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This technical report summarizes the research on unsupervised dependency
parsing at the Institute of Formal and Applied Linguistics, Faculty of Math-
ematics and Physics, Charles University in Prague, in the year 2011. It
describes projective and non-projective approaches of sampling of depen-
dency trees, possibility to employ reducibility feature of dependent words,
and reports results obtained across various languages.

This work has been supported by the grants GAČR 201/09/H057, MSM0021620838,
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Chapter 1

Introduction

Unsupervised approaches receive considerably growing attention in NLP in
the last years, and dependency parsing is not an exception.

The advantages of such approaches are obvious. We do not need any
human annotated data for training and therefore we are able to syntactically
analyze the texts even in languages, for which there is no formal description
of their morphology nor syntax.

Another advantage is more speculative. It is the fact that formal gram-
mars produced by people based on their linguistic intuition may not be
adequate for statistical language tools. For example, positions of function
words in a dependency tree, such as prepositions, conjunctions, articles, or
auxiliary verbs, differ across various treebanks. If we want to learn, how
these structures may look like from the pure statistical point of view, the
only possibility is to employ completely unsupervised parser with no lan-
guage dependent prior knowledge.

On the other hand, the quality of unsupervised dependency parsers is
still much lower than the quality of the supervised approaches, if we compare
their results against manually created treebanks. However, such comparison
is not very fair since the supervised parsers are trained on a similarly an-
notated data and therefore it would be quite surprising if the unsupervised
methods were doing better here. Instead, the parsers should be compared
in an extrinsic way, for example in a final application, such as in machine
translation.

Nevertheless, the results in this report are measured intristically, because
we have not attempted to engage them in any application and, in addition,
it allows us to easily compare our method with other approaches.

The report is structured as follows. Section 2 briefly outlines the state of
the art in unsupervised dependency parsing. Section 3 describes the basic
intuitions about dependency trees and verify these intuitions on available
manually annotated treebanks. Section 4 shows our models which serve for
generating probability estimates for edge sampling described in Section 5.
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Experimental parsing results across various languages are summarized in
Section 6. Section 7 concludes.
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Chapter 2

Related Work

The popular approach in unsupervised dependency parsing of the recent
years is to employ Dependency Model with Valence (DMV), which was in-
troduced by Klein and Manning (Klein and Manning, 2004). The infer-
ence algorithm was further improved by Smith (Smith, 2007) and Cohen et
al. (Cohen et al., 2008). (Headden et al., 2009) introduced the Extended
Valency Model (EVG) and added lexicalization and smoothing. Blunsom
and Cohn (Blunsom and Cohn, 2010) use tree substitution grammars, which
allow learning larger dependency fragments.

Unfortunately, many of these works show results only for English.1 How-
ever, the main feature of unsupervised methods should be their applica-
bility across a wide range of languages. Such experiments were done by
Spitkovsky (Spitkovsky et al., 2011c), where the parsing algorithm was eval-
uated on all 19 languages included in CoNLL 2006 (Buchholz and Marsi,
2006) and 2007 (Nivre et al., 2007) shared tasks. The fully unsupervised lin-
guistics analysis in (Spitkovsky et al., 2011a) shows that the unsupervised
part-of-speech tags may be more useful for this task than the supervised
ones.

Brody (Brody, 2010) discovers resemblances between unsupervised pars-
ing and word alignment and introduces the IBM Models 1, 2, and 3 also for
dependency trees.

In this paper, we describe a new approach to unsupervised dependency
parsing. Unlike the dominating DMV, we will use a combination of three
smaller models, and a different inference procedure.

1The state-of-the-art unsupervised parsers achieve more than 50% of attachment score
measured on the Penn Treebank.
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Chapter 3

Basic Intuitions

This chapter describes some basic properties of syntactic structures, which
we believe are generally applicable across various natural languages.

3.1 Tree structure

The first such property is the treeness itself. We assume that a syntactic
structure of a sentence can be represented by a rooted directed tree. For
the formal definition of tree, we will use the following definitions that were
taken from (Havelka, 2007).

Definition 1 A dependency tree is a triple (V,→,�), where V is a finite
set of nodes,1 → is a dependency relation on V and � is a total order on
V . Relation → models linguistic dependency, and so represents a directed,
rooted tree on V . Relation →∗ is the reflexive transitive closure of → and
is usually called subordination.

Definition 2 A rooted subtree Si of a dependency tree T = (V,→,�) is
a set of nodes subordinated by i ∈ V , that is Si = {v ∈ V ; i→∗ v}.

3.2 Projectivity

Projectivity is one of the important properties of natural languages, even
though there are many exceptions, which violate the condition of projectiv-
ity. The notion of projectivity was established by (Harper and Hays, 1959),
who mentioned, that projections of dependency trees into sentences have a
tendency to fill continuous intervals.

We will use the definition of tree projectivity introduced by Harper and
Hays:

Definition 3 A dependency edge i → j is projective if and only if
∀v ∈ V : v ∈ (i, j) =⇒ v ∈ Si.

1In surface syntax, each node corresponds to one word in the sentence.
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Definition 4 A dependency tree T = (V,→,�) is projective if and only
if all its edges are projective.

Generally, there are not many non-projective edges in manually anno-
tated treebanks. Havelka (Havelka, 2007) studied non-projective construc-
tions in treebanks included in CoNLL 2006 shared task and reported about
2,1% of non-projective edges for Czech, 2,4% for German and even less non-
projective edges for other languages. It is important to note that the number
of non-projectivities depends not only on the chosen language but also on
the chosen annotation guidelines.
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Figure 3.1: Distribution of edge lengths for various languages. They were
measured on Czech, English, German and Catalan treebanks included in
CoNLL 2006 and 2007 shared tasks.

In this report, we will describe and compare two different algorithms.
The first one does not take the tree projectivity into account at all. Con-
versely, the second one generates strictly projective trees.
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3.3 Short dependencies

Naturally, distances between two related words are rather short. Figure 3.1
shows the distributions of lengths of dependencies in four different treebanks.
We can see that the probability of a dependency edge between two words
decreases rapidly with its length.
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Figure 3.2: Normalized probability mass distribution of edge types for
Czech, English, German and Catalan. All possible edge types (the squared
number of POS tags) are ordered according to their frequency and projected
to the interval (0,1) on the x-axis. The area under each graph is equal to
one. The characteristics were measured using treebanks from CoNLL 2006
and 2007 shared tasks.

3.4 Edge Repeatability

Assume all possible types of dependency edges, defined as doubles of child
and parent part-of-speech (POS) tag. We state that the edge probability
mass is concentrated into quite a low number of types and the remaining
types are less likely. The measurements on various treebanks (Figure 3.2)
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showed the Zipfian distributions.

3.5 Reducibility of dependents

The possibility of deleting a word from a sentence without violating its syn-
tactic correctness belongs to traditionally known manifestations of syntactic
dependency. As mentioned e.g. by (Kübler et al., 2009), one of the cri-
teria for recognizing dependency relations (including their head-dependent
orientation) is that a head H of a construction C determines the syntactic
category of C and can often replace C. Or, in words of Dependency Analysis
by Reduction of (Lopatková et al., 2005), stepwise deletion of dependent el-
ements within a sentence preserves its syntactic correctness. A similar idea
of dependency analysis by splitting a sentence into all possible acceptable
fragments is used in (Gerdes and Kahane, 2011).

Of course, all the above works had to respond to the notorious fact that
there are many language phenomena precluding the ideal (word by word)
sentence reducibility (e.g. in the case of prepositional groups, or in the
case of subjects in English finite clauses). But we disregard their solutions
tentatively and borrow only the very core of the reducibility idea: if a word
can be removed from a sentence without damaging it, then it is likely to be
dependent on some other (still present) word.

More generally, if a sequence of words < i, j > can be removed from a
sentence, then this sequence more likely forms a subtree in the dependency
tree.

We will compute a reducibility score for each possible sequence of words
(n-grams). The obtained scores will be then useful for parsing. The most
important are certainly the shortest sequences (i.e. unigrams, bigrams, and
possibly trigrams). We faced the two following issues:

1. What size of the context might be taken into account? This is the
trade-off between insufficiency and data sparseness.

2. Could be the data sparseness problem solved by word clustering, for
example by using part-of-speech tags instead of word forms?

The small context is not sufficient. Consider the two following sentences:

Their children went to school.
I took their children to school.

Then the verb ‘went’ is reducible in the context ‘children went to school’,
because the sequence ‘children to school’ occurs in the second sentence.
There are much more such examples even for larger context mainly for free
word-order languages. To prevent this, we decided to take the whole sen-
tences as a context instead of a shorter sequences.
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Using the part-of-speech tags instead of word forms also does not bring
the proper results. For instance, the two following sentence patterns

DT NNS VBD IN DT NN .
DT NNS VBD DT NN .

are quite frequent in English. Therefore we could deduce that the preposition
IN can be reduced. But this is a wrong deduction, since the preposition can
not be removed from the prepositional phrase. Based on these observations,
we decided to use the full word forms for computing reducibilities.

In the following text, we will use the word n-gram exclusively for a
sequence of part-of-speech tags, not for a sequence of words.

For each possible n-gram, we want to find its score saying how likely
this n-gram can be removed from a sentence so that the rest of the sentence
remains grammatically correct. This is performed on a large corpus.

unigrams R bigrams R trigrams R

VB 0.04 VBN IN 0.00 IN DT JJ 0.00
TO 0.07 IN DT 0.02 JJ NN IN 0.00
IN 0.11 NN IN 0.04 NN IN NNP 0.00
VBD 0.12 NNS IN 0.05 VBN IN DT 0.00
CC 0.13 JJ NNS 0.07 JJ NN . 0.00
VBZ 0.16 NN . 0.08 DT JJ NN 0.04
NN 0.22 DT NNP 0.09 DT NNP NNP 0.05
VBN 0.24 DT NN 0.09 NNS IN DT 0.14
. 0.32 NN , 0.11 NNP NNP . 0.15
NNS 0.38 DT JJ 0.13 NN IN DT 0.23
DT 0.43 JJ NN 0.14 NNP NNP , 0.46
NNP 0.78 NNP . 0.15 IN DT NNP 0.55
JJ 0.84 NN NN 0.22 DT NN IN 0.59
RB 2.07 IN NN 0.67 NNP NNP NNP 0.64
, 3.77 NNP NNP 0.76 IN DT NN 0.80
CD 55.6 IN NNP 1.81 IN NNP NNP 4.27

Table 3.1: Reducibility scores of the most frequent English n-grams. (V*
are verbs, N* are nouns, DET are determiners, IN are prepositions, JJ
are adjectives, RB are adverbs, CD are numerals, and CC are coordinating
conjunctions)

Given an n-gram, we go through the corpus2 and find all its occurrences.
For each such occurrence, we remove the appropriate words from the current
sentence and search through the corpus whether the rest of the sentence

2We assume that the corpus is morphologically analyzed by a POS-tagger.
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unigrams R bigrams R trigrams R

VVPP 0.00 NN APPR 0.00 NN APPR NN 0.01
APPR 0.27 APPR ART 0.00 ADJA NN APPR 0.01
VVFIN 0.28 ART ADJA 0.00 APPR ART ADJA 0.01
APPRART 0.32 NN VVPP 0.00 NN KON NN 0.01
VAFIN 0.37 NN $( 0.01 ADJA NN $. 0.01
KON 0.37 NN NN 0.01 NN ART NN 0.32
NN 0.43 NN ART 0.21 ART NN ART 0.49
ART 0.49 ADJA NN 0.28 NN ART ADJA 0.90
$( 0.57 NN $, 0.67 ADJA NN ART 0.95
$. 1.01 NN VAFIN 0.85 NN APPR ART 0.95
NE 1.14 NN VVFIN 0.89 NN VVPP $. 1.01
CARD 1.38 NN $. 0.95 ART NN APPR 1.35
ADJA 2.38 ART NN 1.07 ART ADJA NN 1.58
$, 2.94 NN KON 2.41 APPR ART NN 2.60
ADJD 3.54 APPR NN 2.65 APPR ADJA NN 2.65
ADV 7.69 APPRART NN 3.06 ART NN VVFIN 9.51

Table 3.2: Reducibility scores of the most frequent German n-grams. (V*
are verbs, N* are nouns, ART are articles, APPR* are prepositions, ADJ*
are adjectives, ADV are adverbs, CARD are numerals, and KON are con-
junctions)

occurs at least once elsewhere in the corpus.3 If so, then the n-gram is
reducible in the current context, otherwise it is not.

The reducibility R of an n-gram [t1 · · · tn], where n ∈ N is the number of
words covered by this n-gram, is computed following the Equation (3.1). We
define it as the number of times this n-gram was reducible (r) divided by all
its occurrences in the corpus (c). It is then normalized4 by the reducibility
of all possible n-grams (G).

R(t1 · · · tn) =
r(t1 · · · tn) + σ

c(t1 · · · tn) + σ
·
∑

g∈G r(g)∑
g∈G c(g)

(3.1)

The parameter σ is a smoothing constant ensuring that even the n-
grams that could not be reduced anywhere in the corpus get some small
score. Moreover, such score is higher for less frequent n-grams.

Tables 3.1, 3.2, and 3.3 show reducibility scores of the most frequent
n-grams in English, German, and Czech. If we consider only unigrams,
we can see that the scores for verbs are often among the lowest. Verbs are

3We do not take into account sentences that have less then 10 words, because they
could be nominal (without any verb) and might influence the reducibility scores of verbs.

4This normalization causes the scores are not too small. Note that the reducibility
scores are not probabilities.
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unigrams R bigrams R trigrams R

P4 0.00 RR AA 0.00 RR NN Z: 0.00
RV 0.00 Z: J, 0.00 NN RR AA 0.00
Vp 0.06 Vp NN 0.00 NN AA NN 0.16
Vf 0.06 VB NN 0.12 AA NN RR 0.23
P7 0.16 NN Vp 0.13 NN RR NN 0.46
J, 0.24 NN VB 0.18 NN Jˆ NN 0.46
RR 0.28 NN RR 0.22 AA NN NN 0.47
VB 0.33 NN AA 0.23 NN Z: Z: 0.48
NN 0.72 NN Jˆ 0.62 NN Z: NN 0.52
Jˆ 1.72 AA NN 0.62 NN NN NN 0.70
C= 1.85 NN NN 0.70 AA AA NN 0.72
PD 2.06 NN Z: 0.97 AA NN Z: 0.86
AA 2.22 Z: NN 1.72 NN NN Z: 1.38
Dg 3.21 Z: Z: 1.97 RR NN NN 2.26
Z: 4.01 Jˆ NN 2.05 RR AA NN 2.65
Db 4.62 RR NN 2.20 Z: NN Z: 8.32

Table 3.3: Reducibility scores of the most frequent Czech n-grams. (V*
are verbs, N* are nouns, P* are pronouns, R* are prepositions, A* are
adjectives, D* are adverbs, C* are numerals, J* are conjunctions, and Z*
is punctuation)

followed by prepositions and nouns, and the scores for adjectives and adverbs
are among the highest for all three examined languages. That is what we
want, because the reducible unigrams will more likely become leafs in the
dependency trees. Considering bigrams, the couples [determiner – noun],
[adjective – noun], and [preposition – noun] obtained reasonably high scores.
However, there are also n-grams such as the German trigram [determiner –
noun – preposition] whose score is undesirably high.

In Figure 3.3, there is a graph presenting the correlation between uni-
gram reducibility of individual Czech POS tags and how many times these
tags were leafs in dependency trees. We can see that the correlation is
positive and thus the reducibility feature can be useful.
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Chapter 4

Models

In this section, we introduce three submodels matching the basic intuitions
we have proposed: edge model, distance model and subtree model. All the
models are based on part-of-speech tags only; the models dealing with word
forms have been left for the future work.

4.1 Edge model

For the purposes of the edge model, we define a dependency edge between
the words wd and wg as a triple

[td, tg, dir(d, g)],

where d is the position of the dependent word, g is the position of the
governing word, td and tg are their part-of-speech tags, and dir(d, g) is the
direction in which the word wd lies related to the word wg. The direction
can have two values: left (L) and right (R). For completeness, the part-of-
speech tag of the technical root is set to root and the direction in which a
word lies form the technical root is set to root as well.1

We want to maximize the pointwise mutual information over all edges
in our treebank. We add the direction term to the joint probability, so the
pointwise mutual information of the edge between the words wd and wg is
defined as

pmi(d, g) = log
p(td, tg, dir(d, g))

p(td)p(tg)
(4.1)

We define the pointwise mutual information of the whole tree as a sum
of the pointwise mutual information of individual edges.

1All the edges between a word wi and the technical root have the form [ti, root, root].
They are used for modelling ability of a part-of-speech tag to be head of a sentence.
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pmi(tree) =

n∑
i=1

pmi(di, gi)) = log

n∏
i=1

p(tdi , tgi , dir(di, gi))

p(tdi)p(tgi)
(4.2)

We can omit the probabilities of the part-of-speech tags of the dependent
words, because they are the same for all possible trees.

arg max
tree

pmi(tree) = arg max
tree

n∏
i=1

p(tdi , tgi , dir(di, gi))

p(tgi)
(4.3)

The edge model is based on the Chinese restaurant process. The prob-
ability of a dependency edge on the position2 d depends on the number of
times it occurred before in the corpus.

Pe(d, g) =
c−d(”td, tg, dir(d, g)”) + α

c−d(”tg”) + α · 2|T |
, (4.4)

The edge model is defined in Equation (4.4), where c−d stands for the
count of edges in the history. The count c−d(”tg”) refers to the number of
edges whose parent tag is tg. (Not the number words with the tag tg.) The
hyperparameter α here is the Dirichlet prior.

In some configurations, we use also joined edge model in which the prob-
ability of an edge is not conditioned by its parent. Here c−d(∗) stands for
the number of all edges in history.

Pje(d, g) =
c−d(”td, tg, dir(d, g)”) + α

c−d(∗) + α · 2|T |2
, (4.5)

4.2 Distance model

In the distance model, we define the probability of the edge as the inverse
value of the distance between the word and its parent.

Pd(d, g) =
1

ε

(
1

|d− g|

)β
, (4.6)

where ε is the normalization constant and hyperparameter β determines the
weight of this model.

4.3 Subtree model

The subtree model brings the reducibility feature. Let’s define desc(i) as
the sequence of tags [tl · · · tr] that corresponds to all the descendants of the

2We define the position of the edge by the position of its dependent word in the corpus.
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word wi including wi, i.e. the whole subtree of wi. The probability of such
subtree is proportional to the reducibility R(desc(i)). Hyperparameter γ
determines the weight of the model.

Ps(i) =
1

ε
R(desc(i))γ (4.7)

4.4 Overall probability of the treebank

The probability of the whole treebank is a product of the probabilities Pe,
Pd, and Ps over all the words in the corpus.

Ptreebank =

n∏
i=1

(Pe(i, π(i))Pd(i, π(i))Ps(i)), (4.8)

where π(i) denotes the parent of the word i.
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Chapter 5

Sampling algorithms

For stochastic searching for the most probable dependency trees, we employ
Gibbs sampling, a standard Markov Chain Monte Carlo technique (Gilks
et al., 1996). We present two different samplers. The first one is generally
non-projective, the second one generates strictly projective trees.

5.1 Non-projective tree sampler

The non-projective tree sampling algorithm simply go through all the words
in the corpus in random order and choose their parents from all other words
in the sentence.

5.1.1 Basic sampling algorithm

The easiest variant of this algorithm does not preserve the tree structure. Its
pseudocode is shown in Figure 5.1. It may create cycles and discontinuous
directed graphs; such graphs are also accepted as the algorithm’s initial
input.

5.1.2 Hard Constraints

The problem of the basic sampling algorithm is that it does not sample trees.
It only chooses a parent for each word but does not guarantee the acyclicity.
We introduce and explore two hard constraints:

• Tree – for each sentence, the set of assigned edges constitutes a tree
in all phases of computation,

• SingleRoot – the technical root can have only one child.

Tree-sampling algorithm with pseudocode in Figure 5.2 ensures the tree-
ness of the sampled structures. It is more complicated, because it checks
acyclicity after each edge is sampled. If there is a cycle, it chooses one edge
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iterate {

foreach sentence {

foreach node in rand_permutation_of_nodes {

# estimate probability of node’s parents

foreach parent in (0 .. |sentence|) {

next if parent == node;

node->set_parent(parent);

prob[parent] = estimate_edge_prob();

}

# choose parent w.r.t. the distribution

parent = sample from prob[parent];

node->set_parent(parent);

}

}

}

Figure 5.1: Pseudo-code of the basic sampling approach (cycles are allowed).

which will be deleted and the remaining node is then hanged on another
node so that no other cycle is created. This deletion and rehanging is done
using the same sampling method.

The second hard constraint represents the fertility of the technical root,
which is generally supposed to be low. Ideally, each sentence should have
one word which dominates all other words. For this reason, we allow only
one word to depend on the technical root. If the root acquires two children
during sampling, one of them is immediately resampled (a new parent is
sampled for the child).

5.2 Projective tree sampler

The algorithm for projective sampling is completely different, since the
projectivity constraint is hard to employ in the previously described non-
projective algorithm.

5.2.1 Initialization

Before the sampling starts, we initialize the projective trees randomly. For
doing so, we tried the following two initializers:

• For each sentence, we choose one word as the head and attach all other
words to it.

• We are picking one word after another in a random order and we attach
it to the nearest left (or right) neighbor that has not been attached
yet. The left-right choice is made by a coin flip. If it is not possible

20



iterate {

foreach sentence {

foreach node in rand_permutation_of_nodes {

# estimate probability of node’s parents

foreach parent in (0 .. |sentence|) {

next if parent == node;

node->set_parent(parent);

prob[parent] = estimate_edge_prob();

}

# choose parent w.r.t. the distribution

parent = sample from prob[parent];

node->set_parent(parent);

if (cycle was created) {

# choose where to break the cycle

foreach node2 in cycle {

parent = node2->parent;

node2->unset_parent();

prob[node2] = estimate_edge_prob();

node2->set_parent(parent);

}

node2 = sample from prob[node2];

# choose the new parent

foreach parent {

next if node2->parent creates a cycle

node2->set_parent(parent);

prob[parent] = estimate_edge_prob();

}

parent = sample from prob[parent];

node2->set_parent(parent);

}

}

}

}

Figure 5.2: Pseudo-code of the tree-sampling approach (cycles are not al-
lowed).

to attach a word to one side, we attach it to the other side. The last
unattached word is then the head of the sentence.

While the first method generates only flat trees, the second one can
generate all possible projective trees. However, the sampler converges to
similar results for both the initializations. Therefore we conclude that the
choice of the initialization mechanism is not so important here.
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5.2.2 Small Change Operator

We use the bracketing notation for illustrating the small change operator.
Each projective dependency tree consisting of n words can be expressed by
n pairs of brackets. Each bracket pair belongs to one node and delimits
its descendants from the rest of the sentence. Furthermore, each bracketed
segment contains just one word that is not embedded deeper; this node is
the segment head. An example of this notation is in Figure 5.3.

The   dog   was   in   the   park  .

(((The) dog) was (in ((the) park)) (.))

Figure 5.3: Arrow and bracketing notation of a projective dependency tree.

The small change is then very simple. We remove one pair of brackets
and add another, so that the conditions defined above are not violated. The
example of such change is in Figure 5.4.

(((The) dog) was  in ((the) park)  (.))

(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))
(((The) dog) was  in ((the) park)  (.))

(
(
(

)
)

)

Figure 5.4: An example of small change in a projective tree. The bracket
(in the park) was removed and there are three possibilities how to replace
it.

From the perspective of the dependencies, the small change is following:

1. Pick a random non-root word w (the word in in our example) and find
its parent p (the word was).

2. Find all other children of w and p (the words dog, park, and .) and
denote this set as C.

3. Choose the new head from w and p. Mark the new head as g and the
second candidate as d. Attach d to g.

4. Select the neighborhood D of the word d as a continuous subset of C
and attach all words from D to d.

5. Attach the remaining words from C that were not in D to the new
head g.
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5.2.3 Building “average” trees

The “burn-in” period is set to 10 iterations. After this period, we begin to
count how many times an edge occurs at a particular location in the corpus.
This counts are updated over the whole corpus with the probability 0.01
after each small change is made.

When the sampling is finished, the final dependency trees are built using
such edges that were the most frequent during the sampling. We employed
the maximum spanning tree (MST) algorithm (Chu and Liu, 1965) to find
them.1 Tree projectivity is not guaranteed by the MST algorithm.

1The weights of edges needed in MST algorithm correspond to the number of times
they were present during the sampling.
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Chapter 6

Experiments

6.1 Data

We need two kinds of data for our experiments: a smaller treebank, which is
used for sampling and for evaluation, and a large corpus, from which n-gram
reducibility scores are computed.

The treebanks were taken from the CoNLL shared task 2006 and 2007
(Buchholz and Marsi, 2006; Nivre et al., 2007). The Czech treebank is a
subset of Prague Dependency Treebank (Hajič et al., 2006), the German
treebank was derived from the Tiger treebank (Brants and Hansen, 2002),
and the English treebank comes from the Penn Treebank (Marcus et al.,
1994), where the constituents were converted to dependencies by Penncon-
verer (Johansson and Nugues, 2007). We use only the testing parts of the
treebanks1 and as a source of the part-of-speech tags, we used the POS col-
umn, which is the fifth column in the CoNLL format. The CoNLL tagset size
and data statistics for each language are shown in Table 6.1. In some exper-
iments that do not require large corpus for computing n-gram reducibilities,
we do the evaluation on all the 19 languages included in CoNLL data.

language CoNLL sentences tokens tagset size

Czech 2007 364 5760 59
German 2006 357 5694 54
English 2007 377 9529 45

Table 6.1: CoNLL testing data statistics. Note that the Czech POS tags
were shortened in CoNLL (compared to the original treebank), and thus the
tagset size is only 59.

For obtaining reducibility scores, we downloaded the texts from Czech,
German, and English Wikipedia articles. Their statistics are showed in
Table 6.2. To make them useful, the necessary preprocessing steps must

1The file test.conll for the year 2006 and the file dtest.conll for the year 2007.
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have been done. After the rule-based segmentation and tokenization2, the
texts were automatically POS tagged3 using the pretrained models.

language sentences tokens

Czech 998,000 19.1 millions
German 935,000 18.9 millions
English 3,149,000 80.9 millions

Table 6.2: Wikipedia texts statistics

6.2 Evaluation metrics

As in other unsupervised tasks (e.g. in unsupervised POS induction), there
is a little consensus on evaluation measures. Performance of unsupervised
methods is often measured by comparing the induced outputs with gold stan-
dard manual annotations. However, this approach causes a general problem:
manual annotation is inevitably guided by a number of conventions, such
as the traditional POS categories in unsupervised POS tagging, or varying
(often linguistically controversial) conventions for local tree shapes repre-
senting e.g. complex verb forms in unsupervised dependency parsing. It is
obvious that using unlabeled attachment scores (UAS) leads to a strong bias
towards such conventions and it might not be a good indicator of unsuper-
vised parsing improvements. Therefore we estimate parsing quality by two
additional metrics:

• UUAS - undirected UAS (edge direction is disregarded),

• NED - neutral edge direction, introduced in (Schwartz et al., 2011),
which treats not only a node’s gold parent and child as the correct
answer, but also its gold grandparent.

6.3 Results for non-projective parsing

In the non-projective parsing algorithm, we employed only joined edge model
and distance model4 The hyperparameters were set as follows:

2The segmentation to sentences and tokenization was performed using the TectoMT
framework (Popel and Žabokrtský, 2010)

3We used Morče tagger (Spoustová et al., 2007) for English and Czech, and TreeTag-
ger (Schmid, 1995) for German. The tagsets of the pretrained models differs only in small
details from the tagset used in CoNLL data. The differences were removed.

4The subtree model has not been employed in non-projective algorithm, because the
projections of subtrees may contain gaps and reducibility scores can be computed only on
continuous sequences of words so far.
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α = 0.01, β = 2

We applied our unsupervised dependency parser on all languages in-
cluded in 2006 and 2007 CoNLL shared tasks. We used the configuration
that was the best for Czech. The parsing was run on concatenated training
and development sets5 after removing punctuation, but the final attachment
scores were measured on the development sets only, so that they were com-
parable to the previously reported results. There is no sentence length limit
and the evaluation is done for all the sentences and only the POS (fifth
column in the CoNLL format) is used for the inference.

Language Baselines Results

name code CoNLL rand. left right Our Spi5 Spi6

Arabic ar 2007 3.9 59.0 6.0 25.0 22.0 49.5
Bulgarian bg 2006 8.0 38.8 17.9 25.4 44.3 43.9
Catalan ca 2007 3.9 30.0 24.8 55.3 63.8 59.8
Czech cs 2007 7.4 29.6 24.2 24.3 31.4 28.4
Danish da 2006 6.7 47.8 13.1 30.2 44.0 38.3
German de 2006 7.2 22.0 23.4 26.7 33.5 30.4
Greek el 2007 4.9 19.7 31.4 39.0 21.4 13.2
English en 2007 4.4 21.0 29.4 24.0 34.9 45.2
Spanish es 2006 4.3 29.8 24.7 53.0 33.3 50.6
Basque eu 2007 11.1 23.0 30.5 29.1 43.6 24.0
Hungarian hu 2007 6.5 5.5 41.4 48.0 23.0 34.7
Italian it 2007 4.2 37.4 21.6 57.5 37.6 52.3
Japanese ja 2006 14.2 13.8 67.2 52.2 53.5 50.2
Dutch nl 2006 7.5 24.5 28.0 32.2 32.5 27.8
Portuguese pt 2006 5.8 31.2 25.8 43.2 34.4 36.7
Slovenian sl 2006 7.9 26.6 24.3 25.4 33.6 32.2
Swedish sv 2006 7.8 27.8 25.9 23.3 42.5 50.0
Turkish tr 2006 6.4 1.5 65.4 32.2 33.4 35.9
Chinese zh 2007 15.3 13.4 41.3 21.0 34.5 43.2

Average: 7.2 26.4 29.8 35.1 36.7 39.3

Table 6.3: Directed unlabeled attachment scores for 19 different languages
from CoNLL shared task. The “rand.”, “left”, and “right” columns reports
Random, LeftChain, and RightChain baselines. The “Our-NR” and “Our”
columns show results of our algorithm; “NR” means that Noun-Root de-
pendency suppression was used. For comparison, “Spi5” and “Spi6” are the
results reported in (Spitkovsky et al., 2011c) in Tables 5 and 6 respectively.

5train.conll and test.conll files for CoNLL2006 languages and dtrain.conll and
dtest.conll for CoNLL2007 languages.
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The results are shown in Table 6.3. The Random, Left Chain, and Right
Chain baselines are compared to our results and to the results that were
reported by (Spitkovsky et al., 2011c). The scores are higher for 6 (7)
languages compared to “Spi5” (“Spi6”), the averaged attachment score is
lower.

Interestingly, Arabic, Danish, and Japanese have very high LeftChain
(RightChain) baseline and no method was able to beat them so far.

6.4 Results for projective parsing

In the projective parsing algorithm, we employ all the three submodels edge
model and distance model, and subtree model. The respective hyperparame-
ters α, β, and γ, which determine the weights of the individual submodels,
were set manually. After a couple of experiments, we end up with the fol-
lowing values, which give relatively good results for all three languages.

α = 1, β = 2, γ = 3

The smoothing constant for reducibility scores from Equation (3.1) was
set to 0.01. Changing this value in reasonable limits does not affect the
results.

The evaluation is performed on the same data as the sampling. The
attachment scores are computed on all sentences in the testing data6. In
Table 6.4, we show the results of our parser using the three different metrics:

• Unlabeled attachment score (UAS) – the standard metric for depen-
dency parsing evaluation,

• Undirected unlabeled attachment score (UUAS) – edge direction is
disregarded,

• NED – neutral edge direction, which was introduced by Schwartz
(Schwartz et al., 2011). It treats not only a node’s gold parent and
child as the correct answer, but also its gold grandparent, which neu-
tralizes the effect of edge inversion.

In Table 6.5, the results of our parser are compared with the results pre-
viously reported by Spitkovsky (Spitkovsky et al., 2011c). In this papers,
the attachment scores are reported excluding the punctuation7. The com-
parison of the results is quite hard, since the scores across languages and
settings of the parsers varies greatly. Moreover, the comparison is not fair,

6In some papers about unsupervised parsing, only short sentences are selected for
evaluation and the scores are therefore much higher.

7All punctuation nodes are removed form the trees. If a removed punctuation node is
not a leaf, its children are attached below the parent of the removed node.
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language UAS [%] UUAS [%] NED [%]

Czech 42.6 50.0 62.6
English 39.5 47.2 62.7
German 28.7 41.5 51.7

Table 6.4: The quality of our parser measured by three different metrics: un-
labeled attachment score (UAS), its undirected variant (UUAS), and neutral
direction (NED). Punctuation marks were included in this evaluation.

parser our [%] Spitkovsky1 [%] Spitkovsky2 [%]

Czech 47.6 37.8 31.4
English 41.5 50.3 34.9
German 31.8 28.6 33.5

Table 6.5: Unlabeled attachment scores (UAS) compared to the latest re-
ported results on the same datasets. ‘Spikovsky1’ results are copied from the
work (Spitkovsky et al., 2011b), ‘Spitkovsky2’ results come from the later
work (Spitkovsky et al., 2011c). Here, the punctuation is excluded form
evaluation.

since the different sources were used. We get the reducibility scores from
the larger corpus. On the other hand, we do not use word forms in pars-
ing and in (Spitkovsky et al., 2011b), there was used an information about
punctuation marks. However, we can say that our parser outperforms the
others for Czech. For English and German, it is in both cases once worse
and once better than in the previously reported results.

6.4.1 Error Analysis

After inspecting the resulting dependency trees, we have found the following
obvious errors:

• Noun phrases – The phrases that consists of more nouns were badly
structured. This was caused probably by ignoring word forms. For
example, the structure of the sequence ‘NN NN NN ’ can be hardly
recognized by out parser.

• Grammatical words – In some cases, there were mistakes in attach-
ment of the grammatical (function) words. The most noticeable were
the German articles whose positions in the tree were switched with the
appropriate nouns. This caused the very poor score for German. The
reason of these article-noun switches may come from the reducibility
scores. The reducibility of the German bigram NN ART is unfortu-
nately quite high and the reducibilities of ART and NN are too close.
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Klein and Manning (Klein and Manning, 2004) observed the similar
behavior in their experiments with DMV.

• Full stops – Full stops are often attached tho the last noun in the
sentence, which is often wrong. That is why the attachment scores are
higher after removing punctuation.

6.4.2 Ablation Analysis

To investigate the impact of individual components of the model, we run the
parser for all possible component combinations. The attachment scores are
shown in Table 6.6. The subtree model, which utilizes the newly introduced
reducibility scores of n-grams, has obviously the highest impact.

lang. - e d s ed es ds eds

Czech 23.0 27.4 25.3 35.6 24.4 43.8 39.5 47.6
German 18.7 22.1 21.7 25.4 22.1 30.7 27.8 31.8
English 20.4 15.5 25.3 29.3 28.4 27.3 33.0 41.5

Table 6.6: Ablation analysis. Unlabeled attachment scores for the different
combinations of model components. The letters e, d, and s stay for the
presence of edge, distance, and subtree model respectively. The hyphen shows
the baseline scores, that is randomly generated dependency trees, when no
model is used. Here, the punctuation was excluded from evaluation.
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Chapter 7

Conclusions

This report described two different algorithms for unsupervised dependency
parsing based on Gibbs sampling.

The projective algorithm utilizes the reducibility feature, which prove
to be very useful in unsupervised dependency parsing task. We extract the
n-gram reducibility scores from a large corpus, and then make the com-
putationally demanding inference on smaller data using only these scores.
The best results were obtained on Czech. We explain it by the fact that
there are less grammatical (function) words in Czech, which are sometimes
problematic for obtaining reducibility.

The non-projective algorithm does not utilize the reducibility feature,
even though we believe it would help as well. We would like to adapt the re-
ducibility feature also for non-projective “gappy” structures in future work.
However, for several languages (e.g. Spanish, Italian, Portuguese) this algo-
rithm appeared to have even better results than previously published best
results.
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Drahomı́ra Spoustová, Jan Hajič, Jan Votrubec, Pavel Krbec, and Pavel
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