Winter School

Day 5: Discriminative Training and Factored Translation Models

MT Marathon

30 January 2009
The birth of SMT: generative models

- The definition of translation probability follows a mathematical derivation

\[\arg\max_e p(e|f) = \arg\max_e p(f|e) \cdot p(e) \]

- Occasionally, some independence assumptions are thrown in for instance IBM Model 1: word translations are independent of each other

\[p(e|f, a) = \frac{1}{Z} \prod_i p(e_i|f_{a(i)}) \]

- Generative story leads to straight-forward estimation
 - maximum likelihood estimation of component probability distribution
 - EM algorithm for discovering hidden variables (alignment)
Log-linear models

- IBM Models provided mathematical justification for factoring components together

\[p_{LM} \times p_{TM} \times p_{D} \]

- These may be weighted

\[p_{LM}^{\lambda_{LM}} \times p_{TM}^{\lambda_{TM}} \times p_{D}^{\lambda_{D}} \]

- Many components \(p_i \) with weights \(\lambda_i \)

\[
\prod_i p_i^{\lambda_i} = \exp(\sum_i \lambda_i \log(p_i))
\]

\[
\log \prod_i p_i^{\lambda_i} = \sum_i \lambda_i \log(p_i)
\]
Knowledge sources

- Many different **knowledge sources** useful
 - language model
 - reordering (distortion) model
 - phrase translation model
 - word translation model
 - word count
 - phrase count
 - drop word feature
 - phrase pair frequency
 - additional language models
 - additional features
Set feature weights

• Contribution of components p_i determined by weight λ_i

• Methods
 – *manual setting* of weights: try a few, take best
 – *automate* this process

• Learn weights
 – set aside a *development corpus*
 – set the weights, so that *optimal translation performance* on this development corpus is achieved
 – requires *automatic scoring* method (e.g., BLEU)
Discriminative training

- Training set (*development set*)
 - different from original training set
 - small (maybe 1000 sentences)
 - must be different from test set
- Current model *translates* this development set
 - *n-best list* of translations (n=100, 10000)
 - translations in n-best list can be *scored*
- Feature weights are *adjusted*
- N-Best list generation and feature weight adjustment repeated for a number of iterations
Discriminative training

Model

- generate n-best list
- score translations
- find feature weights that move up good translations
- change feature weights

1
2
3
4
5
6
Discriminative vs. generative models

- Generative models
 - translation process is broken down to *steps*
 - each step is modeled by a *probability distribution*
 - each probability distribution is estimated from the data by *maximum likelihood*

- Discriminative models
 - model consist of a number of *features* (e.g. the language model score)
 - each feature has a *weight*, measuring its value for judging a translation as correct
 - feature weights are *optimized on development data*, so that the system output matches correct translations as close as possible
Learning task

- Task: *find weights*, so that feature vector of best translations *ranked first*
- Input: *Er geht ja nicht nach Hause*, Ref: *He does not go home*

<table>
<thead>
<tr>
<th>Translation</th>
<th>Feature values</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>it is not under house</td>
<td>-32.22</td>
<td>0.8</td>
</tr>
<tr>
<td>he is not under house</td>
<td>-34.50</td>
<td>0.6</td>
</tr>
<tr>
<td>it is not a home</td>
<td>-28.49</td>
<td>0.6</td>
</tr>
<tr>
<td>it is not to go home</td>
<td>-32.53</td>
<td>0.8</td>
</tr>
<tr>
<td>it is not for house</td>
<td>-31.75</td>
<td>0.8</td>
</tr>
<tr>
<td>he is not to go home</td>
<td>-35.79</td>
<td>0.6</td>
</tr>
<tr>
<td>he does not home</td>
<td>-32.64</td>
<td>0.2</td>
</tr>
<tr>
<td>it is not packing</td>
<td>-32.26</td>
<td>0.8</td>
</tr>
<tr>
<td>he is not packing</td>
<td>-34.55</td>
<td>0.6</td>
</tr>
<tr>
<td>he is not for home</td>
<td>-36.70</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Och’s minimum error rate training (MERT)

- **Line search** for best feature weights

 given: sentences with n-best list of translations
 iterate n times

 randomize starting feature weights
 iterate until convergences

 for each feature

 find best feature weight
 update if different from current

 return best feature weights found in any iteration
Find Best Feature Weight

• Core task:
 – find optimal value for one parameter weight λ
 – ... while leaving all other weights constant

• Score of translation i for a sentence f:

$$p(e_i|f) = \lambda a_i + b_i$$

• Recall that:
 – we deal with 100s of translations e_i per sentence f
 – we deal with 100s or 1000s of sentences f
 – we are trying to find the value λ so that over all sentences, the error score is optimized
Translations for one Sentence

- each translation is a line $p(e_i|f) = \lambda a_i + b_i$
- the model-best translation for a given λ (x-axis), is highest line at that point
- there are one a few threshold points t_j where the model-best line changes
Finding the Optimal Value for λ

- Real-valued λ can have infinite number of values
- But only on threshold points, one of the model-best translation changes

⇒ Algorithm:
 - find the threshold points
 - for each interval between threshold points
 * find best translations
 * compute error-score
 - pick interval with best error-score
BLEU error surface

- Varying one parameter: a rugged line with many local optima

![Graph showing BLEU error surface with peaks and troughs indicating local optima.](image)
Unstable outcomes: weights vary

<table>
<thead>
<tr>
<th>component</th>
<th>run 1</th>
<th>run 2</th>
<th>run 3</th>
<th>run 4</th>
<th>run 5</th>
<th>run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>distance</td>
<td>0.059531</td>
<td>0.071025</td>
<td>0.069061</td>
<td>0.120828</td>
<td>0.120828</td>
<td>0.072891</td>
</tr>
<tr>
<td>lexdist 1</td>
<td>0.093565</td>
<td>0.044724</td>
<td>0.097312</td>
<td>0.108922</td>
<td>0.108922</td>
<td>0.062848</td>
</tr>
<tr>
<td>lexdist 2</td>
<td>0.021165</td>
<td>0.008882</td>
<td>0.008607</td>
<td>0.013950</td>
<td>0.013950</td>
<td>0.030890</td>
</tr>
<tr>
<td>lexdist 3</td>
<td>0.083298</td>
<td>0.049741</td>
<td>0.024822</td>
<td>-0.000598</td>
<td>-0.000598</td>
<td>0.023018</td>
</tr>
<tr>
<td>lexdist 4</td>
<td>0.051842</td>
<td>0.108107</td>
<td>0.090298</td>
<td>0.111243</td>
<td>0.111243</td>
<td>0.047508</td>
</tr>
<tr>
<td>lexdist 5</td>
<td>0.043290</td>
<td>0.047801</td>
<td>0.020211</td>
<td>0.028672</td>
<td>0.028672</td>
<td>0.050748</td>
</tr>
<tr>
<td>lexdist 6</td>
<td>0.083848</td>
<td>0.056161</td>
<td>0.103767</td>
<td>0.032869</td>
<td>0.032869</td>
<td>0.050240</td>
</tr>
<tr>
<td>lm 1</td>
<td>0.042750</td>
<td>0.056124</td>
<td>0.052090</td>
<td>0.049561</td>
<td>0.049561</td>
<td>0.059518</td>
</tr>
<tr>
<td>lm 2</td>
<td>0.019881</td>
<td>0.012075</td>
<td>0.022896</td>
<td>0.035769</td>
<td>0.035769</td>
<td>0.026414</td>
</tr>
<tr>
<td>lm 3</td>
<td>0.059497</td>
<td>0.054580</td>
<td>0.044363</td>
<td>0.048321</td>
<td>0.048321</td>
<td>0.056282</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.052111</td>
<td>0.045096</td>
<td>0.046655</td>
<td>0.054519</td>
<td>0.054519</td>
<td>0.046538</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.052888</td>
<td>0.036831</td>
<td>0.040820</td>
<td>0.058003</td>
<td>0.058003</td>
<td>0.066308</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.042151</td>
<td>0.066256</td>
<td>0.043265</td>
<td>0.047217</td>
<td>0.047217</td>
<td>0.052853</td>
</tr>
<tr>
<td>ttable 1</td>
<td>0.034067</td>
<td>0.031048</td>
<td>0.050794</td>
<td>0.037589</td>
<td>0.037589</td>
<td>0.031939</td>
</tr>
<tr>
<td>phrase-pen.</td>
<td>0.059151</td>
<td>0.062019</td>
<td>-0.037950</td>
<td>0.023414</td>
<td>0.023414</td>
<td>-0.069425</td>
</tr>
<tr>
<td>word-pen</td>
<td>-0.200963</td>
<td>-0.249531</td>
<td>-0.247089</td>
<td>-0.228469</td>
<td>-0.228469</td>
<td>-0.252579</td>
</tr>
</tbody>
</table>
Unstable outcomes: scores vary

- Even different scores with different runs (varying 0.40 on dev, 0.89 on test)

<table>
<thead>
<tr>
<th>run</th>
<th>iterations</th>
<th>dev score</th>
<th>test score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>50.16</td>
<td>51.99</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>50.26</td>
<td>51.78</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>50.13</td>
<td>51.59</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>50.10</td>
<td>51.20</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>50.16</td>
<td>51.43</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>50.02</td>
<td>51.66</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>50.25</td>
<td>51.10</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>50.21</td>
<td>51.32</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>50.42</td>
<td>51.79</td>
</tr>
</tbody>
</table>
More features: more components

• We would like to add more components to our model
 – multiple language models
 – domain adaptation features
 – various special handling features
 – using linguistic information

→ MERT becomes even less reliable
 – runs many more iterations
 – fails more frequently
More features: factored models

- Factored translation models break up phrase mapping into smaller steps
 - multiple translation tables
 - multiple generation tables
 - multiple language models and sequence models on factors

→ Many more features
Millions of features

• Why **mix** of discriminative training and generative models?

• Discriminative training of all components
 – phrase table [Liang et al., 2006]
 – language model [Roark et al, 2004]
 – additional features

• **Large-scale** discriminative training
 – millions of features
 – training of full training set, not just a small development corpus
Perceptron algorithm

• Translate each sentence
• If no match with reference translation: update features

```plaintext
set all lambda = 0
do until convergence
  for all foreign sentences f
    set e-best to best translation according to model
    set e-ref to reference translation
    if e-best != e-ref
      for all features feature-i
        lambda-i += feature-i(f,e-ref) - feature-i(f,e-best)
```
Problem: overfitting

- Fundamental problem in machine learning
 - what works best for training data, may not work well in general
 - rare, unrepresentative features may get too much weight
- Especially severe problem in phrase-based models
 - long phrase pairs explain well individual sentences
 - ... but are less general, suspect to noise
 - EM training of phrase models [Marcu and Wong, 2002] has same problem
Solutions

- **Restrict to short phrases**, e.g., maximum 3 words (current approach)
 - limits the power of phrase-based models
 - ... but not very much [Koehn et al, 2003]

- **Jackknife**
 - collect phrase pairs from one part of corpus
 - optimize their feature weights on another part

- **IBM direct model**: **only one-to-many** phrases [Ittycheriah and Salim Roukos, 2007]
Problem: reference translation

• Reference translation may be anywhere in this box

- If produceable by model → we can compute feature scores
- If not → we can not
Some solutions

• **Skip sentences**, for which reference can not be produced
 – invalidates large amounts of training data
 – biases model to shorter sentences

• Declare candidate translations closest to reference as **surrogate**
 – closeness measured for instance by smoothed BLEU score
 – may be not a very good translation: odd feature values, training is severely distorted
Experiment

- Skipping sentences with unproduceable reference **hurts**

<table>
<thead>
<tr>
<th>Handling of reference</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>with skipping</td>
<td>25.81</td>
</tr>
<tr>
<td>w/o skipping</td>
<td>29.61</td>
</tr>
</tbody>
</table>

- When including all sentences: surrogate reference picked from 1000-best list using maximum *smoothed BLEU score* with respect to reference translation

- Czech-English task, **only binary features**
 - phrase table features
 - lexicalized reordering features
 - source and target phrase bigram

- See also [Liang et al., 2006] for similar approach
Better solution: early updating?

• At some point the reference translation falls out of the search space
 – for instance, due to unknown words:

Reference: The group attended the meeting in Najaf ...
System: The group meeting was attended in UNKNOWN ...

only update features involved in this part

• Early updating [Collins et al., 2005]:
 – stop search, when reference translation is not covered by model
 – only update features involved in partial reference / system output
Conclusions

• Currently have proof-of-concept implementation

• Future work: Overcome various technical challenges
 – reference translation may not be produceable
 – overfitting
 – mix of binary and real-valued features
 – scaling up

• More and more features are unavoidable, let’s deal with them
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
Statistical machine translation today

- Best performing methods based on phrases
 - short sequences of words
 - no use of explicit syntactic information
 - no use of morphological information
 - currently best performing method

- Progress in syntax-based translation
 - tree transfer models using syntactic annotation
 - still shallow representation of words and non-terminals
 - active research, improving performance
One motivation: morphology

- Models treat *car* and *cars* as completely different words
 - training occurrences of *car* have no effect on learning translation of *cars*
 - if we only see *car*, we do not know how to translate *cars*
 - rich morphology (German, Arabic, Finnish, Czech, ...) → many word forms

- Better approach
 - analyze surface word forms into **lemma** and **morphology**, e.g.: *car +plural*
 - translate lemma and morphology separately
 - generate target surface form
Factored translation models

- **Factored representation** of words

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>word</td>
<td>word</td>
</tr>
<tr>
<td>lemma</td>
<td>lemma</td>
</tr>
<tr>
<td>part-of-speech</td>
<td>part-of-speech</td>
</tr>
<tr>
<td>morphology</td>
<td>morphology</td>
</tr>
<tr>
<td>word class</td>
<td>word class</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- **Goals**
 - **Generalization**, e.g. by translating lemmas, not surface forms
 - **Richer model**, e.g. using syntax for reordering, language modeling)
Related work

- **Back off** to representations with richer statistics (lemma, etc.)

- Use of additional annotation in **pre-processing** (POS, syntax trees, etc.)
 [Collins et al., 2005, Crego et al, 2006]

- Use of additional annotation in **re-ranking** (morphological features, POS, syntax trees, etc.)
 [Och et al. 2004, Koehn and Knight, 2005]

\rightarrow we pursue an *integrated approach*

- Use of syntactic **tree structure**

\rightarrow may be *combined* with our approach
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
Decomposing translation: example

- **Translate** lemma and syntactic information *separately*

```
  lemma ⇒ lemma

  part-of-speech ⇒ part-of-speech
  morphology     morphology
```
Decomposing translation: example

- **Generate surface** form on target side

```
  surface
↑
lemma
  part-of-speech
    morphology
```
Translation process: example

Input: $(Autos, Auto, NNS)$

1. Translation step: lemma \Rightarrow lemma
 $(?, \text{car}, ?), (?, \text{auto}, ?)$

2. Generation step: lemma \Rightarrow part-of-speech
 $(?, \text{car, NN}), (?, \text{car, NNS}), (?, \text{auto, NN}), (?, \text{auto, NNS})$

3. Translation step: part-of-speech \Rightarrow part-of-speech
 $(?, \text{car, NN}), (?, \text{car, NNS}), (?, \text{auto, NNP}), (?, \text{auto, NNS})$

4. Generation step: lemma,part-of-speech \Rightarrow surface
 $(\text{car, car, NN}), (\text{cars, car, NNS}), (\text{auto, auto, NN}), (\text{autos, auto, NNS})$
Factored Translation Models

- Motivation
- Example
- **Model and Training**
- Decoding
- Experiments
Model

- Extension of *phrase model*
- Mapping of foreign words into English words broken up into steps
 - **translation step**: maps foreign factors into English factors
 (on the phrasal level)
 - **generation step**: maps English factors into English factors
 (for each word)
- Each step is modeled by one or more *feature functions*
 - fits nicely into log-linear model
 - weight set by discriminative training method
- Order of mapping steps is chosen to optimize search
Phrase-based training

- Establish word alignment (GIZA++ and symmetrization)
Phrase-based training

- Extract phrase

⇒ natürlich hat john — naturally john has
Factored training

- Annotate training with factors, extract phrase

⇒ ADV V NNP — ADV NNP V
Training of generation steps

- Generation steps map target factors to target factors
 - typically trained on target side of parallel corpus
 - may be trained on additional monolingual data

- Example: *The*/DET *man*/NN *sleeps*/VBZ
 - count collection
 - count(*the*, DET)++
 - count(*man*, NN)++
 - count(*sleeps*, VBZ)++
 - evidence for probability distributions (max. likelihood estimation)
 - p(DET|*the*), p(*the*|DET)
 - p(NN|*man*), p(*man*|NN)
 - p(VBZ|*sleeps*), p(*sleeps*|VBZ)
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
Phrase-based translation

- Task: *translate this sentence* from German into English

er geht ja nicht nach hause
Translation step 1

• Task: translate this sentence from German into English

\[\text{er geht ja nicht nach hause} \]

• \textit{Pick} phrase in input, \textit{translate}
Translation step 2

- Task: translate this sentence from German into English

\[\text{er geht ja nicht nach hause} \]

- Pick phrase in input, translate
 - it is allowed to pick words \textit{out of sequence} (reordering)
 - phrases may have multiple words: \textit{many-to-many} translation
Translation step 3

- Task: translate this sentence from German into English

```
er geht ja nicht nach hause
```

- Pick phrase in input, translate

```
he does not go
```
Translation step 4

- Task: translate this sentence from German into English

```
er geht ja nicht nach hause
```

- Pick phrase in input, translate

```
he does not go home
```
Translation options

<table>
<thead>
<tr>
<th>er</th>
<th>geht</th>
<th>ja</th>
<th>nicht</th>
<th>nach</th>
<th>hause</th>
</tr>
</thead>
<tbody>
<tr>
<td>he</td>
<td>is</td>
<td>yes</td>
<td>not</td>
<td>after</td>
<td>house</td>
</tr>
<tr>
<td>it</td>
<td>are</td>
<td>is</td>
<td>do not</td>
<td>to</td>
<td>home</td>
</tr>
<tr>
<td>, it</td>
<td>goes</td>
<td>, of course</td>
<td>does not</td>
<td>according to</td>
<td>in</td>
</tr>
<tr>
<td>, he</td>
<td>go</td>
<td></td>
<td>is not</td>
<td>in</td>
<td></td>
</tr>
</tbody>
</table>

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain
The machine translation decoder does not know the right answer

→ **Search problem** solved by heuristic beam search
Decoding process: precompute translation options

er geht ja nicht nach hause
Decoding process: start with initial hypothesis

er geht ja nicht nach hause
Decoding process: hypothesis expansion

er geht ja nicht nach hause

are

MT Marathon Winter School, Lecture 5 30 January 2009
Decoding process: hypothesis expansion

er geht ja nicht nach hause
Decoding process: hypothesis expansion

er geht ja nicht nach hause
are it he goes does not go to home
home

he goes home
does not go to home
Decoding process: find best path

er geht ja nicht nach hause

are it he goes does not go to home

home

MT Marathon Winter School, Lecture 5 30 January 2009
Factored model decoding

• Factored model decoding introduces additional complexity

• Hypothesis expansion not any more according to simple translation table, but by executing a number of mapping steps, e.g.:
 1. translating of lemma → lemma
 2. translating of part-of-speech, morphology → part-of-speech, morphology
 3. generation of surface form

• Example: haus\text{NN}\text{neutral}\text{plural}\text{nominative} → \{ houses\text{NN}\text{plural}, homes\text{NN}\text{plural}, buildings\text{NN}\text{plural}, shells\text{NN}\text{plural} \}

• Each time, a hypothesis is expanded, these mapping steps have to applied
Efficient factored model decoding

• Key insight: executing of mapping steps can be \textit{pre-computed} and stored as translation options
 – apply mapping steps to all input phrases
 – store results as \textit{translation options}
→ decoding algorithm \textit{unchanged}
Efficient factored model decoding

• Problem: *Explosion* of translation options
 – originally limited to 20 per input phrase
 – even with simple model, now 1000s of mapping expansions possible

• Solution: *Additional pruning* of translation options
 – *keep only the best* expanded translation options
 – current default 50 per input phrase
 – decoding only about 2-3 times slower than with surface model
Factored Translation Models

- Motivation
- Example
- Model and Training
- Decoding
- Experiments
Adding linguistic markup to output

- Generation of POS tags on the target side
- Use of high order language models over POS (7-gram, 9-gram)
- Motivation: syntactic tags should enforce syntactic sentence structure model not strong enough to support major restructuring
Some experiments

• English–German, Europarl, 30 million word, test2006

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>best published result</td>
<td>18.15</td>
</tr>
<tr>
<td>baseline (surface)</td>
<td>18.04</td>
</tr>
<tr>
<td>surface + POS</td>
<td>18.15</td>
</tr>
</tbody>
</table>

• German–English, News Commentary data (WMT 2007), 1 million word

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
</tr>
</tbody>
</table>

• Improvements under sparse data conditions
• Similar results with CCG supertags [Birch et al., 2007]
Sequence models over morphological tags

<table>
<thead>
<tr>
<th>die</th>
<th>hellen</th>
<th>Sterne</th>
<th>erleuchten</th>
<th>das</th>
<th>schwarze</th>
<th>Himmel</th>
</tr>
</thead>
<tbody>
<tr>
<td>(the)</td>
<td>(bright)</td>
<td>(stars)</td>
<td>(illuminate)</td>
<td>(the)</td>
<td>(black)</td>
<td>(sky)</td>
</tr>
<tr>
<td>fem</td>
<td>fem</td>
<td>fem</td>
<td>-</td>
<td>neutral</td>
<td>neutral</td>
<td>male</td>
</tr>
<tr>
<td>plural</td>
<td>plural</td>
<td>plural</td>
<td>plural</td>
<td>sgl.</td>
<td>sgl.</td>
<td>sgl</td>
</tr>
<tr>
<td>nom.</td>
<td>nom.</td>
<td>nom.</td>
<td>-</td>
<td>acc.</td>
<td>acc.</td>
<td>acc.</td>
</tr>
</tbody>
</table>

- Violation of noun phrase agreement in gender
 - `das schwarze` and `schwarze Himmel` are perfectly fine bigrams
 - but: `das schwarze Himmel` is not

- If relevant n-grams does not occur in the corpus, a lexical n-gram model would **fail to detect** this mistake

- Morphological sequence model: $p(N\text{-male}|J\text{-male}) > p(N\text{-male}|J\text{-neutral})$
Local agreement (esp. within noun phrases)

- High order language models over POS and morphology
- Motivation
 - \textit{DET-sgl NOUN-sgl} good sequence
 - \textit{DET-sgl NOUN-plural} bad sequence
Agreement within noun phrases

- Experiment: 7-gram POS, morph LM in addition to 3-gram word LM
- Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Agreement errors in NP</th>
<th>devtest</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>15% in NP ≥ 3 words</td>
<td>18.22 BLEU</td>
<td>18.04 BLEU</td>
</tr>
<tr>
<td>factored model</td>
<td>4% in NP ≥ 3 words</td>
<td>18.25 BLEU</td>
<td>18.22 BLEU</td>
</tr>
</tbody>
</table>

- Example
 - baseline: ... zur zwischenstaatlichen methoden ...
 - factored model: ... zu zwischenstaatlichen methoden ...

- Example
 - baseline: ... das zweite wichtige änderung ...
 - factored model: ... die zweite wichtige änderung ...
Morphological generation model

- Our motivating example
- Translating lemma and morphological information more robust
Initial results

• Results on 1 million word News Commentary corpus (German–English)

<table>
<thead>
<tr>
<th>System</th>
<th>In-domian</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
</tbody>
</table>

• What went wrong?
 – why back-off to lemma, when we know how to translate surface forms?
 → loss of information
Solution: alternative decoding paths

- Allow both surface form translation and morphgen model
 - prefer surface model for known words
 - morphgen model acts as back-off
Results

- Model now beats the baseline:

<table>
<thead>
<tr>
<th>System</th>
<th>In-domain</th>
<th>Out-of-domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>18.19</td>
<td>15.01</td>
</tr>
<tr>
<td>With POS LM</td>
<td>19.05</td>
<td>15.03</td>
</tr>
<tr>
<td>Morphgen model</td>
<td>14.38</td>
<td>11.65</td>
</tr>
<tr>
<td>Both model paths</td>
<td>19.47</td>
<td>15.23</td>
</tr>
</tbody>
</table>
Adding annotation to the source

- Source words may lack sufficient information to map phrases
 - English-German: what case for noun phrases?
 - Chinese-English: plural or singular
 - pronoun translation: what do they refer to?

- Idea: add additional information to the source that makes the required information available locally (where it is needed)

- see [Avramidis and Koehn, ACL 2008] for details
Case Information for English–Greek

- Detect in English, if noun phrase is subject/object (using parse tree)
- Map information into case morphology of Greek
- Use case morphology to generate correct word form
Obtaining Case Information

- Use syntactic parse of English input (method similar to semantic role labeling)
Results English-Greek

- Automatic BLEU scores

<table>
<thead>
<tr>
<th>System</th>
<th>devtest</th>
<th>test07</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>18.13</td>
<td>18.05</td>
</tr>
<tr>
<td>enriched</td>
<td>18.21</td>
<td>18.20</td>
</tr>
</tbody>
</table>

- Improvement in verb inflection

<table>
<thead>
<tr>
<th>System</th>
<th>Verb count</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>311</td>
<td>19.0%</td>
<td>7.4%</td>
</tr>
<tr>
<td>enriched</td>
<td>294</td>
<td>5.4%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

- Improvement in noun phrase inflection

<table>
<thead>
<tr>
<th>System</th>
<th>NPs</th>
<th>Errors</th>
<th>Missing</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>247</td>
<td>8.1%</td>
<td>3.2%</td>
</tr>
<tr>
<td>enriched</td>
<td>239</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

- Also successfully applied to English-Czech
Factored Template Models

- **Long range** reordering
 - movement often not limited to local changes
 - German-English: \textit{SBJ AUX OBJ V} \rightarrow \textit{SBJ AUX V OBJ}

- Template models
 - some factor mappings (POS, syntactic chunks) may have longer scope than others (words)
 - larger mappings form template for shorter mappings
 - computational problems with this

- published in [Hoang and Koehn, EACL 2009]
Shallow syntactic features

- Shallow syntactic tasks have been formulated as sequence labeling tasks
 - base noun phrase chunking
 - syntactic role labeling
- Results presented in [Cettolo et al., AMTA 2008]