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1. Introduction

1.1 Problem Definition

Problem: The focus of much of dependency parsing is on creating new modeling

techniques and examining new feature sets for existing dependency models. Often

these new models are lucky to achieve equivalent results with the current state of

the art results and often perform worse. These approaches are for languages that

are often resource-rich and have ample training data available for dependency

parsing. For this reason, the accuracy scores are often quite high. This, by its

very nature, makes it quite difficult to create a significantly large increase in

the current state-of-the-art. Research in this area is often concerned with small

accuracy changes or very specific localized changes, such as increasing accuracy of

a particular linguistic construction. With so many modeling techniques available

to languages with large resources the problem exists on how to exploit the current

techniques with the use of combination, or ensemble, techniques along with this

plethora of data.

Dependency parsers are almost ubiquitously evaluated on their accuracy scores,

these scores say nothing of the complexity and usefulness of the resulting struc-

tures. The structures may have more complexity due to the depth of their co-

ordination or noun phrases. As dependency parses are basic structures in which

other systems are built upon, it would seem more reasonable to judge these

parsers down the NLP pipeline. The types of parsing errors that cause significant

problems in other NLP applications is currently an unknown.

1.2 Research Approach

Research Questions: There are many questions to be examined when look-

ing at state-of-the-art dependency parsing models and resource-rich languages.

Models have similar accuracy but are they significantly different in their approach

so that their construction of both correct and incorrect parse structures supply

useful knowledge to an ensemble parse structure? Can the differences in parsers

be exploited in both a combination, or ensemble, system and in a discrete classi-

fication system? Not only can we determine the usefulness of a particular model,
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but can these differences be combined or selected in a fashion that still allows a

system to construct a legitimate and logical dependency parse.

While errors are treated as equals in unlabeled accuracy scores, the effect on

NLP systems maybe be greater. How can we rank the errors that effect Machine

Translation and modify an ensemble system to better address those issues? One

crucial question is what type of errors are the most egregious when propagated to

other NLP systems. Is there any relation between UAS accuracy and performance

found in the Treex system? Will an improvement with ensemble systems have an

overall positive increase in a machine translation system.

Research Approach: To examine whether parser outputs can be combined in

an effective manner, we look at creating one ensemble parse from any N amount

of parsers, whether they are constituent-based, transition-based, or graph-based

parses. Looking at different combinations of these parser types will allow use to

see how they differ both structurally and as well the differences in their error

types. Given that the part of speech error distribution differs in each dependency

technique, the ensemble weights can be learned from these distributions. To do

this we will use fuzzy clustering of POS errors per dependency model to obtain

our ensemble weights. Similarly these models perform differently depending on

sentence length and length of dependencies. While ensemble systems improve the

overall performance through a combination of approaches, we examine further

whether a classifier can determine the appropriate model to use on a per token

level. To do this we implement a meta-classifier using an SVM.

To examine the effects of dependency parsing down the NLP pipeline, we now

turn to machine translation. Our dependency models will be evaluated using the

Treex system and TectoMT translation system. This system, as opposed to other

popular machine translation systems, makes direct use of the dependency struc-

ture during the conversion from source to target languages via a tectogrammatical

tree translation approach. We will compare UAS accuracy to corresponding NIST

and BLEU scores from the start to finish of the machine translation pipeline.

1.3 Contributions and Impact

Contributions:

• We show that combining dependency parsers of different techniques in an
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ensemble framework, in particular constituency to dependency converted

and traditional dependency techniques, leads to improved UAS for English

dependency parsing.

• The same ensemble framework can be used for non-English languages for a

similar improvement in most situations. These languages generally lack the

constituency to dependency conversion so the ensemble system needs to be

augmented with additional models of the same dependency techniques.

• Part of Speech error distribution can successfully be used via fuzzy clus-

tering to learn the weights of an ensemble system, leading to greater UAS

scores and reduced part of speech error.

• An SVM classifier can improve dependency parsing using simple sentence

length, POS label, and model agreement features.

• We show the initial results of ensemble dependency parsers when used in

the machine translation pipeline.

Impact:

The benefit of these techniques do not stop simply with dependency parsing. A

dependency parse tree is often an input into other natural language processes.

While under-resources languages may not be examining an entire NLP pipeline,

resource-rich languages that take advantage of these approaches should addition-

ally measure success in applications further down the NLP pipeline.

Often new annotation or new parsing techniques are tried and abandoned if they

don’t give an immediate boost to UAS. It is our goal and the hopeful impact of

this report that we give further evidence on why parsing models should be eval-

uated on NLP systems other than just parsing output. Increasing UAS scores is

more equated to a learning problem while increasing the results of an NLP sys-

tem are the result of adding additional detail and information to your early level

NLP structures. The latter we find to be a more convincing argument for research.
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2. Ensemble Parsing

2.1 Introduction

Ensemble learning [3] has been used for a variety of machine learning tasks and

recently has been applied to dependency parsing in various ways and with different

levels of success. [25, 6] showed a successful combination of parse trees through

a linear combination of trees with various weighting formulations. To keep their

tree constraint, they applied Eisner’s algorithm for reparsing [4].

Parser combination with dependency trees has been examined in terms of accu-

racy [23, 24, 27, 8]. Other methods of parser combinations have shown to be

successful such as using one parser to generate features for another parser. This

was shown in [17], in which Malt Parser was used as a feature to MST Parser.

The result was a successful combination of a transition-based and graph-based

parser, but did not address adding other types of parsers into the framework.

We believe our work is the first to examine ensemble parsing across a variety

of languages and with both dependency and constituent parsers. In addition

to examining the accuracy and improvements across these ensemble parsers we

also examine their accuracy by POS and how these parse trees effect machine

translation further in the NLP pipeline (see Chapter 3).

In this chapter we will discuss three ensemble approaches. First an fixed weight

ensemble approach in which edges are added together in a weighted graph. Sec-

ond, We will describe a way to learn these weights through fuzzy clustering based

on POS errors. Third, we will describe a meta-classifier that uses an SVM to

predict the correct model for edge using only model agreements without any lin-

guistic information added. We will demonstrate these for a variety of languages

and data sizes.

2.2 Fixed Weight Ensemble Parsing

Ensemble methods are sometimes used when you want models trained on different

data to avoid a single domain output. We will only be looking at ways to combine

models trained on the same or similar data in this report. We have created an
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Figure 2.1: General flow to create an ensemble parse tree

ensemble class in Treex that collects all analytical trees (A-trees) present and

combines their structure into a weighted graph.

To generate a single ensemble parse tree, our system takes N parse trees as input.

The inputs are from a variety of parsers as described in 2.2.1. All edges in these

parse trees are combined into a graph structure. This graph structure accepts

weighted edges. So if more than one parse tree contains the same tree edge, the

graph will be weighted appropriately according to a chosen weighting algorithm.

The weighting algorithms used in our experiments are described in 2.2.1.

Once the system has a weighted graph, the system then uses an algorithm to

find a corresponding tree structure so there are no cycles. In this set of ex-

periments we constructed a tree by finding the maximum spanning tree us-

ing Chu–Liu/Edmonds’ algorithm, which is a standard choice for MST tasks.

Figure 2.1 graphically shows the decisions one needs to make in this framework

to create an ensemble parse.

2.2.1 Methodology

Evaluation

Made a standard in the CoNLL shared tasks competition, two standard metrics

for comparing dependency parsing systems are typically used. Labeled attachment

score (LAS) and unlabeled attachment score (UAS). UAS studies the structure

of a dependency tree and assesses how often the output has the correct head and
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dependency arcs. In addition to the structure score in UAS, LAS also measures

the accuracy of the dependency labels on each arc [1]. Since we are mainly con-

cerned with the structure of the ensemble parse, we report only UAS scores in

this paper on section 23 of the WST.

Parsers

For English we use 5 of the most commonly used parsers which enables us to have

a wide scope for ensemble learning. They range from graph-based approaches to

transition-based approaches to constituent parsers. Constituency output is con-

verted to dependency structures using a converter [9]. All parsers are integrated

in the Treex framework [26, 20] using the publicly released parsers from the re-

spective authors but with Perl wrappers to allow them to work on a common tree

structure.

• Graph-Based: A dependency tree is a special case of a weighted edge

graph that spawns from an artificial root and is acyclic. Because of this

we can look at a large history of work in graph theory to address finding

the best spanning tree for each dependency graph. In this paper we use

MST Parser version 0.5 using a second order model [15] as an input to our

Ensemble Parser.

• Transition-Based: Transition-based parsing creates a dependency struc-

ture that is parameterized over the transitions used to create a dependency

tree. This is closely related to shift-reduce constituency parsing algorithms.

The benefit of transition-based parsing use greedy algorithms which have a

linear time complexity. However, due to the greedy algorithms, longer arc

parses can cause error propagation across each transition [11]. We make use

of Malt Parser [16], which in the shared tasks was often tied with the best

performing systems. With Maltparser version 1.5 we are using th nivreeager

training algorithm. Additionally we will use Zpar 0.5 [28] which is based

on Malt Parser but with a different set of non-local features.

• Constituent Transformation: While not a true dependency parser, one

technique often applied is to take a state-of-the-art constituent parser and

transform its phrase based output into dependency relations. This has

been shown to also be state-of-the-art in accuracy for dependency parsing

in English. In this paper we transformed the constituency structure to
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dependencies using the Penn Converter conversion tool [9]. A version of

this converter was used in the CoNLL shared task to create dependency

treebanks as well. With English we have the additional ability to include

constituent parsers. For the following ensemble in English experiments we

make use of both Charniak’s [2]1 constituent parser and Stanford’s [10]

version 1.6.9 constituent parser.

For this study we use the English CoNLL data. This data comes from the Wall

Street Journal (WSJ) section of the Penn treebank [14]. All parsers are trained

on sections 02-21 of the WSJ except for the Stanford parser which uses sec-

tions 01-21. Charniak, Stanford and Zpar use pre-trained models ec50spfinal,

wsjPCFG.ser.gz, english.tar.gz respectively. For testing we use section 23 of the

WSJ for comparability reasons with other papers. This test data contains 56,684

tokens. For tuning we use section 22. This data is used for determining the

weighting features for the POS accuracies.

In addition to the UAS score of the enumerated parsers, we also report the accu-

racy of an Oracle Parser. This parse is simply the best possible parse of all the

edges of the combined dependency trees in terms of UAS. If the reference, gold

standard, tree has an edge that any of the parsers contain, we include that edge

in the Oracle parse. Initially all nodes of the tree are connected to an artificial

root. Since only edges that exist in a reference tree are added, the Oracle Parser

maintains the acyclic constraint.

Weighting Schemes

Currently we are applying three weighting algorithms to the graph structure. All

three of these are simple weighting techniques but even in their simplicity we can

see the benefit of this type of combination.

• Uniform Weights: an edge in the graph gets incremented +1 weight for

each matching edge in each parser. If an edge occurs in 4 parsers, the weight

is 4.

• UAS Weighted: Each edge in the graph gets incremented by the value of

it’s parsers individual accuracy. So in the UAS results in Table 2.2 an edge

in Charniak’s tree gets .92 added while MST gets .86 added to every edge

1ftp://ftp.cs.brown.edu/pub/nlparser/reranking-parserAug06.tar.gz
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they share with the resulting graph. This weighting should allow us to add

poor parsers with very little harm to the overall score.

• Plural Voting Weights: In Plural Voting the parsers are rated and each

gets a “vote” based on their quality. With N parsers the best parser gets

N votes while the last place parser gets 1 vote. In this paper, Charniak

received 5 votes, Stanford received 4 votes, MST Parser received 3 votes,

Malt Parser received 2 votes, and Zpar received 1 vote. Votes in this case

are added to each edge as a weight.

• UAS10: For this weighting scheme we took each UAS value to the 10th

power. This gave us the desired affect of making the differences in accuracy

more apparent and giving more distance from the best to worse parser. As

shown later, this value was found empirically on tuning data.

2.2.2 Results

Table 2.2 contains the results of different parser combinations of the 5 parsers

in Table 2.1. The results seem to indicate that using two parsers will give you

an “average” score. Ensemble learning seems to start to have a benefit around

3 parsers with a few combinations having a better UAS score than any of the

baseline parsers, these cases are in bold throughout the table. When we add a

4th parser to the mix almost all configurations lead to an improved score when

the edges are not weighted uniformly. The only case in which this does not occur

is when Stanford’s Parser is not used. When all 5 parsers are used together

with Plural Voting, the Ensemble Parser improves over the highest individual

parser’s UAS score. For UAS10 voting, the 5 parser combination gives the second

highest accuracy score. The top overall score is when we use UAS10 weighting

with the 4 top individual parsers. For parser combinations that do not feature

Charniak’s parser, we also find an increase in overall accuracy score compared to

each individual parser, although never beating Charniak’s individual score.

To see the maximum accuracy an ensemble system could achieve we include an

Oracle Ensemble Parser in Table 2.2. The Oracle Parser gives us a ceiling on

what ensemble learning can achieve. As we can see in Table 2.2, the ceiling

of ensemble learning is 97.41% accuracy. Because of this high value with so

few parsers, ensemble learning should be a very prosperous area for dependency

parsing research.
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Parser UAS %

Charniak 92.08%

Stanford 87.88%

MST 86.49%

Malt 84.51%

Zpar 76.06%

Table 2.1: Our baseline parsers and corresponding UAS used in our ensemble

experiments

To discover the best exponential we looked at our combining all parsers at different

exponential values. We empirically test difference values on our tuning data.

X10 is the top scoring weight for English. The results are in Table 2.3. We

only discover this weight using the “all” parser setting and only on English. If

this setup was used in production it would be wise to relearn this exponential

value through new tuning data for the model combination choice and particular

language each time.

Pos Errors

In [11] the authors confirm that two parsers, MST Parser and Malt parser, give

similar accuracy results but with very different errors. MST parser, a maximum

spanning tree graph-based algorithm, has evenly distributed errors with respect to

sentence length while Malt Parser, a transition based parser, has errors on mainly

longer sentences. This result comes from the approaches themselves. MST parser

is globally trained so the best mean solution should be found, this is why errors on

the longer sentences are about the same as the shorter sentences. Malt Parser on

the other hand uses a greedy algorithm with a classifier that chooses a particular

transition at each vertex. This leads to the possibility of the propagation of errors

further in a sentence. Along this line of research we look at the error distribution

for all 5 parsers along without best ensemble parser configuration. Much like the

previous work we expect different types of errors given that our parsers are from

3 different parsing techniques. To examine if the Ensemble Parser is substantially

changing the parse tree or is just taking the best parse tree and substituting a

few edges, we examine the part of speech errors in Table 2.4.

As we can see the range of POS errors varies dramatically depending on which

parser we examine. For instance for CC, Charniak has 83% while MST is only
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System Uniform UAS Plural UAS10 Oracle

Weighting Weighted Voting Weighted UAS

Charniak-Stanford 89.84 92.08 92.08 92.08 94.85

Charniak-Mst 89.14 92.08 92.08 92.08 95.33

Charniak-Malt 88.15 92.08 92.08 92.08 95.40

Charniak-Zpar 84.10 92.08 92.08 92.08 94.49

Stanford-Mst 86.92 86.49 87.88 86.49 94.29

Stanford-Malt 86.05 87.88 87.88 87.88 94.09

Stanford-Zpar 81.86 87.88 87.88 87.88 93.02

Mst-Malt 85.54 86.49 86.49 86.49 90.38

Mst-Zpar 81.19 86.49 86.49 86.49 92.03

Malt-Zpar 80.07 84.51 84.51 84.51 91.46

Charniak-Stanford-Mst 91.86 92.27 92.28 92.25 96.48

Charniak-Stanford-Malt 91.77 92.28 92.30 92.08 96.49

Charniak-Stanford-Zpar 91.22 91.99 92.02 92.08 95.94

Charniak-Mst-Malt 88.80 89.55 90.77 92.08 96.30

Charniak-Mst-Zpar 90.44 91.59 92.08 92.08 96.16

Charniak-Malt-Zpar 88.61 91.30 92.08 92.08 96.21

Stanford-Mst-Malt 87.84 88.28 88.26 88.28 95.62

Stanford-Mst-Zpar 89.12 89.88 88.84 89.91 95.57

Stanford-Malt-Zpar 88.61 89.57 87.88 87.88 95.47

Mst-Malt-Zpar 86.99 87.34 86.82 86.49 93.79

Charniak-Stanford-Mst-Malt 90.45 92.09 92.34 92.56 97.09

Charniak-Stanford-Mst-Zpar 91.57 92.24 92.27 92.26 96.97

Charniak-Stanford-Malt-Zpar 91.31 92.14 92.40 92.42 97.03

Charniak-Mst-Malt-Zpar 89.60 89.48 91.71 92.08 96.79

Stanford-Mst-Malt-Zpar 88.76 88.45 88.95 88.44 96.36

All 91.43 91.77 92.44 92.58 97.41

Table 2.2: Initial English Results of the minimum spanning tree algorithm on a

combined edge graph. Scores are in bold when the ensemble system increased

the UAS score over all individual systems.
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X weightx

0.5 91.77

2 91.84

4 91.98

6 92.44

8 92.47

9 92.52

10 92.58

11 92.57

12 92.57

16 92.43

Table 2.3: UAS scores of our ensemble parser with all parsers included at different

exponential values (UASx)

71% accurate. There are also POS errors that are almost always universally bad

such as the left parenthesis (. Given the large difference in POS errors, weighting

an ensemble system by POS would seem like a logical choice in future work. As

we can see in Figure 2.2, the varying POS accuracies indicate that the parsing

techniques we have incorporated into our ensemble parser, are significantly dif-

ferent. In almost every case in Table 2.4, our Ensemble parser achieves the best

accuracy for each POS, while reducing the average relative error rate by 8.64%.

The current weighting systems don’t simply default to the best parser or to an

average of all errors. In the majority of cases our ensemble parser obtains the

top accuracy. In all cases, our ensemble parser is never the worst parser. In cases

where the POS is less frequent, our ensemble parser seems to average out the

error distribution.

We have shown the benefits of using a maximum spanning tree algorithm in

fixed weight ensemble learning for dependency parsing, especially for combining

constituent parsers with other dependency parsing techniques. This ensemble

method shows improvements over the current state of the art for each individ-

ual parser. We also show a theoretical maximum oracle parser which indicates

that much more work in this field can take place to improve dependency parsing

accuracy toward the oracle score of 97.41%.

We demonstrated that using parsers of different techniques, especially including

transformed constituent parsers, can lead to the best accuracy within this ensem-
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POS Charniak Stanford MST Malt Zpar Best Relative Error

Ensemble Reduction

PDT 88.890 77.78 83.33 88.89 77.78 88.89 0.00

CC 83.540 74.73 71.16 65.84 20.39 84.63 6.64

NNP 94.590 92.16 88.04 87.17 73.67 95.02 7.81

, 84.450 78.02 63.13 60.12 65.64 85.08 3.99

WP$ 90.480 71.43 85.71 90.48 0.00 90.48 0.00

VBN 91.720 89.81 90.35 89.17 88.26 93.81 25.27

WP 83.780 80.18 80.18 82.88 2.70 81.08 -16.67

RBR 77.680 62.50 75.00 76.79 68.75 78.57 4.00

CD 94.910 92.67 85.19 84.46 82.64 94.96 1.02

RP 96.150 95.05 97.25 95.60 94.51 97.80 42.86

JJ 95.410 92.99 94.47 93.90 89.45 95.85 0.00

PRP 97.820 96.21 96.68 95.64 95.45 98.39 26.09

TO 94.520 89.44 91.29 90.73 88.63 94.35 -2.94

EX 96.490 98.25 100.00 100.00 96.49 98.25 50.00

WRB 63.910 60.90 68.42 73.68 4.51 63.91 0.00

RB 86.260 79.88 81.49 81.44 80.61 87.19 6.74

FW 55.000 45.00 60.00 25.00 35.00 55.00 0.00

WDT 97.140 95.36 96.43 95.00 9.29 97.50 12.50

VBP 91.400 83.29 80.92 75.81 50.87 91.27 -1.45

JJR 88.380 80.81 74.75 70.20 68.18 87.37 -8.70

VBZ 91.970 87.35 83.86 80.78 57.91 92.46 6.06

NNPS 97.620 95.24 100.00 95.24 69.05 100.00 100.00

( 73.610 75.00 54.17 58.33 15.28 73.61 0.00

UH 87.500 62.50 75.00 37.50 37.50 87.50 0.00

POS 98.180 96.54 98.54 98.72 0.18 98.36 10.00

$ 82.930 80.00 67.47 66.40 52.27 84.27 7.81

“ 83.990 79.66 76.08 58.95 74.01 84.37 2.35

: 77.160 72.53 45.99 44.44 53.70 79.63 10.81

JJS 96.060 90.55 88.19 86.61 82.68 93.70 -60.00

LS 75.000 50.00 100.00 75.00 75.00 75.00 0.00

. 96.060 93.48 91.07 84.89 87.56 97.08 25.81

VB 93.040 88.48 91.33 90.95 84.37 94.24 17.27

MD 89.550 82.02 83.05 78.77 51.54 89.90 3.28

NNS 93.100 89.51 90.68 88.65 78.93 93.67 8.26

NN 93.620 90.29 88.45 86.98 83.84 94.00 6.00

VBD 93.250 87.20 86.27 82.73 64.32 93.52 4.03

DT 97.610 96.47 97.30 97.01 92.19 97.97 14.78

# 100.000 80.00 0.00 0.00 0.00 100.00 0.00

’ 88.280 83.79 81.84 69.92 79.88 90.04 15.00

RBS 90.000 76.67 93.33 93.33 86.67 90.00 0.00

IN 87.800 78.66 83.45 80.78 73.08 87.48 -2.66

SYM 100.000 100.00 100.00 0.00 0.00 100.00 0.00

PRP$ 97.640 96.07 47.22 96.86 93.12 97.45 -8.33

) 70.830 77.78 96.46 55.56 12.50 72.22 4.76

VBG 85.190 82.13 82.74 82.25 81.27 89.35 28.10

Average 7.79

Table 2.4: POS errors for each of our systems that are used in the ensemble sys-

tem. We also include the POS error distribution for our best Fixed Weight En-

semble System for English, which is the combination of all parsers using UAS10.

All POS errors are calculated using the testing data provided by section 23 of

the WST. The ensemble system that generated these errors was parameterized

on tuning data, section 22 of the WSJ.
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Figure 2.2: POS errors of parsers and the best ensemble system

ble framework. The improvements in accuracy are not simply due to a few edge

changes but can be seen to improve the accuracy of the majority of POS tags

over all individual systems.

To amplify the effect of POS error reduction further we now look to learn the

ensemble weights through our POS error distribution. To do this we will clus-

ter the POS accuracies of our parsers and combine in a similar fashion. These

experiments are detailed in Section 2.3.

2.3 Fuzzy Clustering

Each dependency parsing technique described thus far can achieves state-of-the-

art results, however each technique achieves this result via different error distribu-

tion. To minimize these errors and to increase state-of-the-art parsing accuracy,

we now examine ensemble techniques that weight graph edges based on part of
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speech errors. To do this, we cluster all dependency parsing models on part of

speech error counts. This leads us to have a different weighting scheme between

dependency parsers for each individual part of speech.

2.3.1 Weighting Schemes

We apply three weighting algorithms to the graph structure. First we give each

parser uniform weight as we did in the previous section. Second we weight each

particular edge by a combination of models weights determined by the part of

speech error distribution. Finally we apply exponential scaling to the POS weights

( POS10) to amplify the differences between models. Even in their simplicity, we

can see the benefit of this type of combination in an ensemble parser for all three

weighting schemes.

• Uniform: an edge in the graph gets incremented +1 weight for each match-

ing edge in each parser. If an edge occurs in 4 parsers, the weight is 4.

• POS: Each edge of the graph is weighted by a combination of weighting

schemes determined by the particular part of speech. This is described in

more detail in Section 2.3.2.

• POS10: For this weighting scheme we took each POS model score and took

it to the 10th power at run time.

2.3.2 Determining Part of Speech Clustering Weights

To automatically learn the weights of our models, we turn to part of speech error

analysis. We obtain a POS error distribution from our tuning data. Using fuzzy

clustering with the cosine distance metric over 20 iterations we find 3 clusters.

For a particular part of speech we get a weight corresponding to each cluster that

sum to 1. In N clusters we have M weights corresponding to each M models. So

for a particular edge we get it’s weight by summing each cluster multiplied by all

model weights as seen in the equation below.

Weightedge =
N∑
i=1

wi

M∑
j=1

wj
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If a part of speech did not occur in the tuning data, the weights are equally split

across all clusters.

The English experiments are conducted using the same datasets and parsers from

the Fixed Weight Ensemble Parsers. We did however add two additional lan-

guages, Italian and Japanese, that have different error distributions and different

tag sets. For Italian and Japanese we also use train and test CoNLL releases. For

tuning data we remove the last 500 sentence of the training data for estimating

POS accuracies.

For English we ran 25 model combinations but only report on combinations of

three or more models. We conducted 29 combinations of models for each of three

weighting schemes for both Japanese and Italian. This is far too much to fully

describe in one paper, so to consolidate the results we only display the top ten

results for Italian and Japanese for the POS10 weighting.

2.3.3 Results

Our clustering algorithm is based on Fuzzy-Cmeans algorithm. This algorithm

allows for a “data point” to exist partially in many clusters. The cluster cen-

troid is iteratively calculated. For our data points we will use a count of cor-

rectly predicted POS’s tags for each parser so for one entry we would have

NOUN⇒Parser1⇒10, Parser2⇒20 Parser3⇒5, Parser4⇒6. The clusters will

then specify the centroids of different clusters of these data points. We use 3

clusters which gives use 3 combinations of model weights.

Models Cluster 1 Cluster 2 Cluster 3

Charniak 21.48% 26.46% 31.68%

Stanford 20.47% 24.91% 27.62%

Mst 20.29% 24.25% 21.57%

Malt 19.38% 20.47% 10.43%

Zpar 18.38% 3.91% 8.70%

Table 2.5: Cluster weights for each model when averaged based across centroids

for our English models

This weighting system models the POS tag in a fashion similar to the POS error

distribution. For instance the POS tags ”CC“ has high weights for Cluster 1.

Cluster 1 gives very little weight to Zpar. If we examine the POS errors in Table
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POS Cluster 1 Cluster 2 Cluster 3

( 0.0070 0.9928 0.0007

) 0.0430 0.9508 0.0067

CC 0.0080 0.9904 0.0019

JJ 1.0000 0.0001 0.0000

MD 0.8040 0.1820 0.0136

NN 1.0000 0.0000 0.0000

NNP 1.0000 0.0001 0.0000

NNPS 0.0070 0.9917 0.0013

PDT 0.2100 0.7277 0.0618

PRP 1.0000 0.0001 0.0001

VB 1.0000 0.0000 0.0000

VBD 0.9810 0.01530 0.0036

VBZ 0.9710 0.0250 0.0041

WDT 0.0030 0.9963 0.0005

Table 2.6: The Weights of each Cluster for each individual POS Tag. The POS

list has been reduced for space concerns

2.4, Zpar did very poorly on these tags. Overall, it does appear that the clusters

tend towards a more balanced weighting scheme while only pointing out true

outliers.

Table 2.7 shows the results of the run on our tuning data. The accuracies are

higher but comparable to what is seen with a basic uniform weighting scheme.

The weights were a combination of the fuzzy clustering weights based on POS

errors shown in Table 2.6. This score, 92.54%, which occurred when all parsers

were used, is the best accuracy of all our ensemble techniques and model combi-

nations with English.

Fuzzy Clustering w/ various training parameters

For Italian and Japanese we do not have access to a constituency to dependency

transformation which limits use to too few parsers. So for these languages we

only use Malt Parser and MST Parser but we use different training parameters

to create various parsing models. For Malt Parser we use 7 models and for MST

Parser we use 2 models.
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Parser Uniform POS POS10 Oracle

Charniak-Stanford-Mst 91.86 92.27 92.08 96.48

Charniak-Stanford-Malt 91.77 92.28 92.08 96.49

Charniak-Stanford-Zpar 91.22 92.00 92.08 95.94

Charniak-Mst-Malt 88.80 89.55 92.08 96.30

Charniak-Mst-Zpar 90.44 91.59 92.08 96.16

Charnial-Malt-Zpar 88.61 91.30 92.08 96.21

Stanford-Mst-Malt 87.84 87.94 87.88 95.62

Stanford-Mst-Zpar 89.12 89.89 87.88 95.57

Stanford-Malt-Zpar 88.61 89.60 89.58 95.47

Mst-Malt-Zpar 86.99 87.34 86.49 93.79

Charniak-Stanford-Mst-Malt 90.45 92.09 92.45 97.09

Charniak-Stanford-Mst-Zpar 91.57 92.24 92.49 96.97

Charniak-Stanford-Malt-Zpar 91.31 92.15 92.08 97.03

Charniak-Mst-Malt-Zpar 89.60 89.53 92.08 96.79

Stanford-Mst-Malt-Zpar 88.76 88.40 87.88 96.36

All 91.43 91.84 92.54 97.41

Table 2.7: UAS scores of our ensemble parser using POS fuzzy clustering weights

for English. Values are bolded wherever the result is greater than all individual

models within the ensemble system.

Models IT-UAS JA-UAS

mstnonproj 72.89% 78.65%

mstproj 76.03% 84.04%

nivreeager 82.08% 92.99%

nivrestandard 81.11% 92.87%

2planar 82.58% 90.01%

planar 81.89% 90.81%

stackeager 81.44% 93.25%

stacklazy 81.27% 93.43%

stackproj 81.57% 91.87%

Table 2.8: Our baseline parsers and corresponding UAS used in our ensemble

experiments for Italian and Japanese
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Table 2.9 shows the scores for Japanese. The scores are taken from the top

10 performing systems for POS10 weighting scheme. All of the top 10 systems

performed at or better than the best performing individual model. This is a

promising result since Japanese already has a relatively high baseline compared

to other languages. Extending the results from the English experiments we might

see even greater improvement given more diversity of models instead of only Malt

Parser and MST Parser.

Model Combos Uniform POS POS10 Oracle

mstnonproj-2planar-nivrestandard 92.96% 93.00% 93.43% 97.51%

nivreeager-stacklazy-stackeager

mstnonproj-nivrestandard-nivreeager-stackeager 93.28% 93.43% 93.43% 97.08%

mstnonproj-nivrestandard-nivreeager-stacklazy 93.35% 93.43% 93.43% 97.04%

mstnonproj-planar-nivreeager-stacklazy 92.63% 93.45% 93.43% 97.11%

mstnonproj-planar-nivrestandard 92.73% 93.12% 93.43% 97.32%

nivreeager-stacklazy

mstnonproj-2planar-nivreeager-stacklazy 93.24% 93.43% 93.45% 97.22%

mstnonproj-nivrestandard-nivreeager 93.29% 93.45% 93.45% 96.59%

mstnonproj-planar-nivrestandard 93.38% 93.45% 93.45% 97.46%

nivreeager-stacklazy-stackeager

mstnonproj-2planar-nivrestandard 92.84% 93.08% 93.50% 97.41%

nivreeager-stacklazy

mstnonproj-2planar-nivrestandard-nivreeager 93.26% 93.59% 93.59% 97.11%

Average over all Combos 92.41% 92.65% 92.63% 96.84%

Table 2.9: UAS scores of our ensemble parser using POS fuzzy clustering weights

for Japanese

Table 2.10 shows the scores for Italian. The scores are taken from the top 10

performing systems for POS10 weighting scheme as well. Overall none of the

combinations were able to achieve as high of a score as the best individual model

which was the 2planar trained Malt Parser. Of all the weighting schemes, POS10

performed the best with an average accuracy of 77.38% and a max accuracy of

81.34%. Although this did not beat planar2 the average POS error reduction,

described in Section 2.3.3, shows us another story on how this ensemble system

may be used.
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Model Combos Uniform POS POS10 Oracle

mstnonproj-2planar-nivrestandard 80.77% 80.57% 81.04% 89.82%

nivreeager-stacklazy-stackeager

mstnonproj-nivrestandard-nivreeager-stackeager 81.06% 81.10% 81.04% 90.36%

mstnonproj-nivrestandard-nivreeager-stacklazy 80.61% 80.77% 81.08% 89.78%

mstnonproj-planar-nivreeager-stacklazy 80.75% 80.89% 81.10% 90.72%

mstnonproj-planar-nivrestandard 80.61% 80.75% 81.10% 89.87%

nivreeager-stacklazy

mstnonproj-2planar-nivreeager-stacklazy 80.57% 80.77% 81.14% 89.68%

mstnonproj-nivrestandard-nivreeager 80.69% 80.99% 81.16% 90.62%

mstnonproj-planar-nivrestandard 80.75% 81.04% 81.24% 90.58%

nivreeager-stacklazy-stackeager

mstnonproj-2planar-nivrestandard-nivreeager-stacklazy 80.95% 81.14% 81.32% 87.40%

nivreeager-stacklazy

mstnonproj-2planar-nivrestandard-nivreeager 80.34% 80.93% 81.34% 88.30%

Average over all Combos 77.33% 77.36% 77.38% 87.98%

Table 2.10: UAS scores of our ensemble parser using POS fuzzy clustering weights

for Italian

Figure 2.3: We can visually see how the ensemble system reduces POS errors

across each POS. The line connects the best ensemble system for for Italian on

each of it’s POS tags

20



POS Charniak Stanford MST Malt Zpar Best Relative Error

Ensemble Reduction

PDT 88.89 77.78 83.33 88.89 77.78 88.89 0.00

CC 83.54 74.73 71.16 65.84 20.39 84.63 6.64

NNP 94.59 92.16 88.04 87.17 73.67 95.02 7.81

VBN 91.72 89.81 90.35 89.17 88.26 93.81 25.27

JJ 95.41 92.99 94.47 93.90 89.45 95.85 0.00

PRP 97.82 96.21 96.68 95.64 95.45 98.39 26.09

TO 94.52 89.44 91.29 90.73 88.63 94.35 -2.94

RB 86.26 79.88 81.49 81.44 80.61 87.19 6.74

FW 55.00 45.00 60.00 25.00 35.00 55.00 0.00

WDT 97.14 95.36 96.43 95.00 9.29 97.50 12.50

VB 93.04 88.48 91.33 90.95 84.37 94.24 17.27

MD 89.55 82.02 83.05 78.77 51.54 89.90 3.28

NNS 93.10 89.51 90.68 88.65 78.93 93.67 8.26

NN 93.62 90.29 88.45 86.98 83.84 94.00 6.00

DT 97.61 96.47 97.30 97.01 92.19 97.97 14.78

Average 7.79

Table 2.11: POS errors for each of our systems that are used in the ensemble

system for English. We also include the POS error distribution for our best

Ensemble system. All POS errors are calculated using the testing data, section 23

of the WST. The ensemble system that generated these errors was parameterized

on tuning data, section 22 of the WSJ. We only display a reduced set of POS

tags for space but the Average is over all POS tags including those not shown.
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POS error reduction

Figure 2.3 shows visually how the best ensemble system for Italian is at or better

than all other parsers in terms of POS errors. This shows that the ensemble

system is not just an averaging of errors but actually does reduce error for each

individual POS. Similar results can be seen in English as well.

POS Mst Mstnon Nivre Nivre Planar 2Planar Stack Stack Stack Best Relative err

proj proj eager standard proj eager lazy ensemble reduction

A 92.33 90.67 91.67 91.67 92.00 92.00 91.00 91.67 91.67 93.00 8.70%

S 74.55 70.98 78.62 71.56 79.13 78.11 72.00 72.36 72.00 79.56 2.09%

N 73.78 64.63 82.32 80.49 81.71 83.54 79.88 82.32 81.10 84.76 7.41%

PU 75.68 59.10 90.63 89.67 90.08 89.13 90.63 90.22 90.22 90.90 2.90%

P 49.76 53.17 81.95 58.54 80.00 81.95 59.51 62.44 61.46 81.95 0.00%

B 75.63 69.54 77.66 76.14 79.70 78.17 75.13 77.16 74.11 80.20 2.50%

E 71.32 63.38 78.10 72.47 78.23 77.46 76.18 74.90 74.14 78.23 0.00%

V 56.45 58.87 67.80 56.31 67.66 66.10 55.04 55.18 54.18 67.80 0.00%

SA 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 66.67 0.00%

D 77.36 69.81 81.13 62.26 92.45 94.34 60.38 71.70 64.15 98.11 66.67%

C 50.30 42.01 65.68 49.70 60.36 58.58 59.17 59.17 57.40 68.05 6.90%

R 80.79 78.82 89.66 58.37 92.86 91.87 56.16 54.93 54.93 93.60 10.34%

Avg 70.38 65.64 79.32 69.49 80.07 79.83 70.14 71.56 70.17 81.90 8.96%

Table 2.12: POS errors for Italian and its relative error reduction

Next in Table 2.12 we look at the relative POS error reduction rate and its average

across all parts of speech. Table 2.12 indicates that while the POS clustering

ensemble system did not perform better than the best overall system, it did reduce

error on an edge by edge level in terms of POS error. This indicates that locally

the system makes better decisions but the overall structure of the parse tree is

incorrect. To correct this we must look at combining POS clustering with an

ensemble method that will favor an overall structure.

2.4 Model Classification

This section bridges the gap between using a mixture of prediction for each

node/edge relationship to a discrete choice where we let one parser select the

head of a node. The parse selection works similarly to the section above in select-

ing the final tree from a graph structure. However, using a discrete choice brings

new complications. If we use a classifier on each node and this allows each node

to be selected by a different parser possibly. It is very likely that we will have

cycles and more importantly we will have a disconnected graph.
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2.4.1 Methodology

Morphologically rich and under-resourced languages are often short on training

data or require much higher amounts of training data due to the increased size

of their lexicon. This section examines a new approach for addressing morpho-

logically rich and under-resourced languages with little training data to start.

We demonstrate this technique on three languages. Tamil, using a combination

of different dependency parsers, Indonesian using a combination of models pro-

duced from only one parser, and English using a combination of dependency and

constituent parsers.

For Tamil we show a statistically significant 5.44% improvement over the average

dependency model and a statistically significant 0.52% improvement over the best

individual system. For Indonesian we show increases the dependency accuracy

by 4.92% on average and 1.99% over the best individual system. For English

our model improves on the best individual system by a little more than half a

percentage.

Languages and Data Sets

Using Tamil as our test language, we create 9 dependency parse models with a

limited amount of training data. Using these models we train an SVM classifier

using only the model agreements as features (described in Section 2.4.1). We use

this SVM classifier on an edge by edge decision to form an ensemble parse tree.

Using only model agreements as features allows this method to remain language

independent and applicable to a wide range of morphologically rich languages.

Tamil belongs to Dravidian family of languages and is mainly spoken in southern

India and also in parts of Sri Lanka, Malaysia and Singapore. Tamil is aggluti-

native and has a rich set of morphological suffixes. Tamil has nouns and verbs as

two major word classes, and hundreds of word forms can be produced by the ap-

plication of concatenative and derivational morphology. Tamil’s rich morphology

makes the language free word order except that it is strictly head final.

Only few attempts were reported in the literature on the development of a tree-

bank for Tamil. Our experiments are based on the openly available treebank

(TamilTB) [22]. Development of TamilTB is still in progress and the initial re-

sults for TamilTB appeared in [21]. Previous parsing experiments were done
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using a rule based approach which utilized morphological tagging and identifica-

tion of clause boundaries to parse the sentences. The results were also reported

for Maltparser and MST parser. When the morphological tags were available

during both training and testing, the rule based approach performed better than

Malt and MST parsers.

Table 2.13 shows the statistics of the TamilTB Treebank. The last 2 rows indicate

how many word types have unique tags and how many have two tags. The table

illustrates that most of the word types can be uniquely identified with single

morphological tag; only around 120 word types take more than one morphological

tag.

Description value

#Sentences 600

#Words 9581

#Word types 3583

#Tagset size 234

#Types with unique tags 3461

#Types with 2 tags 112

Table 2.13: TamilTB: data statistics

The Indonesian treebank that we use in this work is a collection of manually

annotated Indonesian dependency trees. It consists of 100 Indonesian sentences

with 2705 tokens and a vocabulary size of 1015 unique tokens. The sentences are

taken from the IDENTIC corpus [12]. The raw version of the sentences originally

were taken from the BPPT articles in economy from the PAN localization [18]

project output. The treebank used Parts-Of-Speech tags (POS tags) provided

by MorphInd [13]. Since the MorphInd output is ambiguous, the tags are also

disambiguated and corrected manually, including the unknown POS tag.

For English we used the same parsers and data sets described in Section 2.2.

Process Flow

When dealing with small data sizes it is often not enough to show a simple ac-

curacy increase. This increase can be very reliant on the training/tuning/testing

data splits as well as the sampling of those sets.

24



Figure 2.4: Process Flow for one run of our SVM Ensemble system. This Process

in its entirety was run 100 times for each data set split.

For Tamil our experiments are conducted over 8 training/tuning/testing data

split configurations with training data ranging from 70-90 percent of the data.

For each configuration we randomly sample without replacement the training/-

tuning/testing data and rerun the experiment 100 times. These 800 runs, each

on different samples, allow us to better show the overall effect on the accuracy

metric as well as the statistically significant changes as described in Section 2.2.1.

Figure 2.4 shows this process flow for one run of this experiment.

To test the effects of the training, tuning, and testing data for Indonesian we try

18 different data split configurations, each one being sampled 100 times. The

data splits in Section 2.4.2 use the format training-tuning-testing. So 70-20-10

means we used 70% of the Indonesian Treebank for training, 20% for tuning the

SVM classifier, and 10% for evaluation.

For English we did not retrain the parsers so we use the standard data splits

configuration by using WSJ section 22 for tuning and section 23 for testing.

Parsers

For Tamil we generate two models using MST parser [15], one projective and one

non-projective to use in our ensemble system. Additionally we generate many

transition-based parsers. We make use of Malt Parser [16], which in the CoNLL
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shared tasks was often tied with the best performing systems. For this parser we

generate 7 different models using different training parameters and use them as

input into our ensemble system along with the two Graph-based models described

above.

For Indonesian we test the system using only 1 type of parser, in this case Malt

Parser. We use the same 7 models described above.

For English we did not change the parser configurations described in Section 2.2.1

Training Parameter Model Description

nivreeager Nivre arc-eager

nivrestandard Nivre arc-standard

stackproj Stack projective

stackeager Stack eager

stacklazy Stack lazy

planar Planar eager

2planar 2-Planar eager

Table 2.14: Table of the Malt Parser Parameters used during training. Each

entry represents one of the parsing algorithms used in our experiments. For more

information see http://www.maltparser.org/options.html

Ensemble SVM System and Features

We train our SVM classifier using only model agreement features. Using our

tuning set, for each correctly predicted dependency edge, we create

(
N

2

)
features

where N is the number of parsing models. We do this for each model which

predicted the correct edge in the tuning data. So for N = 3 the first feature

would be a 1 if model 1 and model 2 agreed, feature 2 would be a 1 if model 1

and model 3 agreed, and so on. This feature set is widely applicable to many

languages since it does not use any additional linguistic tools.

For each edge in the ensemble graph, we use our classifier to predict which model

should be correct, by first creating the model agreement feature set for the current

edge of the unknown test data. The SVM predicts which model should be correct

and this model then decides to which head the current node is attached. At the

end of all the tokens in a sentence, the graph may not be connected and will likely
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Figure 2.5: General flow to create an Ensemble parse tree with a meta-classifier

have cycles. Using a Perl implementation of minimum spanning tree2, in which

each edge has a uniform weight, we obtain a minimum spanning forest, where

each component is then connected and cycles are eliminated in order to achieve

a well formed dependency structure. Figure 2.5 gives a graphical representation

of how the SVM decision and MST algorithm create a final Ensemble parse tree

which is similar to the construction used in [7, 5]. Future iterations of this process

could use a multi-label SVM or weighted edges based on the parser’s accuracy on

tuning data.

Evaluation

To test statistical significance we use Wilcoxon paired signed-rank test. For each

data split configuration we have 100 iterations of the experiment. Each model is

compared against the same samples so a paired test is appropriate in this case.

We report statistical significance values for p < 0.01.

2.4.2 Results and Discussion

Tamil Results

For each of the data splits, Table 2.15 shows the percent increase in our SVM

system over both the average of the 9 individual models and over the best indi-

vidual model. As the Table 2.15 shows, our approach seems to decrease in value

along with the decrease in tuning data. In both cases when we only used 5% tun-

ing data we did not get any improvement in our average UAS scores. Examining

2http://search.cpan.org/ pajas/Graph-ChuLiuEdmonds-0.05/lib/Graph/ChuLiuEdmonds.pm
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Table 2.16 shows that the decrease in the 90-5-5 split is not statistically signifi-

cant however the decrease in 85-5-10 is a statistically significant drop. However,

the increases in all data splits are statistically significant except for the 60-20-20

data split.

Data Average % Increase % Increase

Split SVM UAS over Avg over Best

70-20-10 76.50% 5.13% 0.52%

60-20-20 76.36% 5.68% 0.72%

60-30-10 75.42% 5.44% 0.52%

60-10-30 75.66% 4.83% 0.10%

85-5-10 75.33% 3.10% -1.21%

90-5-5 75.42% 3.19% -1.10%

80-10-10 76.44% 4.84% 0.48%

Table 2.15: Average increases and decreases in UAS score for different Training-

Tuning-Test samples in Tamil. The average was calculated over all 9 models while

the best was selected for each data split

It appears that the size of the tuning and training data matters more than the

size of the test data. Given that the TamilTB is relatively small (see Table 2.13)

when compared to other CoNLL treebanks, we expect that this ratio may shift

more when additional data is supplied since the amount of out of vocabulary,

OOV, words will decrease as well. As OOV words decrease, we expect the use of

additional test data to have less of an effect.

The traditional approach of using as much data as possible for the training does

not seem to be as effective as partitioning more data for tuning an SVM. For

instance the high test training percentage we use is 90% applied to training with

5% for tuning and testing each. In this case the best individual model had a UAS

score 76.25% and the SVM had a UAS of 75.42%. One might think using 90% of

the data would achieve a higher overall UAS score than using less training data.

On the contrary, we achieve a better UAS score on average using only 60%, 70%,

80%, and 85% of the data towards training. This additional data spent for tuning

appears to be worth the cost.

Indonesian Results

For each of the data splits, Table 2.17 shows the percent increase in our SVM

system over both the average of the 7 individual models and over the best indi-
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Model 70-20-10 60-20-20 60-30-10 60-10-30 85-5-10 90-5-5 80-10-10

2planar * * * * * * **

mstnonproj * * * * * * **

mstproj * * * * * * **

nivreeager * * * * ** x *

nivrestandard * * ** x * * *

planar * * * * * * **

stackeager * * * x * ** *

stacklazy * * * x * ** *

stackproj ** * * x ** ** **

Table 2.16: Statistical Significance Table for different Training-Tuning-Test sam-

ples for Tamil. Each experiment was sampled 100 times and Wilcoxon Statistical

Significance was calculated for our SVM model’s increase/decrease over each in-

dividual model. ∗ = p < 0.01 , ∗ ∗ p =< 0.05, x = p ≥ 0.05

Figure 2.6: Surface plot of the UAS score for the tuning and training data split.
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Data Average % Increase % Increase Statistical

Split SVM UAS over Average over Best Significant

50-40-10 60.01% 10.65% 4.34% Y

60-30-10 60.28% 10.35% 4.41% Y

70-20-10 62.25% 10.10% 3.70% Y

80-10-10 60.88% 8.42% 1.94% Y

50-30-20 61.37% 9.73% 4.58% Y

60-20-20 62.39% 9.62% 3.55% Y

70-10-20 62.48% 7.50% 1.90% Y

50-20-30 61.71% 9.48% 4.22% Y

60-10-30 62.57% 7.89% 2.47% Y

90-5-5 60.85% 0.56% 0.56% N

85-10-5 61.15% 0.56% 0.56% Y

80-15-5 59.23% 0.54% 0.54% Y

75-20-5 60.32% 0.54% 0.54% Y

70-25-5 59.54% 0.54% 0.54% Y

65-30-5 59.76% 0.54% 0.54% Y

60-35-5 59.31% 0.53% 0.53% Y

55-40-5 57.27% 0.50% 0.50% Y

50-45-5 57.72% 0.51% 0.51% Y

Table 2.17: Average increases and decreases in UAS score for different Training-

Tuning-Test samples in Indonesian. The average was calculated over all 7 models

while the best was selected for each data split. Each experiment was sampled 100

times and Wilcoxon Statistical Significance was calculated for our SVM model’s

increase/decrease over each individual model. Y = p < 0.01 and N = p ≥ 0.01

for all models in the data split
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vidual model. As the Table 2.17 shows, we obtain above average UAS scores in

every data split. The increase is statistically significant in all data splits except

for one, the 90-5-5 split. This seems to be logical since this data split has the

least difference in training data between systems, with only 5% tuning data. Our

highest average UAS score was with the 70-20-10 split with a UAS of 62.48%.

The use of 20% tuning data is of interest since it was significantly better than

models with 10%-25% more training data as seen in Figure 2.6. This additional

data spent for tuning appears to be worth the cost.

The selection of the test data seems to have caused a difference in our results.

While all our ensemble SVM parsings system have better UAS scores, it is a lower

increase when we only use 5% for testing. Which in our treebank means we are

only using 5 sentences randomly selected per experiment. This does not seem to

be enough to judge the improvement.

English Results

For English we used only preexisting models. They were trained on the usual

Penn treebank split, sections 02-21 for training, tuned with section 22 and test-

ed with section 23. With the SVM system we obtained an accuracy is 92.6%

which is higher then all individual systems and all previous ensemble systems

described here. We feel this number could be increased by retraining the models

and employing multiple Malt and MST models such as was done in the previous

experiments for other languages.

2.4.3 Conclusion

We have shown a new SVM based ensemble parser that uses only dependen-

cy model agreement features. The ability to use only model agreements allows

us to keep this approach language independent and applicable to a wide range

of morphologically rich and under-resourced languages. For Tamil we show a

statistically significant 0.52% improvement over the best individual system. For

Indonesian we show increases the dependency accuracy by 1.99% over the best in-

dividual system. For English our model improves over the best individual system

by a little more than half a percentage.
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3. Parsing Effects on Machine

Translation

3.1 Introduction

Dependency parsing is typically evaluated by its labeled and unlabeled accuracy

scores for a particular parse tree. The models are rarely used to evaluate perfor-

mance on other NLP tasks. Although rarely evaluated, they are often used, as

parsing is a main component of many NLP tasks. In this chapter we evaluate our

three ensemble systems on one particular task, Machine Translation.

3.2 Methodology

3.2.1 Data Sets

To test our parsers’ results in a full machine translation run, we translated

newstest2011 data from the Workshop for Machine Translation (WMT). Although

we show parsing results for other languages we are only translating text with the

English to Czech pairing (en-cs). Newstest2011 dataset contains 2,973 sentences

from 1 genre of text.

3.2.2 Parsers

We use mostly the parsers described in Chapter 2. Since we are only translating

an English to Czech scenario, we are only using the English parsers. We use the

different parsers in separate translation runs each time in the same Treex parsing

block. So each translation scenario only differs in the parser used and nothing

else. The parsers used are as follows:

• MST

• MST with chunking

• Malt
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• Malt with chunking

• Zpar

• Charniak

• Stanford

• Fixed Weight Ensemble

• Fuzzy Cluster

• SVM

Both MST and Malt have variants “with chunking”, in these cases the parser is

applied to a subsegment of the sentences when applicable. This could be when

we have a sentence inside parenthesis or when we have an apposition.

3.2.3 Evaluation

For Machine Translation we report two automatic evaluation scores, BLEU, and

NIST.

The BLEU (B iLingual Evaluation U nderstudy) score is an automatic scoring

mechanism for machine translation that is quick and can be reused as a bench-

mark across machine translation tasks. BLEU is calculated as the geometric

mean of n-grams multiplied by a brevity penalty, comparing a machine transla-

tion and a reference text [19]. This experiment compares the two parsing systems

against each other using the above metrics. In both cases the test set data is sam-

pled 1,000 times without replacement to calculate statistical significance using a

pairwise comparison.

NIST, from the N ational I nstitute of S tandards and T echnology, is based up-

on the BLEU n-gram approach however it is also weighted towards discovering

more “informative” n-grams. The more rare an n-gram is, the higher the weight

for a correct translation of it will be. This, in effect, lowers the importance of

translating punctuation and common words such as articles.
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3.3 Results and Discussion

Results of each machine translation run can be found in Table 3.1. The hope of

our ensemble system was to form better structures to be used by NLP systems.

It appears, by the results, that we are on track. Each of our combined ensemble

systems achieves a higher score than any machine translation scenario that uses

just one parser.

Parser UAS NIST BLEU

MST 86.49 5.5898 13.58

MST with chunking 86.57 5.6346 14.00

Malt 84.51 5.5702 13.48

Malt with chunking 87.01 5.6025 13.80

Zpar 76.06 5.4635 12.48

Charniak 92.08 5.6561 13.95

Stanford 87.88 5.5970 13.63

Fixed Weight Ensemble 92.58 5.6831 14.04

Fuzzy Cluster 92.54 5.6820 14.06

SVM 92.60 5.6837 14.11

Table 3.1: Table showing the NIST and BLEU scores for each Treex Machine

Translation run along with the UAS score of the parser used in the translation

scenario.

All of our ensemble systems currently only use the base Malt and MST parser.

The results indicate that the chunking variants do better in translation. Incor-

porating these into our system should also increase our Fixed Weight Ensemble,

Fuzzy Clustering, and SVM systems. The results also point out one addition-

al point of research, in that time spent improving the accuracy of early input

NLP tools is well worth the effort as they have a cascading effect down an NLP

pipeline.

3.4 Conclusion

With these experiments we have shown that is useful to not only characterize

parsing results by their accuracy but also show their significance in other NLP
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tasks. We showed that by only using combined parsers in a machine translation

scenario you can achieve an improved NIST and BLEU score in each of our three

combinations.
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4. Conclusion and Future Work

We have looked at the problem of dependency parsing and machine translation

through the lens of ensemble parsing. We have introduced and shown results with

three different ensemble parsers. First a fixed weight spanning tree approach that

combines many different parsers into a weight graph. Second, a fuzzy clustering

approach that chooses dependency edges from an error distribution of different

dependency parsers. Third, and most successful, we use a meta classifier support

vector machine that chooses the model that is best for a particular edge. In

each case we have shown that an ensemble parser can outperform individual

parsers. We show this in various languages: English, Italian, Japanese, Tamil,

and Indonesian.

While having a slight increase in parser accuracy is nice, we wanted to show

that it has further application in the NLP pipeline. We demonstrate this with

machine translation using the Treex Framework for English to Czech translation.

Changing only the dependency parser in a translation scenario we show increases

in the NIST and BLEU scores for each of our ensemble parsers indicating that

increases in the source side UAS score will have positive outcomes much further

down the translation scenario.

Future work should be focused on showing why this improvement occurs. This

will entail a more detailed analysis of the of errors each Ensemble system is

correcting. It will also include an analysis of the sentences changed in each

machine translation scenario. Additionally, adding more complex feature sets to

our meta-classifier, such as neighbor tags and n-grams, should produce improved

results.
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