A Generic XML-Based Format for
Structured Linguistic Annotation and Its

Application to the Prague Dependency
Treebank 2.0

Petr Pajas
Jan Stépanek

Technical Report Edition, TR-2005-29
December 2005, Prague

About this document
This document has been generated with RenderX XEP.
					Visit http://www.renderx.com/ to learn more about
					RenderX family of software solutions for digital
					typography.

A Generic XML-Based Format for Structured Linguistic Annotation and

Its Application to the Prague Dependency Treebank 2.0
by Petr Pajas and Jan Stépanek

Published 2005

Abstract

In the first part of this technical report we describe our approach to design a new data format, based on XML
(Extensible Markup Language) and aimed to provide a better and unifying alternative to various legacy data formats
used in various areas of corpus linguistics and specifically in the field of structured annotation.

We introduce the first version of the format, called Prague Markup Language (PML). This version has already
been employed as the main data format for the upcoming Prague Dependency Treebank 2.0 (PDT).

Finally we outline our ideas and proposals for further improvement of PML, based on our current experience with
using and processing data in PML format in the PDT 2.0 project.

The second part of the technical report contains the state-of-the-art specification of PML.

Technicka zprava ¢. TR-2005-29

Technickd zprava projektu Integrace jazykovych zdroji za ucelem extrakce informaci z
ptirozenych textii

Projekt Informaéni spole¢nosti Grantové agentury Akademie véd CR
Registra¢ni ¢islo GA AV CR: 1ET101120503

Interni kod MFF: 207-14 / 242083

Table of Contents

I. Towards a Generic Format for Linguistic Datacccceevviiiniiieniiecciie e 4
Towards a Generic Format for Linguistic Datacccccceveviieiiiiiiiiieceeeeeeee e 6

L. IMOBIVALION .ottt ettt ettt et sate s bee st as 6

2. Prague Markup Languageccccccveeeiiieiiieeniie et 8

3. Application of PML to the PDT 2.0c.oooiiiiiiiiieeeeeeeeeeeeee e 9

4. Improvements planned for the future revision of PML ..., 11

II. State-of-the-art specification of the PML formatccccoovveiiieniiienieeecee e, 13
The Prague Markup Languageccceeeoviieiiiieeiiieciieecie ettt 15

L. INErOAUCTION ..ottt st et 15

2. PML data fYPES couvveeeeiieeiiieeiite et e et e et e e stee e st e et eesae e et eeenaeestaeeenraeennnneens 16

3. Atomic data fOrmatscooeeiiiiiiiiiiiieeeee e 17

4. PML TOLES ..ottt 18

5. Header of @ PML INStANCEccccveeiiiiiieiiieeiiieeieeeee et 19

6. PML Schema Filecccciiiiiiiiiieceeceeeeeee e e 19

7. References 1N PMLcc.ooiiiiiiiece e 24

8. Layers of annOtationccceccveeriieeiiieeriieertee et e e eieeeebre e aee e e e snaee e 25

0. TOOLS ettt st 25
RETEIEIICES ...ttt st ettt et e b 44

il

Part I. Towards a Generic Format for
Linguistic Data

Table of Contents

Towards a Generic Format for Linguistic Dataccccccevviiiiiiiiieniiecieececeeeee e 6
L. IMOBIVALION .ottt ettt ettt et e st et e st an 6
2. Prague Markup Languageccccccveeeiieeiiieeiiie et 8
3. Application of PML to the PDT 2.0 ...ccoooiiiiiiiiieeeeeeeeeeeeeeee e 9
4. Improvements planned for the future revision of PML ..., 11

Towards a Generic Format for Linguistic
Data

Petr Pajas
Jan Stépanek

1. Motivation

Due to the lack of a sufficiently acceptable and unifying data format for representing linguistic
resources (either dictionaries or corpora and annotations), it became a common habit that each
project created a format of its own. Such a format usually suited the needs of a particular project
but was not reusable for other purposes. While this may prove inevitable in the global context,
it should at least be striven for a solution within a single institution (or several cooperating in-
stitutions).

The same situation applied to the Prague Dependency Treebank (PDT). However, during the
long period of its systematic development, various demands on data formats emerged and
crystallized. Several efforts to deal with this problem led us to initiate a research that would
aim to establish a standard approach to data representation for future projects in this area.

Among the requests most often repeated were, to name just a few, the following:

» Stand-off annotation principles: Each layer of the linguistic annotation should be cleanly
separated from the other annotation layers as well as from the original data. This allows for
making changes only to a particular layer without affecting the other parts of the annotation
and data.

* Cross-referencing and linking: Both links to external document and data resources and links
within a document should be represented coherently. Diverse flexible types of external links
are required by the stand-off approach. Supposed that most data resources (data, tag-sets,
and dictionaries) use the same principles, they can be more tightly interconnected.

» Linearity and structure: The data format ought to be able to capture both linear and structure
types of annotation. Linear type includes e.g. word and sentence order (in case of written
text) or temporality (in case of speech data). As for the structural annotation, our primary
concern is to allow capturing tree-like structures in a way that mirrors their logical nesting.

» Structured attributes: The representation should allow for associating the annotated units
with complex and descriptive data structures, similar to feature-structures.

» Alternatives: The vague nature of the language often leads to more than one linguistic inter-
pretation and hence to alternative annotations. This phenomenon occurs on many levels,
from atomic values to compound parts of the annotation, and should be treated in a unified
manner.

* Human-readability: The data format should be human-readable. This is very useful not only
in the first phases of the annotation process, when the tools are not yet mature enough to

Towards a Generic Format for Linguistic Data

reflect all evolving aspects of the annotation, but also later, especially for emergency situ-
ations when e.g. an unexpected data corruption occur that breaks the tools and can only be
repaired manually. It also helps the programmers while creating and debugging new tools.

» Extensibility: The format should be extensible to allow new data types, link types, and
similar properties to be added. The same should apply to all specific annotation formats
derived from the general one, so that one could incrementally extend the vocabulary with
markup for additional information.

+ XML based: Employing a commonly used generic markup language as the underlying data
representation makes achieving the above mentioned goals much easier. XML (Extensible
Markup Language, [XML]) is such a format that is widely deployed and offers many tools
and libraries for various programming languages already. This also means, that existing
validation tools and schema languages for XML can be applied on the new format, too.

After doing some background research and surveying several existing data formats we have
concluded that none of them satisfies all our requirements:

Text Encoding Initiative

The Text Encoding Initiative (TEI) (see [TEI]) provides guidelines for representing a variety
of literary and linguistic texts for online research, teaching, and preservation. The TEI format
is either SGML or XML based. The XML-based format is very rich and among other provides
means for encoding linguistic annotation, both morphologic and phrase-structure oriented,
as well as some generic markup for graphs, networks, trees, feature-structures, and links.
Capturing e.g. dependency trees in TEI would, however, require a great amount of additional
work resulting in an incomprehensible and to a certain extent artificial solution. TEI XML
makes extensive use of entities, an almost obsoleted feature of XML, that originates in
SGML. TEI lacks explicit support for stand-off annotation style.

Annotation Graphs
Annotation Graphs (AG) are a formal framework for representing linguistic annotations of
time series data (see e.g. [AG]). At the time of our survey, syntactic annotation was not
directly supported by AG, although AG could be in theory abused for the purpose of repres-
enting almost arbitrary structured data. The primary strength of AG lies in representing an-
notation of a temporal (time-line based) sequence of events.

ISO/TC 37/SC 4
The objective of ISO/TC 37/SC 4 [TC37SC4] is to provide principles and methods for cre-
ating, coding, processing and managing language resources, such as written corpora, lexical
corpora, speech corpora, dictionary compiling and classification schemes. This initiative is
very new, originating in 2003, and by the time of our survey it had not produced any results,
although some basic ideas can be captured from the talk called “Representation, data format,
standards” presented in [DiaBruck] .

Various single-purpose formats
Single-purpose formats such as Penn-treebank [PENN], NEGRA Corpus [NEGRA], Tiger
Corpus [TIGER], and PDT 1.0 formats (CSTS, FS) [PDT1] are all too limited in order to
be employed in other projects than those of their origin.

Towards a Generic Format for Linguistic Data

Our survey covered also other resources such as the technology used in the MATE Workbench
[MATE], AG-based project ATLAS [ATLAS], as well as various papers related to the topic of
our survey, such as [Dipper], proposing some similar ideas to those expressed in our list of re-
quirements.

One of the main obstacles in most of the surveyed cases is the requirement for the ability to
adequately capture dependency-tree like annotation and annotations beyond morpho-syntactic
analysis in general.

The unsatisfactory results of our survey and the necessity to have some data format for the up-
coming release of PDT 2.0 [PDT2] had led us to the decision to develop a new data format with
the ambition to replace the previous ones, satisfying the maximal amount of the generic require-
ments, that would be general and flexible enough so that it need not be replaced by another one
as soon as some random demand or a novel annotation area turn up.

2. Prague Markup Language

PML (“The Prague Markup Language”), as released in PDT 2.0, is our first step towards the
new generic XML based data format. As such, it is already capable of representing rich linguistic
annotation of texts, such as morphological tagging, dependency trees, etc. in adequate and
straightforward way, as demonstrated on PDT 2.0 data.

A formal description of PML and its various technical aspects are given in Part II, “State-of-
the-art specification of the PML format”.

In PML, individual layers of annotation can be stacked one over another in a stand-off fashion
and linked from in a consistent way. Each layer of annotation is described in a PML schema
file, which can be imagined as a formalization of an abstract annotation scheme for the particular
layer of annotation. In brief, the PML schema file describes which elements occur on the layer,
how they are nested and structured, of which types the values occurring in them are, and what
role they play in the annotation scheme. This ro/e information can also be used by applications
such as TrEd (see [TRED]) to determine an adequate way to present a PML instance to the user.
Based on a PML schema, it is possible to generate various validation schemas, such as RelaxNG!,
hence formal consistency of instances of the PML schema can be verified using conventional
XML-oriented tools.

PML schemas are sometimes referred to as applications of PML, whereas individual XML
documents conforming to a particular PML schema are referred to as instances of that schema
or as PML instances in general.

The annotation is expressed by means of XML elements and attributes, named and nested ac-
cording to the associated PML schema. XML elements of a PML instance occupy a dedicated
namespace http://ufal.mff.cuni.cz/pdt/pml/.

PML format offers unified representations for the most common annotation constructs, such as

! http://www.relaxng.org/

http://www.relaxng.org/

Towards a Generic Format for Linguistic Data

attribute-value structures
i.e. structures consisting of attribute-value pairs. To avoid confusion with XML attributes,
we usually refer to attributes of an attribute-value structure as members.

lists
allowing several values of the same type to be aggregated in either an ordered sequence or
an unordered list.

sequences
representing sequences of values of different types and also providing rudimentary support
for XML-like mixed content.

alternatives
used for aggregating alternative annotations, ambiguity, etc.

links
providing a unified method for cross-referencing within a PML instance and linking both
among various PML instances (which includes links between layers of annotation) and to
other external resources (in the present revision, these resources have to be XML-based).

As already briefly mentioned, PML introduces a concept of so called PML-roles, which is or-
thogonal to the concept of data typing. The information provided by PML roles identifies a
construct as a bearer of additional higher-level property of the annotation, such as being a node
of a dependency tree, being a unique identifier, etc. (see Section 4, “PML roles” in Part II,
“State-of-the-art specification of the PML format”).

Every PML instance starts with a header where a PML schema can be associated with the instance
and where all external resources, which the instance points to, are listed, together with additional
information necessary for correct link resolving. The rest of the instance is dedicated to the an-
notation itself.

3. Application of PML to the PDT 2.0

We shall now briefly summarize how PML is applied to the particular case of the PDT 2.0.
Further details, including actual PML schemas, can be found in the document [PDTMarkup].

PDT 2.0 contains annotation divided into up to four layers stacked one upon another, namely
the word layer (w-layer), morphological layer (m-layer), analytical layer (a-layer), and tecto-
grammatical layer (t-layer). Each of the layers defines its own PML schema.

The word layer segments the text into documents and paragraphs, each of which consists of a
flat sequence of tokens. Each document, paragraph, and token on the w-layer has a unique
identifier and also a pointer to the original source of the data, which in the particular case of
PDT 2.0 is a SGML based format used by the Institute of the Czech National Corpusz.

The morphological layer provides morphological annotation of the w-layer by means of a se-
quence of annotations pertaining to morphological forms abstracted from tokens of the w-layer

2 http://ucnk.ff.cuni.cz/

http://ucnk.ff.cuni.cz/

Towards a Generic Format for Linguistic Data

as well as annotation of sentence boundaries. A morphological form may relate to zero or more
tokens of the w-layer. The case where a form relates to no w-layer token only occurs in cases
where the sentence was originally misspelled and a certain token (usually a punctuation mark)
otherwise required by grammar rules was completely skipped in the original text. The relation
between the m-layer and w-layer is represented as links from a m-layer PML instance into the
corresponding instance of the w-layer.

Annotation on the analytical layer in PDT 2.0 consists of a sequence of (analytical) trees per-
taining to the sentences marked up on the m-layer. There is a 1:1 correspondence between nodes
of the analytical tree and forms on the m-layer, represented by links from an a-layer instance
into the corresponding m-layer instance.

Annotation on the tectogrammatical layer consists of a sequence of (tectogrammatical) trees
each of which pertains to a certain analytical tree. The mapping between analytical and tecto-
grammatical trees is 1:1. However, the mapping between nodes of a tectogrammatical tree and
nodes of the corresponding analytical tree is in general N:M (with 0 possible both for N and
M), and in some cases the later mapping even crosses tree boundaries (it never crosses a docu-
ment/file boundary). Again, these relations are represented by links from t-layer instances into
the corresponding a-layer instances.

Tectogrammatical and analytical trees are dependency trees, represented in PML commonly as
nested attribute-value structures. In this representation, a node of a tree is realized as an attribute-
value structure with PML-role #NODE. Each node has a dedicated member with a PML-role
#CHILDNODES, which contains a list of child-nodes of the node. Because of the auxiliary
character of root nodes of the dependency trees of PDT 2.0, the structure representing the
technical root of the tree is of a different type then the rest of the nodes (i.e. has a different set
of members).

The dependency trees both on the a-layer and t-layer are ordered trees, although the semantics
for these two orderings is very different in both cases. The ordering of nodes of analytical trees
is rather technical and simply mirrors the ordering of the underlying m-layer, while the ordering
on the tectogrammatical trees is an integral part of the tectogrammatical annotation and has a
strong linguistic interpretation based on communicative dynamism. The implementation of the
ordering in PML is, however, common for both cases. Each node has a dedicated member with
PML-role #ORDER and integer value type. The value of this member represents the position of
a particular node in the total order of the tree it belongs to.

Other interesting features of PDT 2.0 annotation worth mentioning are the annotation of co-
reference, implemented as links between tectogrammatical nodes, and the annotation of quoted
parts of the sentences, which aggregates tectogrammatical nodes into so called quotation sets,
consisting of nodes pertaining to a part of the text in quotes. Moreover, the annotation distin-
guishes between several types of quoting, such as citation, direct speech, use of meta-language,
etc. A tectogrammatical node may belong to zero or more quotation sets. In PML this is realized
by means of “coloring” nodes that belong to a quotation set. Formally it is done as follows:
Each node has a member quot which is a list of structures, each of which consists of two
members, the first being an ID (“color”) identifying a quotation set and the second a value de-
termining the type of the quotation. In this representation, a node belongs to a quotation set if
and only if the ID of the quotation set is listed in the quot attribute of the node.

10

Towards a Generic Format for Linguistic Data

The solution used for annotation of quotation sets has the obvious advantage that it does not
introduce any new annotation structure parallel to the tectogrammatical tree. On the other hand,
it has some undeniable disadvantages, too, namely the following:

* quotation sets are not represented explicitly, as objects with given IDs. Instead, they are
encoded implicitly, merely as a set of labels or references to virtual IDs scattered among
nodes in a tree

 the information about the type of the quotation is repeated with each member of the quotation
set, although it is of course constant over a quotation set.

As no other part of the tectogrammatical annotation relates to the annotation of the quotation-
sets, introducing an extra annotation layer stacked over the t-layer would seem to be a cleaner
solution in this case.

4. Improvements planned for the future re-
vision of PML

PML indeed proved mature enough to be capable of capturing all aspects of annotation as
complex as the four annotation layers of PDT 2.0. Nevertheless, during this first-time experience
with applying PML to a real annotation, we have observed and collected several demands and
suggestions for future improvements that we discuss in brief below, without any particular order
of importance.

+ XML data type: It seems useful to allow arbitrary XML data as a value type, especially in
those cases where there is a standard XML vocabulary for representing a given type of in-
formation. For example, should some formal representation of mathematical expressions
and formulae be part of the annotation, then using MathML? vocabulary and namespace
would seem the most natural way.

» Improved typing: So far, typing in PML is static, meaning that an instance must strictly
follow the typing dictated by a PML schema. PML so far offers no means to reverse the
situation, e.g. declare a type as implied by the instance.

* Inheritance: In PML, complex data types are created from simpler types by composition,
which, with the exception of element sequence, only permits fully specified types. Hence,
for instance, the set of structure members and their value types must be specified without
ambiguity. By providing some kind of type inheritance at least for the attribute-value
structure type, we could allow one to declare abstract types from which specific types could
be derived, so that values of all the derived types could be used equaly as instances of the
abstract type. In case of structures, the type of an instance could be distinguished e.g. by
some dedicated member with role #TYPE.

* Inclusions: There should be some means to include parts of one PML schema into another.
This would not only improve extensibility and simplify adding customizations to existing

3 http://www.w3.org/Math/

11

http://www.w3.org/Math/

Towards a Generic Format for Linguistic Data

schemata, but also eliminate duplicated schema code, which is currently a necessity in cases
where one layer of annotation allows for embedding some units from another layer (e.g. by
process referred to as “knitting” in Part II, “State-of-the-art specification of the PML format”).

* Overriding: Even better implementation of inclusions could allow the top-level PML schema
to selectively override declarations of certain types within the included PML schema, again
reducing the amount of duplication of declarations when deriving a new PML schema from
an existing one.

* Should alternatives be allowed to have an ID? Consider an alternative of values of some
complex type, such as structure. Although each structure in the alternative can be associated
with a unique ID, PML does not allow the alternative itself to have a unique ID of its own.
In fact, this is not such a limitation as it may seem, since one can always refer to an altern-
ative by referring to each of its members. Most people who pointed out this limitation
couldn't provide a reasonable semantic for distinguishing between a link to an alternative
as a whole and its particular member. However, for the cases where such clear distinction
in semantics can be given, we suggest wrapping the alternative into a structure with a unique
ID and a member whose value are the alternatives.

» Versioning: One of the biggest faults of the first version of PML as used in PDT 2.0 is the
lack of versioning. This affects both numbering of revisions of the PML specification (i.e.
the schema language) as such as well as that of individual PML schemas. It is an imperative
requirement for the next version of PML to introduce this.

* As PDT 2.0 data are not accompanied by much meta-data, recommendations for a uniform
representation of such information have not been included in the first revision. As meta-data
are a current topic in other areas as well, a suitable solution might be to use some generic
framework, such as Dublin Core* or RDF°.

» Although PDT 2.0 annotation is based on several annotation dictionaries such as morphology
and PDT Valency Lexicon (ValLex), we have not so far researched the possibility to ad-
equately encode these resources (nor any other dictionarly-like data) in PML.

* http://dublincore.org
3 http://www.w3.0rg/RDF/

12

http://dublincore.org
http://www.w3.org/RDF/

Part I1. State-of-the-art specification of the
PML format

Table of Contents

The Prague Markup Languageccceeeviieeiiiieiiieeciee ettt esee et e e e eaeeeaaeeenes 15
| I 6915 4 Y6 11 Lol (o) o KOOSR 15
2. PML data fYPES couvveeeiiieeiiieeiiee et e et e et e stee et e et eesae e et eeetaeeetaeeenraeennnneenn 16
3. AtomiC data TOIMALSoeviiiiiiiiiiiiieeiee e e e e e e e e e e e e e e enanes 17
v Y I o) [OO 18
5. Header of @ PML INSTANCEcooovuvvviiiiieiiiiieiieeeee et eeetaee e eenns 19
6. PML Schema Filecocvvviiiiiiiiieee et e e 19
7. References i PIMLoovviiiiiiiiieee et 24
8. Layers of annOtationccccveeriieeriieeriieesiee et e e eiee e ebre e sveeesreeesaeeenaees 25
LS Koo - J PR 25

14

The Prague Markup Language

Petr Pajas, Institute of Formal and Applied Linguistics, Faculty of Mathematics
and Physics

1. Introduction

The Prague Markup Language (PML) is a common basis of an open family of XML-based data
formats for representing rich linguistic annotations of texts, such as morphological tagging,
dependency trees, etc. PML is an on-going project in its early stage. This documentation reflects
the current status of the PML development.

PML tries to identify common abstract data types and structures used in linguistic annotations
of texts as well as in lexicons (especially those intended for machine use in NLP) and other
types of linguistic data, and to define a unified, straightforward and coherent XML-based rep-
resentation for values of these abstract types. PML also emphasizes the following aspects of
linguistic annotation: the stand-off annotation methodology, possibility to stack layers of annota-
tion one over another, and extensive cross-referencing. PML also tries to retain simplicity, so
that PML instances (actual PML representation of data) could be processed with conventional
XML-oriented tools.

Unlike, e.g. TEI XML, XHTML or DocBook, PML by it self is not a full XML vocabulary but
rather a system for defining such vocabularies.

A fully specified XML vocabulary satisfying the requirements constituted in this document is
called an application of PML. An Application of PML is formally defined using a specialized
XML file called PML schema. PML schema provides one level of abstraction over standard
XML-schema languages such as Relax NG! or W3C XML Schemas®. It defines an XML
vocabulary and document structure by means of PML data types and PML roles. An XML
document conforming to a PML schema is a PML instance of the schema. PML data types,
described in detail in Section 2, “PML data types”, include atomic types (identifiers, strings,
integers, enumerated types, id-references, etc.), and complex types, that are composed from
abstract types such as attribute-value structures (AVS), lists, alternatives, and mixed-type se-
quences. We refer to a value of a complex type as a construct. The information provided by
PML roles is orthogonal to data typing. It identifies a construct as a bearer of additional higher-
level property of the annotation, such as being a node of a dependency tree, or being a unique
identifier (see Section 4, “PML roles”).

Based on a PML schema of a particular application of PML, it is possible to automatically derive
a corresponding Relax NG schema that conventional XML-oriented tools can use to validate
actual PML instances (see Section 9, “Tools™).

All XML tags used in applications of PML belong to a dedicated XML namespace

http://ufal.mff.cuni.cz/pdt/pml/

! http://www.relaxng.org/
2 http://www.w3.org/XML/Schema

15

http://www.relaxng.org/
http://www.w3.org/XML/Schema

The Prague Markup Language

We will refer to the above namespace as PML namespace. PML schema files use the following
XML namespace referred to as PML schema namespace:

http://ufal.mff.cuni.cz/pdt/pml/schema/

Currently PML reserves three element names from the PML namespace for representation
technical elements: LM (for bracketing list members), AM (for bracketing alternative members),
and head (for a common PML instance header described in detail in Section 5, “Header of a
PML instance”).

2. PML data types

The PML currently recognizes the following abstract data types from which complex data types
are built by means of composition:

atomic type (cdata)
Atomic values are literal strings. The exact content of an atomic value may be further spe-
cified as its format (see Section 3, “Atomic data formats”). In the XML, atomic values are
(depending on the context) represented either as CDATA (i.e. text) content of an element
or as an attribute value.

enumerated types
An atomic-value type defined as an exhaustive list of possible values of that type.

structures

A structure is a versatile PML abstract type. Sometimes it is called a feature-structure, attrib-
ute-value structure or AVS. To avoid confusion with XML attributes, we refer to attributes
of a structure as members. A structure is similar in nature to a st ruct type in the C pro-
gramming language. A structure is fully specified by names, types and optionally roles for
each of its members. Different members of the structure must have distinct names. The
structure is represented in XML by an element whose only content are attributes and/or sub-
elements representing the members of the structure. An attribute or sub-element representing
a member is named by the member and its content is the XML representation of the member's
value. The order of members in the structure as represented in XML may be arbitrary.
Whether a particular member is represented by an attribute or a sub-element is specified in
the PML schema, however, only members with values of atomic types can be represented
by attributes. Some structure members may in the PML schema be formally declared as re-
quired, in which case they must appear in the structure and its XML representation and must
have non-empty content. All members not explicitly declared as required are optional.

lists
PML offers unified representation of both ordered and unordered lists of constructs of the
same type (the /ist member type). PML lists represent data similar in nature to arrays in
various programming languages. An XML element representing a construct of a list type
must as its only child-nodes have either zero or more XML elements named LM (“List
Member”), each representing a construct of the list member type, or else (as a compact
representation of singleton lists) its content must be of the list member type. List member
type can not be a list, i.e. lists of lists are not allowed. Technically, the difference between

16

The Prague Markup Language

ordered and unordered lists is only in the declaration. Ordered lists may still contain repeated
member (members with the same value). Applications are only required to preserve the or-
dering of ordered lists.

alternatives

Similar to unordered lists but different in usage and semantics are alternatives. Alternatives
can be used to represent data where usually one value of a certain type is used, but under
some circumstances several alternative (or parallel) values are allowed. An XML element
representing an alternative of constructs of a certain type (alternative member type) is either
a representation of a construct of that type (in case of a single value, i.e. no actual alternative
values) or has as its only child-nodes two or more XML elements named AM (“Alternative
Member”), each of which represents a construct of the alternative member type. Alternative
member type must not be an alternative, i.e. alternatives of alternatives are not allowed.

sequences
Sequences are similar to ordered lists but do not require their member constructs to be of
the same type. Each member of a sequence is represented by an XML element whose name
1s bound in the sequence definition with the type of the construct it bears and whose content
represents the value. Although applications must preserve the order of elements in a sequence,
the definition of a sequence construct in the PML schema implies no restrictions on what
the order could possibly be. There may be zero or more elements of a given name in the
sequence. The PML schema may declare some of the elements of the sequence as required,
in which case at least one element of that name must occur in the sequence. Additional in-
formation may be attached to elements of a sequence by means of XML attributes (which
must also be declared in the PML schema).

3. Atomic data formats

PML currently only defines the atomic data formats listed below. In the future, specification
for more formats will be added and/or some generic mechanism for introducing user-defined
atomic formats will be added.

ID
An identifier string, i.e. a string satisfying the name production3 of the XML specification.

PMLREF
An atomic value which is either an identifier or a string consisting of two identifiers separated
by the character #. Values of this format usually represent a reference (link), see Section 7,
“References in PML”.

nonNegativelnteger
A non-negative integer value represented in decimal notation

any
Arbitrary string of characters (used in all cases not covered by the formats above).

3 http://www.w3.0rg/TR/2004/REC-xml-20040204/#NT-Name

17

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name

The Prague Markup Language

4. PML roles

PML roles indicate a formal role that a given construct plays in the annotation schema. Roles
are orthogonal to types, but usually are compatible only with certain types of constructs. Roles
are primarily intended to be used by applications processing the data. So far the following roles
have been specified:

#TREES
Only applicable to a list or sequence constructs. This role identifies a construct whose
member constructs represent dependency or constituency trees.

#NODE
Only applicable to a structure or a sequence-member construct. This role identifies a node
of a dependency or constituency tree.

#CHILDNODES
Only applicable to a member of a list type in a structure with role #NODE or to a sequence
in an element of role #NODE. This role identifies a construct representing a list of child-
nodes of a node node in a dependency or constituency tree.

#ID
Only applicable to an atomic construct, typically with format ID. A value with this role
uniquely identifies a construct (an XML element, structure, sequence, etc.) in the PML in-
stance. This means that all values with role # ID within a PML instance are distinct..

#KNIT
This role indicates that the application may resolve the atomic value(s) as PML references
and replace their content with copies of the referenced PML constructs. This role is only
applicable to either:

* astructure member of atomic type with PMLREF format
* an sequence element of atomic type with PMLREF format

* alist with atomic member type formated as PMLREF. The list must occur as a value of
a sequence element or a structure member.

#ORDER
This role identifies a structure member containing a non-negative integer value used for
ordering nodes in an ordered tree.

#HIDE
This role identifies a structure member whose non-zero non-empty value indicates that an
application may hide the structure from the user.

18

The Prague Markup Language

5. Header of a PML instance

Every PML instance starts with the header element which must occur as the first sub-element
of the document element. The header element has the following sub-elements:

schema
Associates the instance with a PML schema file, indicating that the instance conforms to
the associated schema. The filename or URL of the PML schema file is specified in the at-
tribute href.

references

This element contains zero or more re f £i 1e sub-elements, each of which maps a filename
or URL (attribute href) of some external resource to an identifier (attribute id) used as
aliases when referring to the resource from the instance (see Section 7, “References in
PML”). If the external resource is an instance bound with the current instance as declared
in the PML schema, then ref £i1e must have also a third attribute, name, containing the
name used in the tag reference in PML schema declaration of the bound instance. For
every resource bound to the instance in the PML schema (using reference tag) there
must be a corresponding reffile.

6. PML Schema File

In this section we describe the syntax of a PML schema file. We use the usual DTD-like expres-
sions for describing content of individual elements, i.e.:

name
lower-case literals denote names of XML elements

PCDATA
denotes arbitrary text content

EMPTY
denotes empty content

(...)
brackets delimit groups of adjacent content
indicates that the element or group whose specification immediately precedes is optional
indicates that the element or group whose specification immediately can be repeated

separates specifications of exclusively alternative content

separates specifications of adjacent content

19

The Prague Markup Language

A formal definition of PML schema file syntax is available as a Relax NG schema, see Ap-
pendix II.A, Relax NG for PML Schema.

All elements of the PML schema file belong to the PML schema namespace. The following
elements may occur in a PML schema:

pml schema
This is the root element of a PML schema file. It may have no attributes (except for the
xmlns declaration of the PML-schema namespace).

Content: (description?, reference*, root, type*)

description
This element provides an optional short description of the PML schema.

Content: PCDATA

reference
This element declares, that each instance of the PML schema is bound with another PML
instance (usually of a different PML schema) and provides a hint for an application on how
to process the bound instance.

Attributes

name
a symbolic name for the bound instance. This name is used in the reffile element

in the referring file's header to identify the bound instance (see Section 5, “Header of a
PML instance”).

readas
the value t rees instructs the application to read the bound instance as a sequence of
dependency or constituency trees; value dom instructs the application to read the bound
instance using the generic Document object model.

root
Defines the root element of a PML instance.

Content: (attribute*, (alt | 1list | choice | constant |
structure | sequence | cdata | (element*, sequence) | ele-
ment*))

type

Defines a named type. Named types are referred to from other elements using the attribute
type. A named type may only be referred from contexts where the actual type represented
by the named type is allowed. In other words, if an element in a PML schema refers to a
named type, then the content of the named type definition must be also a valid content for
the referring element.

20

The Prague Markup Language

Attributes

name
The name of the new named type (required)

role
The PML role of constructs of the type (optional)

Content: (attribute*, (alt | 1list | <choice | constant |
structure | sequence | cdata | (element*, sequence) | ele-
ment*))

structure

Declares a complex type which is a structure with the specified members. Its content consists
of one or more member elements defining members of the structure.

Attributes

name
An optional name of the type. This name is not used in the PML schema, but may be
used by applications, e.g. when presenting constructs of the type to the user. (optional)

role
The PML role of the constructs of the type (optional)

Content: (member) +

member
Declares a member of a structure. The content of the element membe r defines the member's
value type (unless a named-type is specified using the t ype attribute).

Attributes

name
Name of the member (required)

required
value 1 declares the member as required, value O declares the member as optional (default
is 0)

role
PML role of the member's value (optional)

as_attribute
value 1 declares that the member is in XML realized as an attribute of the element
realizing the structure. In that case, the value type must be atomic. Value 0 declares,
that the member is realized as an XML element whose content realizes the value construct.
In the latter case case no restrictions are put on the value type (default is 0)

21

The Prague Markup Language

type
declares, that the value type is the given named type (complementary to content)

Content: (alt | list | choice | constant | structure | sequence
| cdata)

list
Defines a complex type as a list of constructs of a given type. The content defines the type
of the list members (unless a named type is specified in the t ype attribute).

Attributes

ordered
value 1 declares an ordered list, value 0 declares an unordered list (required)

type
declares that the constructs contained in the list are of a given named type (complementary
to content)

role

PML-role of constructs of the type - currently only roles #KNIT and #CHILDNODES
may be used with lists (optional)

Content: (alt | choice | constant | structure | sequence |
cdata)

alt

Defines a type which is an alternative of constructs of a given type. The content defines a
type of the alternative members (unless a named type is specified in the type attribute).

Attributes

type
declares that the constructs contained in the list are of a given named type (complementary
to content)

Content: (list | choice | constant | structure | sequence |
cdata)

choice

Defines an enumerated type with a set of possible values specified in the value sub-ele-
ments.

Content: (value)+

value
The text content of this element is one of the values of an enumerated type.

Content: PCDATA

22

The Prague Markup Language

cdata
Defines an atomic type. Constructs of atomic types are represented in XML as text or attribute
values. The atomic type is further specified using the format attribute which can have one
of the values ID, PMLREF, nonNegativeInteger, any, described in Section 2, “PML
data types”.

Content: EMPTY

constant
Defines an atomic type with a constant value specified in the content.

Content: PCDATA

sequence
Defines a type which is sequence of further specified XML elements.

Attributes

role
PML role of constructs of the type (optional)

Content: (element) +

element
Defines a generic element construct by specifying its name, attributes and content type.
Element constructs may only occur in sequences and other element constructs (including
the top-level element if an instance defined in the PML schema by the root element).

One or more optional sub-elements attribute declare additional XML attributes that
the element may have (these attributes must not collide with any attributes whose presence
may be implied by the content construct). The rest of the allowed sub-elements specify the
type of the content construct type which may be an atomic value, an alternative, a list, a
structure, a sequence, or zero or more elements, optionally followed by a sequence, in which
case all names of the elements preceding the sequence must be distinct from the names of
the elements in the sequence (an application can recognize the start of a sequence in an
element construct by encountering a sub-element listed in the sequence definition).

Attributes

name
name of the XML element (required)

role
PML role of the construct (optional)

required
value 1 declares the element as required, i.e. at least one element of the name must occur
in the sequence; value O declares the element as optional (default is 0)

23

The Prague Markup Language

type
declares that the element's content is a construct of a given named type (complementary
to content)

Content: (attribute*, (alt | 1list | choice | constant |
structure | sequence | cdata | (element*, sequence) | ele-
ment*))

attribute

Defines an attribute of an element. The content defines the type of attribute's value.

Attributes

name
name of the attribute (required)

required
value 1 declares the attribute as required, value 0 declares the attribute as optional (default
is 0)

role
defines a PML role of the attribute (optional)

type
defines the type of the attribute value to be of a given named type. This named type must
be an atomic construct (complementary to content)

Content: (choice | cdata)

7. References in PML

While it is likely that in the future PML will offer other kinds of references, such as XPointer,
currently PML only defines syntax and semantics for simple ID-based references to PML
structure, element or sequence constructs occurring either in the same or some other PML in-
stance, and to XML elements of non-PML XML documents in general. Also, there is no syntax
defined yet for references to non-XML resources or to constructs without an ID.

A reference to a construct occurring within the same PML instance is represented by the ID of
the referred construct (see more specific definition below). A reference to an object occurring
outside the PML instance is represented by a string consisting of a pair of identifiers separated
by the # character. The first of the two identifiers is an ID associated in the header of the PML
instance with the system file name or URL of the instance containing the referred object. The
second of the identifiers is a unique ID of the construct (or element) within the PML (or XML)
instance it occurs in.

If the referred construct is a structure, then its ID is the value of its member with the role #ID.
If the referred construct is an element, then its ID is the value of its attribute with the role #ID.
If the referred construct is an XML element in a non-PML XML document, then its ID is the

24

The Prague Markup Language

value of its ID-attribute (e.g. either the attribute xm1 : 1d or some other attribute declared as
ID in the document's DTD or schema).

8. Layers of annotation

PML references are suitable for stacking one layer of linguistic annotation upon another. For
this purpose, the original text is usually transformed to a very simple PML instance that only
adds the most essential features such as basic tokenization, identifiers of individual tokens, etc.,
providing the basis upon which further annotations could be stacked. If it is not possible or de-
sirable to directly include tokens from the original text in such a base layer, then a suitable
mechanism (currently not defined by PML) has to be employed in order to carry unambiguous
references to the corresponding portions of the original text (regardless of the original format).

A specific PML schema is usually defined for each of the annotation layers. The relation between
annotation layers is typically expressed on the instance level using PML references and on the
PML schema level using the instance binding (PML schema element reference).

9. Tools

The XSLT stylesheet plerng.xsl4 transforms a PML schema to the corresponding Relax NG
schema that can be used for validating instances of the PML schema. The resulting Relax NG
refers to a portion of Relax NG common to all PML applications which is stored in the file
pml_common.rng5 .

There are many standard freely available tools that can be used to validate an XML document
against a Relax NG, such as jing6 or xmllint’.

The Tree Editor TrEd® has built-in support for PML representation of dependency and constitu-
ency trees (see Section PMLBackend’ in TrEd User's Manual'® for details).

PML instances may also be processed using conventional XML-oriented tools without direct
support for PML. One of them worth recommending is XSH!!, which is a versatile tool for
XML processing.

4 http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pmlI2rng.xsl

5 http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pml common.rng

® http://www.thaiopensource.com/relaxng/jing html

! http://xmlsoft.org/

8 http://ufal.mff.cuni.cz/~pajas/tred/index.html

? http://ufal.mff.cuni.cz/~pajas/tred/ar01s15.html#pmlbackend
10 http://ufal. mff.cuni.cz/~pajas/tred/ar01-toc.html

' http://xsh.sourceforge.net

25

http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pml2rng.xsl
http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pml_common.rng
http://www.thaiopensource.com/relaxng/jing.html
http://xmlsoft.org/
http://ufal.mff.cuni.cz/~pajas/tred/index.html
http://ufal.mff.cuni.cz/~pajas/tred/ar01s15.html#pmlbackend
http://ufal.mff.cuni.cz/~pajas/tred/ar01-toc.html
http://xsh.sourceforge.net

The Prague Markup Language

I1.A. Relax NG for PML Schema

In this appendix we provide a Relax NG schema for PML Schema files (it is a listing of the file
pml schema. rngl). Note, that this Relax NG schema is rather simplistic and that does not
currently reflect all constraints implied on the syntax of the PML schema file expressed in this
document. This especially includes constraints on applicability of certain roles on certain types
of constructs, and also the requirement that a named type may only be referred from contexts

where the actual type represented by the named type may occur.

<?xml version="1.0"7?>

<!DOCTYPE grammar SYSTEM "/home/pajas/share/xml/relaxng.dtd">
<grammar xmlns="http://relaxng.org/ns/structure/1.0"
xmlns:s="http://ufal.mff.cuni.cz/pdt/pml/schema/"
xmlns:a="http://relaxng.org/ns/compatibility/annotations/1.0"
datatypelLibrary="http://www.w3.0rg/2001/XMLSchema-datatypes">
<a:documentation>PML schema syntax</a:documentation>

<start>

<element name="s:pml schema">

<optional>

<element name="s:description">

<text/>
</element>
</optional>
<zeroOrMore>

<ref name="reference.element"/>

</zeroOrMore>
<element name="s:root">
<attribute name="name"/>
<ref name="element.content"/>
</element>
<zeroOrMore>
<ref name="type.element"/>
</zeroOrMore>
</element>
</start>

<define name="reference.element">
<element name="s:reference">

<a:documentation>declare a bound instance and optinally provide
a hint for applications on how to parse it</a:documentation>

<attribute name="name"/>
<optional>
<attribute name="readas">
<choice>
<value>trees</value>
<value>dom</value>
</choice>
</attribute>
</optional>
</element>
</define>

<define name="type.element">
<element name="s:type">

<a:documentation>a named complex type</a:documentation>

! http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pml_schema.rng

26

http://ufal.mff.cuni.cz/pdt2.0/tools/pml/pml_schema.rng

The Prague Markup Language

<attribute name="name">
<data type="ID"/>
</attribute>
<optional>
<ref name="role.attribute"/>
</optional>
<ref name="element.content"/>
</element>
</define>

<define name="type.attribute">
<attribute name="type">
<a:documentation>a reference to a named complex
type</a:documentation>
<data type="IDREEF"/>
</attribute>
</define>

<define name="attribute.element">
<element name="s:attribute">
<a:documentation>attribute declaration</a:documentation>
<optional>
<attribute name="required">
<choice>
<value>0</value>
<value>1l</value>
</choice>
</attribute>
</optional>
<attribute name="name"/>
<optional>
<ref name="role.attribute"/>
</optional>
<choice>
<ref name="type.attribute"/>
<choice>
<ref name="choice.element"/>
<ref name="cdata.element"/>
</choice>
</choice>
</element>
</define>

<define name="role.attribute">
<attribute name="role">
<a:documentation>PML role of the value</a:documentation>
<choice>
<value>#TREES</value>
<value>#NODE</value>
<value>#0ORDER</value>
<value>#CHILDNODES</value>
<value>#ID</value>
<value>#KNIT</value>
<value>#HIDE</value>
</choice>
</attribute>
</define>

<define name="structure.element">
<element name="s:structure">

27

The Prague Markup Language

<a:documentation>a structure (AVS)</a:documentation>
<optional>

<attribute name="name"/>
</optional>
<optional>

<ref name="role.attribute"/>
</optional>
<oneOrMore>

<ref name="member.element"/>
</oneOrMore>

</element>
</define>

<define name="alt.element">
<element name="s:alt">
<a:documentation>an alternative of values of the same
type</a:documentation>
<choice>
<ref name="type.attribute"/>
<ref name="list.element"/>
<ref name="data.types"/>
</choice>
</element>
</define>

<define name="list.element">
<element name="s:1ist">
<a:documentation>a list of values of the same
type</a:documentation>
<attribute name="ordered">
<choice>
<value>1l</value>
<value>0</value>
</choice>
</attribute>
<choice>
<group>
<attribute name="role">
<value>#KNIT</value>
</attribute>
<attribute name="type">
<a:documentation>a reference to a named complex type
for knitting</a:documentation>
<data type="IDREEF"/>
</attribute>
<ref name="cdata.element"/>
</group>
<group>
<optional>
<ref name="role.attribute"/>
</optional>
<choice>
<ref name="type.attribute"/>
<ref name="alt.element"/>
<ref name="data.types"/>
</choice>
</group>
</choice>
</element>
</define>

28

The Prague Markup Language

<define name="choice.element">
<element name="s:choice">

<a:documentation>enumerated type (atomic)</a:documentation>

<oneOrMore>
<element name="s:value">
<text/>
</element>
</oneOrMore>
</element>
</define>

<define name="cdata.element">
<element name="s:cdata">
<a:documentation>cdata type (atomic)</a:documentation>
<attribute name="format">
<choice>
<value>ID</value>
<value>PMLREF</value>
<value>nonNegativelInteger</value>
<value>any</value>
</choice>
</attribute>
</element>
</define>

<define name="constant.element">
<element name="s:constant">
<a:documentation>a constant (atomic)</a:documentation>
<text/>
</element>
</define>

<define name="sequence.element">
<element name="s:sequence'">
<a:documentation>a sequence of elements</a:documentation>
<optional><ref name="role.attribute"/></optional>
<oneOrMore>
<ref name="element.element"/>
</oneOrMore>
</element>
</define>

<define name="element.element">
<element name="s:element">

<a:documentation>an element of a sequence</a:documentation>

<attribute name="name"/>
<optional><ref name="role.attribute"/></optional>
<optional><ref name="required.attribute"/></optional>
<ref name="element.content"/>
</element>
</define>

<define name="element.content">
<zeroOrMore>
<ref name="attribute.element"/>
</zeroOrMore>
<choice>
<ref name="type.attribute"/>
<ref name="alt.element"/>

29

The Prague Markup Language

<ref name="list.element"/>
<ref name="choice.element"/>
<ref name="constant.element"/>
<ref name="structure.element"/>
<ref name="cdata.element"/>
<group>
<zeroOrMore>
<ref name="element.element"/>
</zeroOrMore>
<optional>
<ref name="sequence.element"/>
</optional>
</group>
</choice>
</define>

<define name="required.attribute">
<attribute name="required">
<choice>
<value>0</value>
<value>1</value>
</choice>
</attribute>
</define>

<define name="member.element">
<element name="s:member">
<a:documentation>a member of a structure</a:documentation>
<optional><ref name="required.attribute"/></optional>
<optional>
<attribute name="as attribute">
<choice>
<value>0</value>
<value>1l</value>
</choice>
</attribute>
</optional>
<optional>
<ref name="role.attribute"/>
</optional>
<attribute name="name"/>

<choice>
<ref name="type.attribute"/>
<ref name="alt.element"/>
<ref name="list.element"/>
<ref name="data.types"/>

</choice>

</element>

</define>

<define name="data.types">
<choice>
<ref name="choice.element"/>
<ref name="constant.element"/>
<ref name="structure.element"/>
<ref name="sequence.element"/>
<ref name="cdata.element"/>
</choice>
</define>

30

The Prague Markup Language

</grammar>

11.B. Examples

In this appendix we provide some simple examples of PML usage. Rather than on practical
applicability of the schemas that follow, we concentrate on demonstrating the features, definitions
and representation of various constructs. We also show how PML references work and how
annotation layers can be stacked one upon another.

1. Dependency trees

The following PML schema and instance show an application of PML to a very simple analyt-
ical dependency annotation of English sentences. In this example, the annotation consists of
some meta data (annotator's name and a time stamp) and a list of trees. Each tree is represented
by its root-node. Nodes are structures with two members bearing the node-labels (word form
and its syntactical function) and two technical members (index of the node in the ordering of
the tree - represented by attribute ord, and a list of child-nodes - represented by the element
governs). Note, that if a list of child-nodes has only one member, then this single child-node
may be directly represented by the governs element. This eliminates the need for an extra LM
bracketing element. Note that PML doesn't actually distinguish between dependency trees and
constituency trees, but since dependency trees are ordered trees and are not necessarily projective,
we have to employ an extra member ord with PML-role #ORDER for the tree ordering. Because
we do not want any linguistic complexity to distract the reader's attention from the technical
aspects of how data are defined and represented in PML, we have chosen two shamelessly
simple sentences.

31

The Prague Markup Language

Example I1.B.1: PML schema

<?xml version="1.0"?2>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>Example of dependency tree annotation</description>
<root name="annotation">
<element name="meta">
<structure>
<member name="annotator"><cdata format="any"/></member>
<member name="datetime"><cdata format="any"/></member>
</structure>
</element>
<element name="trees" role="#TREES" required="1">
<list type="node.type" ordered="1"/>
</element>
</root>
<type name="node.type">
<structure role="#NODE">
<member name="ord" as attribute="1" required="1" role="#ORDER">
<cdata format="nonNegativelInteger"/>
</member>
<member name="func" type="func.type" required="1"/>
<member name="form" required="1">
<cdata format="any"/>
</member>
<member name="governs" role="#CHILDNODES" required="0">
<list type="node.type" ordered="0"/>
</member>
</structure>
</type>
<type name="func.type">
<choice>
<value>Pred</value>
<value>Subj</value>
<value>0bj</value>
<value>Attrib</value>
<value>Adv</value>
</choice>
</type>
</pml_schema>

32

The Prague Markup Language

Example I1.B.2: Sample instance with annotation of the sentence: "John
loves Mary. He told her this Friday.'

<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="examplel schema.xml"/>
</head>
<meta>
<annotator>Jan Novak</annotator>
<datetime>Sun May 1 18:56:55 2005</datetime>
</meta>
<trees>
<LM ord="2">
<func>Pred</func>
<form>loves</form>
<governs>
<LM ord="1">
<func>Subj</func>
<form>John</form>
</LM>
<LM ord="3">
<func>0bj</func>
<form>Mary</form>
</LM>
</governs>
</LM>
<LM ord="2">
<func>Pred</func>
<form>told</form>
<governs>
<LM ord="1">
<func>Subj</func>
<form>He</form>
</LM>
<LM ord="3">
<func>0bj</func>
<form>her</form>
</LM>
<LM ord="5">
<func>Adv</func>
<form>Friday</form>
<governs ord="4"> <!-- ditto -->
<func>Attrib</func>
<form>this</form>
</governs>
</LM>
</governs>
</LM>
</trees>
</annotation>

2. Constituency trees

On two simple (and of course incomplete) examples we demonstrate how Penn-treebank-like
constituency trees might be represented in PML. This situation differs from the dependency
trees in two aspects: 1) with constituency trees we do not have to consider an external ordering

33

The Prague Markup Language

of the nodes in the tree, 2) constituency trees usually distinguish between leafs (terminal nodes)
and branching nodes (non-terminal nodes). In the first sample we deal with this by declaring
two node types and using sequences instead of lists (since lists would require all members to
be of the same type). In the second sample we provide a minimalist approach taking advantage
of the fact that a non-terminal node has at most one non-terminal child, which in turn eliminates
the need to represent leafs nodes as nodes at all. This, in combination with the possibility to
reuse element names for the actual labels, provides a very compact XML notation very close
to the labeled-bracket syntax of Penn Treebank.

Example I1.B.3: PML schema

<?xml version="1.0"?2>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>Example of constituency tree annotation</description>
<root name="annotation">
<element name="meta">
<structure>
<member name="annotator"><cdata format="any"/></member>
<member name="datetime"><cdata format="any"/></member>
</structure>
</element>
<sequence role="#TREES">
<element name="nt" role="#NODE" type="nonterminal.type"/>
</sequence>
</root>
<type name="nonterminal.type">
<attribute name="pos">
<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>
<value>PP</value>
<value>ADVP</value>
<!-—- etc. —-—>
</choice>
</attribute>
<sequence role="#CHILDNODES">
<element name="nt" role="#NODE" type="nonterminal.type"/>
<element name="form" role="#NODE" type="terminal.type"/>
</sequence>
</type>
<type name="terminal.type">
<cdata format="any"/>
</type>
</pml_schema>

34

The Prague Markup Language

Example I1.B.4: Sample instance with annotation of the sentence: "John
loves Mary. He told her this Friday.'

<?xml version="1.0"2>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example2 schema.xml"/>
</head>
<meta>
<annotator>John Smith</annotator>
<datetime>Sun May 1 18:56:55 2005</datetime>
</meta>
<nt pos="S">
<nt pos="NP">
<form>John</form>
</nt>
<nt pos="VP">
<form>loves</form>
<nt pos="NP">
<form>Mary</form>
</nt>
</nt>
</nt>
<nt pos="S">
<nt pos="NP">
<form>He</form>
</nt>
<nt pos="VP">
<form>told</form>
<nt pos="NP"><form>her</form></nt>
<nt pos="ADVP"><form>this Friday</form></nt>
</nt>
</nt>
</annotation>

For brevity, we will not repeat the meta element in the second sample.

35

The Prague Markup Language

Example I1.B.S: PML schema

<?xml version="1.0"?2>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>
Example of very compact constituency tree annotation
</description>
<root name="annotation">
<sequence role="#TREES">
<element name="S" role="#NODE" type="nonterminal.type"/>
</sequence>
</root>
<type name="nonterminal.type">
<attribute name="form"><cdata format="any"/></attribute>
<sequence role="#CHILDNODES">
<element name="VP" role="#NODE" type="nonterminal.type"/>
<element name="NP" role="#NODE" type="nonterminal.type"/>
<element name="PP" role="#NODE" type="nonterminal.type"/>
<element name="ADVP" role="#NODE" type="nonterminal.type"/>

<!-—- etc. —-—>
</sequence>
</type>

</pml_schema>

Example I1.B.6: Sample instance

<?xml version="1.0"2>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example3 schema.xml"/></head>
<S>
<NP form="John"/>
<VP form="loves'">
<NP form="Mary"/>
</VP>
</S>
<S>
<NP form="He"/>
<VP form="told">
<NP form="her"/>
<ADVP form="this Friday"/>
</VP>
</S>
</annotation>

Note that once the labels of non-terminals coincide with the names of elements representing
nodes, we could apply further restrictions on the nesting directly in the PML schema. For ex-
ample, it would be very easy to incorporate some grammar-like rules (such as that ADVP can
only occur within VP, etc.).

3. Internal references

To demonstrate cross-referencing in a PML instance we define two simple PML schemas for
representing arbitrary graph with both labeled nodes. In the first schema, we represent the graph
by a list of its vertices and a list of its edges. With the second schema the same graph is repres-
ented by a list of structures for nodes consisting of a label and a a list of pointers to the nodes
connected with the current node by an edge.

36

The Prague Markup Language

Example I1.B.7: PML schema

<?xml version="1.0"2>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>An oriented graph</description>
<root name="graph">
<structure>
<member name="verteces">
<list ordered="0">
<structure>
<member name="id" as_attribute="1" required="1" role="#ID">
<cdata format="ID"/>
</member>
<member name="label" required="1">
<cdata format="any"/>
</member>
</structure>
</list>
</member>
<member name="edges">
<list ordered="0">
<structure>
<member name="from.rf" required="1" as attribute="1">
<cdata format="PMLREF"/>
</member>
<member name="to.rf" required="1" as attribute="1">
<cdata format="PMLREF"/>
</member>
</structure>
</list>
</member>
</structure>
</root>
</pml_schema>

Example I1.B.8: Sample instance

<?xml version="1.0"2>
<graph xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example4 schema.xml"/></head>
<verteces>
<LM id="vl"><label>A</label></LM>
<LM id="v2"><label>B</label></LM>
<LM id="v3"><label>A</label></LM>
<LM id="v4"><label>C</label></LM>
<LM id="v5"><label>D</label></LM>
</verteces>
<edges>
<LM from.rf="v1l" to.rf="v2"/>
<LM from.rf="v1" to.rf="v3"/>
<LM from.rf="v2" to.rf="v4"/>
<LM from.rf="v3" to.rf="v4"/>
<LM from.rf="v4" to.rf="v1"/>
</edges>
</graph>

37

The Prague Markup Language

Example I1.B.9: PML schema

<?xml version="1.0"2>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>An oriented graph</description>
<root name="graph">
<list ordered="0">
<structure>
<member name="id" as attribute="1"
required="1" role="#ID">
<cdata format="ID"/>
</member>
<member name="label" required="1">
<cdata format="any"/>
</member>
<member name="edges.rf">
<list ordered="0">
<cdata format="PMLREF"/>
</list>
</member>
</structure>
</list>
</root>
</pml_schema>

Example I1.B.10: Sample instance

<?xml version="1.0"?2>
<graph xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example5 schema.xml"/></head>
<LM id="v1">
<label>A</label>
<edges.rf>
<LM>Vv2</LM>
<LM>Vv3</LM>
</edges.rf>
</LM>
<LM id="v2">
<label>B</label>
<edges.rf>vid</edges.rf>
</LM>
<LM id="v3">
<label>A</label>
<edges.rf>vid</edges.rf>
</LM>
<LM id="v4">
<label>C</label>
<edges.rf>vl</edges.rf>
</LM>
<LM id="v5">
<label>D</label>
</LM>
</graph>

38

The Prague Markup Language

4. External references

In this example we define PML schemas for two annotation layers. The first layer represents
the tokenized text with the sentence-boundary markup. The second layer is a constituency-tree
annotation of the sentences on the first (lower) layer. This constituency annotation is similar to
the samples Section 2, “Constituency trees”, but this time the terminals contain references to
the tokenized text.

The following schema and instance show a tokenization layer.

Example I1.B.11: PML schema

<?xml version="1.0"2?>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>Example of tokenization layer</description>
<root name="tokenization">
<element name="sentences">
<list ordered="1" type="sentence.type"/>
</element>
</root>
<type name="sentence.type">
<structure>
<member name="id" role="#ID" required="1" as attribute="1">
<cdata format="ID"/>
</member>
<member name="tokens"> <!-- words (tokens) -->
<sequence>
<element name="w">
<attribute name="id" role="#ID" required="1">
<cdata format="ID"/>
</attribute>
<cdata format="any"/>
</element>
</sequence>
</member>
</structure>
</type>
</pml_schema>

39

The Prague Markup Language

Example I1.B.12: Sample instance

<?xml version="1.0"?>
<tokenization xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head><schema href="example6 schema.xml"/></head>
<sentences>
<LM id="sl1">
<tokens>
<w 1id="slwl">John</w>
<w id="slw2">loves</w>
<w id="slw3">Mary</w>
<w 1id="slw4d">.</w>
</tokens>
</LM>
<LM id="s2">
<tokens>
<w 1id="s2wl">He</w>
<w 1id="s2w2">told</w>
<w id="s2w3">her</w>
<w 1id="s2w4">this</w>
<w id="s2w5">Friday</w>
<w 1d="s2w6">.</w>
</tokens>
</LM>
</sentences>
</tokenization>

The following schema and instance show an annotation layer stacked over the previously defined
tokenization layer. The relation between units on these layers, represented by PML references
from the annotation layer to the tokenization layer, may in general be N to M. The references
to the tokenization layer have role #KNIT, which indicates that applications may replace the
member w. rf containing the list of references with the corresponding object from the lower

layer (i.e. the w element).

40

The Prague Markup Language

Example I1.B.13: PML schema

<?xml version="1.0"?>
<pml schema xmlns="http://ufal.mff.cuni.cz/pdt/pml/schema/">
<description>
Example of tree annotation over a tokenization layer
</description>
<reference name="tokenization" readas="dom"/>
<root name="annotation">
<sequence role="#TREES">
<element name="S" role="#NODE">
<attribute name="sentence.rf">
<cdata format="PMLREF"/>
</attribute>
<list ordered="1" role="#CHILDNODES" type="node.type"/>
</element>
</sequence>
</root>
<type name="node.type">
<structure role="#NODE">
<member as attribute="1" name="pos">
<choice>
<value>S</value>
<value>VP</value>
<value>NP</value>
<value>PP</value>
<value>ADVP</value>
<!-- etc. ——>
</choice>
</member>
<member name="w.rf">
<list ordered="0" role="#KNIT" type="w.type">
<cdata format="PMLREF"/>
</list>
</member>
<member name="constituents" role="#CHILDNODES">
<list ordered="1" type="node.type"/>
</member>
</structure>
</type>
<type name="w.type">
<element name="w">
<attribute name="id" role="#ID" required="1">
<cdata format="ID"/>
</attribute>
<cdata format="any"/>
</element>
</type>
</pml_schema>

41

The Prague Markup Language

Example I1.B.14: Sample instance

<?xml version="1.0"?>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example7 schema.xml"/>
<references>
<reffile name="tokenization" id="t" href="example6.xml"/>
</references>
</head>
<S sentence.rf="sl">
<ILM pos="NP"><w.rf>t#slwl</w.rf></LM>
<LM pos="VP">
<w.rf>t#slw2</w.rf>
<constituents pos="NP">
<w.rf>t#slw3</w.rf>
</constituents>
</LM>
</S>
<S sentence.rf="s2">
<LM pos="NP"><w.rf>t#s2wl</w.rf></LM>
<LM pos="VP">
<w.rf>t#s2w2</w.rf>
<constituents>
<LM pos="NP"><w.rf>t#s2w3</w.rf></LM>
<LM pos="ADVP">
<w.rf>
<LM>t#s2wd</LM>
<LM>t#s2w5</LM>
</w.rf>
</LM>
</constituents>
</LM>
</S>
</annotation>

After knitting is applied on PML references in w . r f, the instance appears to the application as
follows:

42

The Prague Markup Language

Example I1.B.15: Sample instance after knitting

<?xml version="1.0"2>
<annotation xmlns="http://ufal.mff.cuni.cz/pdt/pml/">
<head>
<schema href="example7 schema.xml"/>
<references>
<reffile name="tokenization" id="t" href="example6.xml"/>
</references>
</head>
<S sentence.rf="sl1">
<LM pos="NP"><w id="slwl">John</w></LM>
<LM pos="VP">
<w id="slw2">loves</w>
<constituents pos="NP">
<w id="slw3">Mary</w>
</constituents>
</LM>
</S>
<S sentence.rf="s2">
<LM pos="NP"><w id="s2wl">He</w></LM>
<LM pos="VP">
<w id="s2w2">told</w>
<constituents>
<LM pos="NP"><w id="s2w3">her</w></LM>
<LM pos="ADVP">
<w>
<ILM id="s2w4">this</LM>
<LM id="s2w5">Friday</LM>
</w>
</LM>
</constituents>
</LM>
</S>
</annotation>

43

References

[TEI]

[AG]

[Dipper]

[MATE]

[ATLAS]

[RelaxNG]

[XML]

[XSLT]

[PDTI]

[PDT2]

The TEI Consorcium, TEI P5 - Guidelines for Electronic Text Encoding and
Interchange, C.M.Sperberg-McQueen and LouBurnard ed. (January 2005).
http://www.tei-c.org/P5/

Steven Bird and Mark Liberman, 4 Formal Framework for Linguistic Annotation
(revised version) (2000).
http://arxiv.org/abs/cs/0010033

Stefanie Dipper XML-based Stand-off Representation and Exploitation of Multi-
Level Linguistic Annotation, 2005, In Proceedings of Berliner XML Tage 2005
(BXML 2005), pp. 39-50, Berlin, Germany.
http://www.ling.uni-potsdam.de/~dipper/papers/xmltage05.pdf

D. McKelvie, A. Isard, A. Mengel, M.B. Mgller, M. Grosse, M. Klein, 2001.
The MATE Workbench - an annotation tool for XML coded speech corpora,
Speech Communication 33 (1-2), pp. 97-112. Special Issue Speech Annotation
and Corpus Tools.

http://www.ltg.ed.ac.uk/~amyi/papers/speechcommO0.ps

S. Bird, D. Day, J. Garofolo, J. Henderson, C.L. Laprun, 2000, ATLAS: A
Flexible and Extensible Architecture for Linguistic Annotation, In Proceedings
of the Second International Language Resources and Evaluation Conference,
pp. 1699-1706. Paris, European Language Resources Association.
http://arxiv.org/pdf/cs/0007022

RELAX NG Specification, OASIS Committee Specification (3 December 2001).
Definitive specification for RELAX NG using the XML syntax.
Project homepage: http://relaxng.org/

Extensible Markup Language, World Wide Web Consortium (W3C).
http://www.w3.org/ XML/

XSL Transformations (XSLT) Version 1.0, W3C Recommendation (16
November 1999), JamesClark ed., World Wide Web Consortium (W3C).
http://www.w3.org/TR/xslt

Jan Hajic, Barbora Vidova-Hladka, Jarmila Panevova, Eva Hajicova, Petr Sgall,
Petr Pajas, The Prague Dependency Treebank 1.0 (Final Production Label)
(2001), Institute of Formal and Applied Linguistics, Faculty of Mathematics
and Physics, Prague.

http://ufal.mff.cuni.cz/pdtl/

The Prague Dependency Treebank, 2.0 beta version, Institute of Formal and
Applied Linguistics, Faculty of Mathematics and PhysicsPrague (2005).
http://ufal.mff.cuni.cz/pdt2.0/

44

http://www.tei-c.org/P5/
http://arxiv.org/abs/cs/0010033
http://www.ling.uni-potsdam.de/~dipper/papers/xmltage05.pdf
http://www.ltg.ed.ac.uk/~amyi/papers/speechcomm00.ps
http://arxiv.org/pdf/cs/0007022
http://relaxng.org/
http://www.w3.org/XML/
http://www.w3.org/TR/xslt
http://ufal.mff.cuni.cz/pdt1/
http://ufal.mff.cuni.cz/pdt2.0/

References

[PENN]

[NEGRA]

[TIGER]

[PDTMarkup]

[TC37SC4]

[DiaBruck]

[TRED]

The Penn Treebank Project, LINC Laboratory, Computer and Information
Science Department, University of Pennsylvania published by Linguistic Data
Consortium.

http://www.cis.upenn.edu/~treebank/

Negra Corpus Version 2, Saarland University, Departmentof Computational
Linguistics and Phonetics Saarbriicken, Germany.
http://www.coli.uni-saarland.de/projects/stb378/negra-corpus/

TIGER Corpus.
Project homepage: http://www.ims.uni-stuttgart.de/projekte/ TIGER/TIGERCor-
pus/

PDT 2.0 Annotation Markup Reference.
http://ufal.mff.cuni.cz/pdt2.0/doc/data-formats/pml-markup/index.html

ISO/TC 37/SC 4.
Project homepage: http://www.tc37sc4.org/

DiaBruck 2003 Tutorial: Best Practice in Empirically-based Dialogue Research,
David Traum, Laurent Romary, Michael Strube.
http://www.coli.uni-saarland.de/conf/diabruck/pages/tutorial.htm

Tree Editor TrEd.
Project homepage: http://ufal.mff.cuni.cz/~pajas/tred

45

http://www.cis.upenn.edu/~treebank/
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/
http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/
http://ufal.mff.cuni.cz/pdt2.0/doc/data-formats/pml-markup/index.html
http://www.tc37sc4.org/
http://www.coli.uni-saarland.de/conf/diabruck/pages/tutorial.htm
http://ufal.mff.cuni.cz/~pajas/tred

	A Generic XML-Based Format for Structured Linguistic Annotation and Its Application to the Prague Dependency Treebank 2.0
	Table of Contents
	Part I. Towards a Generic Format for Linguistic Data
	Towards a Generic Format for Linguistic Data
	1. Motivation
	2. Prague Markup Language
	3. Application of PML to the PDT 2.0
	4. Improvements planned for the future revision of PML

	Part II. State-of-the-art specification of the PML format
	The Prague Markup Language
	1. Introduction
	2. PML data types
	3. Atomic data formats
	4. PML roles
	5. Header of a PML instance
	6. PML Schema File
	7. References in PML
	8. Layers of annotation
	9. Tools
	II.A. Relax NG for PML Schema
	II.B. Examples
	1. Dependency trees
	2. Constituency trees
	3. Internal references
	4. External references

	References

