node->get_attr($attr_name); $node->set_attr($attr_name,
$attr_value);

$attr_name is always a string (following the Fslib conventions in the case of structured
attributes, e.g. using slash in structured attributed, e.g. 'gram/gender').

New classes, with functionality specific only for some layers, can be derived from
TectoMT::Node. For example, methods for accessing effective children/parents should be
defined for nodes of dependency trees. Thus, there are for example classes
TectoMT::Node::SEnglishA or TectoMT::Node::SCzechA offering methods
get_eff_parents and get_eff_children, which are inherited from a general analytical
'abstract class' TectoMT::Node::A (which itself is derived from TectoMT::Node).
Please note that the names of the 'terminal' classes are the same as the layer names. If
there is no specific class defined for some layer, TectoMT::Node is used as a default for
nodes on this layer.

All these classes are stored in devel/libs/core. Obviously, they are crucial for
functioning of most other components of TectoMT, so their functionality should be carefully
checked after any changes.

3.4. Fslib representation behind the API
Technically, the data structures are not stored directly in
TectoMT::{Document,Bundle,Node} representation, but there is an underlying
representation using Petr Pajas's Fslib library. Practically the only data stored in TectoMT
objects (besides some indexing) are references to Fslib objects. Combination of a new OO
API (TectoMT) with the previously existing library (Fslib) used for the underlying memory
representation was chosen because of the following reasons:

 In Fslib, it would not be possible to make the objects fully encapsulated, to introduce
node-class hierarchy, and it would be very difficult to redesign the existing Fslib API
(classes, functions, methods, data structures), as there is a heap of existing code
dependent on Fslib. So developing a new API seemed to be necessary.

 On the other hand, there are two important advantages of using the Fslib

10

representation. First, we can use Prague Markup Language as the main file format,
since serialization into PML (and reading PML) is fully implemented in Fslib.
Second, since we use one of Fslib-compatible file format, we can use also the tree
editor TrEd for visualizing the structures and btred/ntred for comfortable batch
processing of our data files.

Outside the core libraries, there is almost no need to access the underlying Fslib
representation -- the data should be accessed exclusively via the TectoMT interface
(unless some very special Fslib functionality is needed). However, the underlying Fslib
representation can be accessed from the TectoMT instances as follows:

 $document->get_tied_fsfile() returns the underlying FSFile instance

 $bundle->get_tied_fsroot() returns the underlying FSNode instance

 $node->get_tied_fsnode() returns the underlying FSNode instance

3.5. TMT File Format
The main file format used in TectoMT is TMT (.tmt ending). TMT format is an application of
PML. Thus, TMT files are PML instances of a PML schema. The schema is stored in
${TMT_ROOT}/pml/tmt_schema.xml. This schema merges and changes (more or less
additively) the PML schemata from PDT 2.0.

The PML schema directly renders the logical structure of data: there can be one document
in one tmt-file, the document has its attributes and contains a sequence of bundles, each
bundle has its attributes and contains a set of trees (named by layer names), each tree
consists of nodes, which again contain attributes.

Files in the TMT format are readable by naked eye, but this is in fact useful only when
writing and debugging format convertors from TMT to other formats or back. Otherwise, it
is much more comfortable to view the data in TrEd.

In TectoMT, one should never write components accessing directly the TMT files (of
course, with the only exception of convertors from other formats to TMT or back). Instead,
the data should be accessed by the components exclusively via the above mentioned
object-oriented Perl API.

11

4. Processing units in TectoMT

4.1. Hierarchy of Processing Units
In TectoMT, there is the following hierarchy of processing units (software components that
process data):

 The basic units are blocks. They serve for some very limited, well defined, and often
linguistically interpretable tasks (e.g., tokenization, tagging, parsing). Blocks are not
parametrizable. Technically, blocks are Perl classes inherited from
TectoMT::Block.

 To solve a more complex task, selected blocks can be chained into a block
sequence, called also a scenario. Technically, scenarios are instances of
TectoMT::Scenario class, but in some situations (e.g. on the command line) it is
sufficient to specify the scenario simply by listing block names separated with
spaces.

 The highest unit is called application. Applications correspond to end-to-end tasks,
be they real end-user applications (such as machine translation), or 'only' NLP-
related experiments. Technically, applications are often implemented as Makefiles,
which only glue the components existing in TectoMT.

4.2. Blocks
Technically, blocks are Perl classes derived from TectoMT::Block. In order to make
them easily readable for other TectoMT developers, please use the following conventional
structure when writing new blocks:

1. block (package) name on the first line,

2. use of pragmas and libraries

3. possibly some initialization (e.g. loading external data)

4. declaration of the process_document method

5. short POD documentation

6. author's copyright notice

12

Example of a simple block, which causes that negation particles in English will be
considered as a part of verb forms during the transition from the SEnglishA layer to the
SEnglishT layer:

package SEnglishA_to_SEnglishT::Mark_negator_as_aux;

use 5.008;
use strict;
use warnings;
use base qw(TectoMT::Block);

sub process_document {
 my ($self,$document) = @_;

 foreach my $bundle ($document->get_bundles()) {
 my $a_root = $bundle->get_tree('SEnglishA');

 foreach my $a_node ($a_root->get_descendants) {
 my ($eff_parent) = $a_node->get_eff_parents;
 if ($a_node->get_attr('m/lemma')=~/^(not|n\'t)$/
 and $eff_parent->get_attr('m/tag')=~/^V/) {
 $a_node->set_attr('is_aux_to_parent',1);
 }
 }
 }
}

1;
=over

=item SEnglishA_to_SEnglishT::Mark_negator_as_aux
'not' is marked as aux_to_parent (which is used in the translation scenarios,
but not in preparing data for annotators)

=back

=cut

Copyright 2008 Zdenek Zabokrtsky

Blocks are stored in subdirectories of the libs/blocks/ directory. Most blocks are
distributed among the directories according to their position along the virtual path through
the Vauquois triangle. More specifically, they are part of a transition from layer L1 to layer
L2. Such blocks are stored in the <L1>_to_<L2> directory, e.g. in
SEnglishA_to_SEnglishT. But there are also blocks for other purposes, e.g. evaluation
blocks (libs/blocks/Eval/) or data extraction blocks (libs/blocks/Print/).

13

4.3. Scenarios
Scenarios have a strictly linear nature: the blocks are applied on tmt documents one after
another, there can be no branches or cycles.

In Perl, a scenario instance can be created and applied on a TectoMT document instance
as follows:

my $scenario = TectoMT::Scenario->new({'blocks' => [qw(
 SCzechW_to_SCzechM::Tokenize
 SCzechW_to_SCzechM::Simple_tagger
 SCzechW_to_SCzechM::Simple_lemmatizer
)]});

$scenario->apply_on_tmt_documents($document);

In Bash, applying a sequence of blocks on a TMT file looks e.g. as follows (brunblocks
alias will be described later):

$ brunblocks -o SCzechW_to_SCzechM::Tokenize.pm \
 SCzechW_to_SCzechM::Simple_tagger \
 SCzechW_to_SCzechM::Simple_lemmatizer \
 -- demo.tmt

4.4. Applications
Typically, an application consists of three steps (not counting the 0th step of initialization
the common development environment, as will be described later): (1) conversion of the
input data into TMT, (2) applying a scenario on the TMT files, (3) conversion from TMT into
the desired output format.

4.5. Common Development Environment
By Common Development Environment we understand several system variables' and
aliases' settings. Such settings are recommended to be always performed in the current
shell before starting work with TectoMT. There are two reasons for such initialization:

 TectoMT consists of two parts, versioned and unversioned. There must be a way
how, for instance, a running code (typically from the versioned part) finds where
some data file (possibly from the shared part) is stored. Also, paths to Perl libraries
(contained both in the versioned and unversioned part, and also in the directory tree
in which Tred is installed) have to be set. Obviously, if TectoMT should be usable
outside the UFAL network, then it cannot rely on any absolute paths, but the
location of the two main parts should be specified and all other paths should be
derived from them.

 Second, working with TectoMT can be made more comfortable if one can share
various aliases (accumulated in one place rather than in .bashrc of the individual
developers), for instance for customizing TrEd to work with the TMT format.

Initialization of the Common Development Environment is performed in Bash by sourcing
config/init_devel_environ.sh, which manifests as follows:

14

 Newly introduced system variables

 TMT_ROOT - path to your working copy of the versioned part of TectoMT

 TMT_SHARED - path to the unversioned part of TectoMT

 TMT_TEMP - path to the directory for temporary files

 TRED_DIR - path to the directory where TrEd is installed

 Modified system variables

 PERLLIB, PERL5LIB - path to your working copy of the versioned part of
TectoMT

 PATH - paths to tools (inside root/shared)

 as $TMT_ROOT/tools/general/ is added to PATH, the following commands
become available:

 tmttred - TrEd customized for TectoMT using several command line options
(path to resources, stylesheet, etc.)

 tmtbtred - btred customized for TectoMT

 tmtntred - ntred customized for TectoMT

 brunblocks - alias for applying a sequence of blocks on tmt-files (usage:
brunblocks -o <blocks> -- <tmt_files>

 nrunblocks - alias for applying a sequence of blocks on tmt-files currently
loaded in ntred (usage: nrunblocks <blocks>

15

5. Debugging Tips
Debugging complex TectoMT applications on bigger data can be quite painful. Here are
some tips we found useful.

5.1. Auto-Diagnose (Automatically Create Minimal Testcase)
If you have a .tmt file and a sequence of blocks that crashes somewhere, minimize it to
speed up the loop of bug fixing or to attach it to a bug report for someone.

devel/tools/tests/auto_diagnose.pl will automatically create a minimal testcase
for you: the first problematic sentence will be extracted from the .tmt file and analyzed
just before the first crashing block. Finally the command line (brunblocks) to run the
minimized test case is provided as a tiny shell script.

16

6. Processing Large Data, Grid Computing
TectoMT allows processing of large to huge data sets under the following conditions:

1. All files are relatively small (e.g. 50 to 200 sentences per file).

2. All directories contain relatively few files (e.g. not more than 1000 files per directory,
including backup copies).

3. You use a cluster of CPUs administered by Sun Grid Engine (SGE).

6.1. qrunblocks: Parallel Processing on a Grid
In a grid environment of Sun Grid Engine (where commands like qsub work), you can use
qrunblocks to apply a scenario on a set of files in parallel.

qrunblocks is available in
$TMT_ROOT/devel/tools/cluster_utils/qrunblocks.

6.1.1. Basic Usage

The basic usage is:

qrunblocks filelist blocks

The set of files is splitted into --jobs|-j jobs. All the jobs are submitted to the grid to
process the files using the scenario.

The set of files can be specified either using the filelist file or using a wildcarded
expression in a --glob|-g option, e.g.: --glob 'mydata/*.tmt.gz'. The quotation
marks are necessary to avoid wildcard expansion already in your shell.

The scenario, i.e. the sequence of blocks, can be specified either simply by listing the
sequence in the second argument (qrunblocks filelist 'Block1 Block2') or by
loading the sequence from a file using --blocksfile|-b=file

Note that qrunblocks has to init the TectoMT environment in all slave processes. If the
environment variable $TMT_ROOT is set, qrunblocks will use the given TectoMT root in
all the slaves. Otherwise, you need to specify the path to your TectoMT root using the
parameter --tmt-root=PATH.

It is a common mistake to forget to save the processed files. To preserve the computation
time, qrunblocks assumes that the default is to save files and forces saving in all slave
processes. If you don't want to save the files (e.g. because you were only collecting
standard output), use --no-save.

Note that qrunblocks is very different from ntred-based processing where each of the
servers loads its portion of files to memory. qrunblocks is also not based on jtred, the
grid alternative of btred.

17

6.1.2. Grid Parameters, e.g. Priority

qrunblocks recognizes and passes the following parameters to Sun Grid Engine:

 --jobname|-N=NAME specifies the name of the job and also the base file name
for all the log files. The default is qrunblocks.

 --priority|-p=-100 specifies the priority of the jobs before submission.

 --mem|-m=10G should specify the memory requirements of each of the jobs. Due
to weird issues in the SGE configuration at ÚFAL, this option does not really work.

6.1.3. Passing Parameters to qrunblocks Jobs

Some TectoMT blocks can be influenced by parameters specified as environment
variables $TMT_PARAM_something. To pass these parameters to individual jobs, you
have to explicitly ask for it:

 --export=VARNAME or -e VARNAME will pass the environment variable
$VARNAME to all the jobs. You can use this for any variable, not just
$TMT_PARAM_something. The option can be repeated.

 --export-all-tmt-params or -E will export all $TMT_PARAM_something
variables from the current environment.

6.1.4. Collecting Output or Checking Status

The default behaviour of qrunblocks is to submit all the jobs and immediately exit. It is
your responsibility to examine the log files and check exit status of all the jobs (see
Status: at the end of the log if it says FAILED).

Launching qrunblocks with --sync causes qrunblocks to block until all the jobs have
ended or exited. The exit status of the jobs is not reflected in the exit status of
qrunblocks.

The safest way of launching qrunblocks is to use the flag --join. With this option,
qrunblocks will wait for all the jobs to finish and if all succeed, their standard outputs will
be concatenated and printed to qrunblocks' standard output. If any of the jobs fails,
qrunblocks exits with non-zero exit status as well.

6.1.5. Retrying Failed Files and Automatic Retry

There are situations where the block sequence may fail due to a rather random
coincidence, for example if several jobs compete for RAM. In such cases, the easiest
solution is simply to re-run the jobs.

qrunblocks supports automatic restarts of failing jobs, just specify --attempts|-
a=number_of_attempts on the command line.

When re-running the scenario, some of the files may have been successfully analyzed
before the failure happened. To avoid re-analyzing of finished files, qrunblocks allows
you to specify a keyword that identifies finished files. For example, if you are analyzing up
to English t-layer, you may want to use --finished-contains '<SEnglishT' (note
the opening angle bracket) to remove all files containing the XML tag SEnglishT the file

18

list, because they are quite likely already analyzed. (If a job happens to need a restart,
further files will be removed the file list.)

The default behaviour of qrunblocks is to split the input file list evenly and let all the jobs
do their filtering based on --finished-contains. If many files are already finished, this
may lead to a disbalance in workload of individual jobs. Adding the flag --filter-ahead
to qrunblocks solves the issue by first checking all the files and evenly splitting only the
list of unfinished files, at the expense of non-parallel startup filtering.

6.2. Suggested Dataflow for Huge Datasets
We successfully parsed nearly a gigaword of Czech texts (51 million sentences) and 6
million of Czech-English parallel sentences up to the t-layers in TectoMT using the
following dataflow:

1. Convert plaintext to a directory tree of small files on a shared network file system.
(We keep the files comparable in size, e.g. 50 sentences per file.)

Prefer to keep the files in a compressed form, i.e. .tmt.gz or .pls.gz, because it
reduces the load on the NFS server.

For an inspiration on the conversion see e.g.
tools/format_convertors/plaintext_to_tmt/plaintext_using_text
seg_to_tmt.pl or
tools/format_convertors/czeng07_to_tmt/czeng07_to_tmt.pl.

2. Create filelist of all the files to be processed:

 find dataset-directory -name '*.tmt.gz' > dataset.list

3. Process all the files using a grid of computers:

 qrunblocks dataset.list --blocksfile scenario \
 --jobs 40 \
 --jobname MY_JOB

Check the logfiles MY_JOB.o[0-9]* (default jobname is qrunblocks) for the
final "Status: succeeded|FAILED".

Beware: if the scenario is too quick (too little processing), running too many jobs at
once can ruin your shared NFS server as all the jobs will write a lot of data.

4. Export analyzed sentences back to some low-level plaintext-like format, e.g.:

 export TMT_PARAM_PRINT_FACTORED="SEnglishT SCzechT
SEnglishCzechAlignT"
 qrunblocks dataset.list "Miscel::SuicideIfDiskFull Print::Factored" \
 --jobs 40 \
 -E --no-save --join \
 --jobname MY_JOB.export \
 | gzip \
 > dataset.exported.gz

19

7. Quality Assurance

Stability of frequently used components of TectoMT is important. To ensure this, the whole
TectoMT is checked-out and all pre-defined tests are launched every day.

If you want to rely on a component, make sure it is covered by one of the daily test. You
can also add you own test.

7.1. Viewing Results of Daily Tests
Results on daily tests on various platforms are available here:
http://ufallab.ms.mff.cuni.cz/~bojar/cruise_control_tmt/

7.2. E-mail Notifications
If you wish to receive a notification about new problems, add your e-mail address to the
variable RCPT in devel/tests/Makefile.

The notification is sent only in case a test (on a particular platform) passed yesterday but
fails today.

7.3. Fixing a Bug!
Yes, indeed. The main purpose of the test suite is to let everyone fix bugs.

If a test you need or created fails, try changing relevant files (blocks/libraries/Makefiles/...).
Then run the test on command-line (see below), and if you succeed, commit!

7.4. Running Tests on Command-Line
To run a test yourself, do the following:

cd devel/tests
make nice_file_names
or
make try_test.test_tag_tnt
or
make try_application.demo_translation_en2cs
or any other test

7.5. Adding a New Test
There are several ways to add a new test. Choose the method according to you additional
wishes.

 The very core method is to add a new goal to devel/tests/Makefile. This
gives you full control of the test but no support (e.g. you have to init TectoMT
environment yourself).

 The most visible method is to add a new application to devel/applications/.
Running make (the default target) in your application directory should do the test.

20

To launch the application as a test from devel/tests, run make
try_application.YOUR_APPLICATION_NAME.

 Somewhat intermediate method is to add a new subdirectory to devel/tests, see
e.g. test_mxpost, again with a Makefile and the default target doing the job.
This way, the test case is not so visible to all users of TectoMT but you can still
easily have it launched.

7.6. Adding a Test to the Daily Suite
To have a test launched every day on all tested platforms, simply add it to the variable
TESTS_TO_RUN in devel/tests/Makefile.

21

8. General Instructions for TectoMT Developers
Developers contributing to TectoMT are kindly asked to

1. read Damian Conway's Perl Best Practices,

2. make appropriate tests before committing,

3. prefer Perl/bash when writing new TectoMT components,

4. always derive paths to accessed files/directories from variables $TMT_ROOT,
$TMT_SHARED etc., and never use absolute paths, paths to your home directories
etc.

5. write POD in all their Perl programs/modules,

6. use Makefiles for organizing bigger tasks / experiments / applications,

7. add copyright notice (# Copyright <year> <name>) to all their source code files,

8. report detected bugs to author(s) of the respective piece of code, with CC to
zabokrtsky@ufal.mff.cuni.cz.

9. respect naming conventions introduced in TectoMT (e.g. naming of layers),

10. write sufficiently descriptive and understandable comments on commits to the svn
repository.

11. use Report::fatal, Report::warn or Report::info in blocks, instead of die/warn/print
STDERR.

12. try to avoid situations in which your committed changes could break functionality of
other people's code. For example, if you decide to rename methods in your library
interface, find (e.g. grep) all spots in which these methods have been used and fix
them too.

13.commit your work to the repository, even if you think it is not useful for anybody
else. Otherwise your local copy may become incompatible with the rest of the
TectoMT machinery after some time (see the above item).

22

9. TODOs
We are aware of the following issues which are not solved satisfactorily in TectoMT at this
moment:

1. Adding new languages into TectoMT seems to require an inadequate amount of
changes in the PML schema; adding new languages should be facilitated by
allowing language parametrization, or by back-off (by default, some general scheme
could be used for languages for which there is no specific scheme).

2. There is no mechanism for sending parameters to blocks. The question is how often
it is really necessary/desirable, but definitely some solution must be found for blocks
with more or less language-independent functionality, so that no new cut'n'paste
blocks is necessary (generic blocks, which can be used for this task now, are
problematic).

3. Location of Perl libraries: in the case of non-pure-Perl libraries, obviously there
should be one (versioned) place where an installation package is developed and
another (unversioned) place where the library is 'installed', but the second place
should not be a part of tectomt_shared, otherwise functionality fall-outs for other
UFAL users might appear.

4. At this moment, there is only one PML schema for all applications in TectoMT.
Supporting separated application-specific schemas into TectoMT would not be
trivial.

5. Similarly to the previous point, there is only one shared visualization style for all
TMT files in TrEd. At this moment, there is no support for application-specific
customization of bundles' appearance, which would allow for example easy
relocation of the individual layers on the screen.

23

THE ÚFAL/CKL TECHNICAL REPORT SERIES

ÚFAL

ÚFAL (Ústav formální a aplikované lingvistiky; http://ufal.mff.cuni.cz) is the Institute of Formal and Applied
linguistics, at the Faculty of Mathematics and Physics of Charles University, Prague, Czech Republic. The Institute was
established in 1990 after the political changes as a continuation of the research work and teaching carried out by the
former Laboratory of Algebraic Linguistics since the early 60s at the Faculty of Philosophy and later the Faculty of
Mathematics and Physics. Together with the “sister” Institute of Theoretical and Computational Linguistics (Faculty of
Arts) we aim at the development of teaching programs and research in the domain of theoretical and computational
linguistics at the respective Faculties, collaborating closely with other departments such as the Institute of the Czech
National Corpus at the Faculty of Philosophy and the Department of Computer Science at the Faculty of Mathematics
and Physics.

CKL

As of 1 June 2000 the Center for Computational Linguistics (Centrum komputační lingvistiky; http://ckl.mff.cuni.cz)
was established as one of the centers of excellence within the governmental program for support of research
in the Czech Republic. The center is attached to the Faculty of Mathematics and Physics of Charles University
in Prague.

TECHNICAL REPORTS

The ÚFAL/CKL technical report series has been established with the aim of disseminate topical results of research
currently pursued by members, cooperators, or visitors of the Institute. The technical reports published in this Series are
results of the research carried out in the research projects supported by the Grant Agency of the Czech Republic, GAČR
405/96/K214 (“Komplexní program”), GAČR 405/96/0198 (Treebank project), grant of the Ministry of Education of
the Czech Republic VS 96151, and project of the Ministry of Education of the Czech Republic LN00A063 (Center for
Computational Linguistics). Since November 1996, the following reports have been published.

ÚFAL TR-1996-01 Eva Hajičová, The Past and Present of Computational Linguistics at Charles University
Jan Hajič and Barbora Hladká, Probabilistic and Rule-Based Tagging of an Inflective Language –
A Comparison

ÚFAL TR-1997-02 Vladislav Kuboň, Tomáš Holan and Martin Plátek, A Grammar-Checker for Czech

ÚFAL TR-1997-03 Alla Bémová at al., Anotace na analytické rovině, Návod pro anotátory (in Czech)

ÚFAL TR-1997-04 Jan Hajič and Barbora Hladká, Tagging Inflective Languages: Prediction of Morphological
Categories for a Rich, Structural Tagset

ÚFAL TR-1998-05 Geert-Jan M. Kruijff, Basic Dependency-Based Logical Grammar

ÚFAL TR-1999-06 Vladislav Kuboň, A Robust Parser for Czech

ÚFAL TR-1999-07 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování (in
Czech)

ÚFAL TR-2000-08 Tomáš Holan, Vladislav Kuboň, Karel Oliva, Martin Plátek, On Complexity of Word Order

ÚFAL/CKL TR-2000-09 Eva Hajičová, Jarmila Panevová and Petr Sgall, A Manual for Tectogrammatical Tagging of
the Prague Dependency Treebank

ÚFAL/CKL TR-2001-10 Zdeněk Žabokrtský, Automatic Functor Assignment in the Prague Dependency Treebank

ÚFAL/CKL TR-2001-11 Markéta Straňáková, Homonymie předložkových skupin v češtině a možnost jejich
automatického zpracování

ÚFAL/CKL TR-2001-12 Eva Hajičová, Jarmila Panevová and Petr Sgall, Manuál pro tektogramatické značkování
(III. verze)

ÚFAL/CKL TR-2002-13 Pavel Pecina and Martin Holub, Sémanticky signifikantní kolokace

ÚFAL/CKL TR-2002-14 Jiří Hana, Hana Hanová, Manual for Morphological Annotation

ÚFAL/CKL TR-2002-15 Markéta Lopatková, Zdeněk Žabokrtský, Karolína Skwarská and Vendula Benešová,
Tektogramaticky anotovaný valenční slovník českých sloves

ÚFAL/CKL TR-2002-16 Radu Gramatovici and Martin Plátek, D-trivial Dependency Grammars with Global Word-
Order Restrictions

ÚFAL/CKL TR-2003-17 Pavel Květoň, Language for Grammatical Rules

ÚFAL/CKL TR-2003-18 Markéta Lopatková, Zdeněk Žabokrtský, Karolina Skwarska, Václava Benešová, Valency
Lexicon of Czech Verbs VALLEX 1.0

ÚFAL/CKL TR-2003-19 Lucie Kučová, Veronika Kolářová, Zdeněk Žabokrtský, Petr Pajas, Oliver Čulo, Anotování
koreference v Pražském závislostním korpusu

ÚFAL/CKL TR-2003-20 Kateřina Veselá, Jiří Havelka, Anotování aktuálního členění věty v Pražském závislostním
korpusu

ÚFAL/CKL TR-2004-21 Silvie Cinková, Manuál pro tektogramatickou anotaci angličtiny

ÚFAL/CKL TR-2004-22 Daniel Zeman, Neprojektivity v Pražském závislostním korpusu (PDT)

ÚFAL/CKL TR-2004-23 Jan Hajič a kol., Anotace na analytické rovině, návod pro anotátory

ÚFAL/CKL TR-2004-24 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, Anotace na
tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2004-25 Jan Hajič, Zdeňka Urešová, Alevtina Bémová, Marie Kaplanová, The Prague Dependency
Treebank, Annotation on tectogrammatical level

ÚFAL/CKL TR-2004-26 Martin Holub, Jiří Diviš, Jan Pávek, Pavel Pecina, Jiří Semecký, Topics of Texts.
Annotation, Automatic Searching and Indexing

ÚFAL/CKL TR-2005-27 Jiří Hana, Daniel Zeman, Manual for Morphological Annotation (Revision for PDT 2.0)

ÚFAL/CKL TR-2005-28 Marie Mikulová a kol., Pražský závislostní korpus (The Prague Dependency Treebank)
Anotace na tektogramatické rovině (úroveň 3)

ÚFAL/CKL TR-2005-29 Petr Pajas, Jan Štěpánek, A Generic XML-Based Format for Structured Linguistic
Annotation and Its application to the Prague Dependency Treebank 2.0

ÚFAL/CKL TR-2006-30 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Magda Razímová,
Petr Sgall, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on the
tectogrammatical level in the Prague Dependency Treebank (Annotation manual)

ÚFAL/CKL TR-2006-31 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall, Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Anotace na
tektogramatické rovině Pražského závislostního korpusu (Referenční příručka)

ÚFAL/CKL TR-2006-32 Marie Mikulová, Alevtina Bémová, Jan Hajič, Eva Hajičová, Jiří Havelka, Veronika
Kolařová, Lucie Kučová, Markéta Lopatková, Petr Pajas, Jarmila Panevová, Petr Sgall,Magda
Ševčíková, Jan Štěpánek, Zdeňka Urešová, Kateřina Veselá, Zdeněk Žabokrtský, Annotation on
the tectogrammatical level in the Prague Dependency Treebank (Reference book)

ÚFAL/CKL TR-2006-33 Jan Hajič, Marie Mikulová, Martina Otradovcová, Petr Pajas, Petr Podveský, Zdeňka
Urešová, Pražský závislostní korpus mluvené češtiny. Rekonstrukce standardizovaného textu z
mluvené řeči

ÚFAL/CKL TR-2006-34 Markéta Lopatková, Zdeněk Žabokrtský, Václava Benešová (in cooperation with Karolína
Skwarska, Klára Hrstková, Michaela Nová, Eduard Bejček, Miroslav Tichý) Valency Lexicon of
Czech Verbs. VALLEX 2.0

ÚFAL/CKL TR-2006-35 Silvie Cinková, Jan Hajič, Marie Mikulová, Lucie Mladová, Anja Nedolužko, Petr Pajas,
Jarmila Panevová, Jiří Semecký, Jana Šindlerová, Josef Toman, Zdeňka Urešová, Zdeněk
Žabokrtský, Annotation of English on the tectogrammatical level

ÚFAL/CKL TR-2007-36 Magda Ševčíková, Zdeněk Žabokrtský, Oldřich Krůza, Zpracování pojmenovaných entit
v českých textech

ÚFAL/CKL TR-2008-37 Silvie Cinková, Marie Mikulová, Spontaneous speech reconstruction for the syntactic and
semantic analysis of the NAP corpus

ÚFAL/CKL TR-2008-38 Marie Mikulová, Rekonstrukce standardizovaného textu z mluvené řeči v Pražském
závislostním korpusu mluvené češtiny. Manuál pro anotátory

ÚFAL/CKL TR-2008-39 Zdeněk Žabokrtský, Ondřej Bojar, TectoMT, Developer's Guide

