Winter School

Day 3: Decoding / Phrase-based models

MT Marathon

28 January 2009
Statistical Machine Translation

- Components: Translation model, language model, decoder
Phrase-Based Translation

Morgen fliege ich nach Kanada zur Konferenz

• Foreign input is segmented in phrases
 – any sequence of words, not necessarily linguistically motivated
• Each phrase is translated into English
• Phrases are reordered

Tomorrow I will fly to the conference in Canada
Phrase Translation Table

- Phrase Translations for “den Vorschlag”:

| English | $\phi(e|f)$ | English | $\phi(e|f)$ |
|--------------------|------------|--------------------|------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| ’s proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal | 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
Decoding Process

- Build translation left to right
 - *select foreign* words to be translated

| Maria | no | dio | una | bofetada | a | la | bruja | verde |
Decoding Process

- Build translation *left to right*
 - select foreign words to be translated
 - *find English* phrase translation
 - *add English* phrase to end of partial translation
Decoding Process

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
</table>

- Build translation left to right
 - select foreign words to be translated
 - find English phrase translation
 - add English phrase to end of partial translation
 - *mark foreign* words as translated
Decoding Process

- *One to many* translation
Decoding Process

- Many to one translation
Decoding Process

- *Many to one* translation
Decoding Process

- **Reordering**
Decoding Process

- Translation \textit{finished}
Translation Options

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary</td>
<td>not</td>
<td>give</td>
<td>a</td>
<td>slap</td>
<td>to</td>
<td>the</td>
<td>witch</td>
<td>green</td>
</tr>
<tr>
<td>did not</td>
<td></td>
<td>a</td>
<td>slap</td>
<td>by</td>
<td>to the</td>
<td>green witch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no</td>
<td></td>
<td>slap</td>
<td></td>
<td>to</td>
<td>the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>did not give</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>slap</td>
<td></td>
<td></td>
<td>the witch</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Look up *possible phrase translations*
 - many different ways to *segment* words into phrases
 - many different ways to *translate* each phrase
Hypothesis Expansion

- Start with **empty hypothesis**
 - e: no English words
 - f: no foreign words covered
 - p: probability 1
Hypothesis Expansion

- Pick **translation option**
- Create **hypothesis**
 - e: add English phrase Mary
 - f: first foreign word covered
 - p: probability 0.534
A Quick Word on Probabilities

- Not going into detail here, but...

- **Translation Model**
 - phrase translation probability $p(\text{Mary}|\text{Maria})$
 - reordering costs
 - phrase/word count costs
 - ...

- **Language Model**
 - uses trigrams:
 - $p(\text{Mary did not}) = p(\text{Mary}|\text{START}) \times p(\text{did}|\text{Mary,START}) \times p(\text{not}|\text{Mary did})$
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
</table>

Mary not give a slap to the green witch

- Add another hypothesis
Hypothesis Expansion

- Further *hypothesis expansion*
Hypothesis Expansion

- ... until all foreign words covered
 - find best hypothesis that covers all foreign words
 - backtrack to read off translation

MT Marathon Spring School, Lecture 3 28 January 2009
Hypothesis Expansion

<table>
<thead>
<tr>
<th>Maria</th>
<th>no</th>
<th>dio</th>
<th>una</th>
<th>bofetada</th>
<th>a</th>
<th>la</th>
<th>bruja</th>
<th>verde</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mary did not give a slap to the witch green by the green witch

• Adding more hypothesis

⇒ Explosion of search space
Explosion of Search Space

- Number of hypotheses is *exponential* with respect to sentence length
 ⇒ Decoding is NP-complete [Knight, 1999]
 ⇒ Need to *reduce search space*
 - risk free: hypothesis *recombination*
 - risky: *histogram/threshold pruning*
Hypothesis Recombination

- Different paths to the *same* partial translation
Hypothesis Recombination

- Different paths to the same partial translation

\Rightarrow Combine paths

- drop weaker path
- keep pointer from weaker path (for lattice generation)
Hypothesis Recombination

- Recombined hypotheses do *not* have to *match completely*
- No matter what is added, weaker path can be dropped, if:
 - *last two English words* match (matters for language model)
 - *foreign word coverage* vectors match (effects future path)
Recombined hypotheses do not have to match completely

No matter what is added, weaker path can be dropped, if:
- last two English words match (matters for language model)
- foreign word coverage vectors match (effects future path)

⇒ Combine paths
Pruning

- Hypothesis recombination is *not sufficient*

 ⇒ Heuristically *discard* weak hypotheses early

- Organize Hypothesis in *stacks*, e.g. by
 - *same* foreign words covered
 - *same number* of foreign words covered

- Compare hypotheses in stacks, discard bad ones
 - *histogram pruning*: keep top n hypotheses in each stack (e.g., $n=100$)
 - *threshold pruning*: keep hypotheses that are at most α times the cost of best hypothesis in stack (e.g., $\alpha = 0.001$)
• Organization of hypothesis into stacks
 – here: based on *number of foreign words* translated
 – during translation all hypotheses from one stack are expanded
 – expanded Hypotheses are placed into stacks
Comparing Hypotheses

- Comparing hypotheses with *same number of foreign words* covered

Maria no dio una bofetada a la bruja verde

- Hypothesis that covers *easy part* of sentence is preferred

⇒ Need to consider *future cost* of uncovered parts
Future Cost Estimation

- Estimate cost to translate remaining part of input
- Step 1: estimate future cost for each translation option
 - look up translation model cost
 - estimate language model cost (no prior context)
 - ignore reordering model cost
 $\rightarrow LM \times TM = p(to) \times p(\text{the}|to) \times p(\text{to the}|a \ la)$
Future Cost Estimation: Step 2

- Step 2: find *cheapest cost* among translation options

\[
\begin{align*}
\text{cost} &= 0.0372 \\
\text{cost} &= 0.0299 \\
\text{cost} &= 0.0354
\end{align*}
\]
Future Cost Estimation: Step 3

• Step 3: find *cheapest future cost path* for each span
 – can be done *efficiently* by dynamic programming
 – future cost for every span can be *pre-computed*
Future Cost Estimation: Application

- Use future cost estimates when *pruning* hypotheses
- For each *uncovered contiguous span*:
 - look up *future costs* for each maximal contiguous uncovered span
 - *add* to actually accumulated cost for translation option for pruning
A* search

- Pruning might drop hypothesis that lead to the best path (search error)
- **A* search**: safe pruning
 - future cost estimates have to be accurate or underestimates
 - **lower bound** for probability is established early by
 - **depth first search**: compute cost for one complete translation
 - if cost-so-far and future cost are worse than **lower bound**, hypothesis can be safely discarded
- Not commonly done, since not aggressive enough
Limits on Reordering

- Reordering may be **limited**
 - **Monotone** Translation: No reordering at all
 - Only phrase movements of at most n words
- Reordering limits *speed* up search (polynomial instead of exponential)
- Current reordering models are weak, so limits *improve* translation quality
Word Lattice Generation

- **Search graph** can be easily converted into a word lattice
 - can be further mined for **n-best lists**
 → enables **reranking** approaches
 → enables **discriminative training**
Sample N-Best List

- Simple **N-best list**:

<table>
<thead>
<tr>
<th>Translation</th>
<th>Reordering</th>
<th>LM</th>
<th>TM</th>
<th>WordPenalty</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>this is a small house</td>
<td>0 -27.0908 -1.83258 -5</td>
<td>-28.9234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is a little house</td>
<td>0 -28.1791 -1.83258 -5</td>
<td>-30.0117</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is a small house</td>
<td>0 -27.108 -3.21888 -5</td>
<td>-30.3268</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is a little house</td>
<td>0 -28.163 -3.21888 -5</td>
<td>-31.4152</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is an small house</td>
<td>0 -31.7294 -1.83258 -5</td>
<td>-33.562</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is an small house</td>
<td>0 -32.3094 -3.21888 -5</td>
<td>-35.5283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is an little house</td>
<td>0 -33.7639 -1.83258 -5</td>
<td>-35.5965</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is a house small</td>
<td>-3 -31.4851 -1.83258 -5</td>
<td>-36.3176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is a house little</td>
<td>-3 -31.5689 -1.83258 -5</td>
<td>-36.4015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is an little house</td>
<td>0 -34.3439 -3.21888 -5</td>
<td>-37.5628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is a house small</td>
<td>-3 -31.5022 -3.21888 -5</td>
<td>-37.7211</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is an house small</td>
<td>-3 -32.8999 -1.83258 -5</td>
<td>-37.7325</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it is a house little</td>
<td>-3 -31.586 -3.21888 -5</td>
<td>-37.8049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this is an house little</td>
<td>-3 -32.9837 -1.83258 -5</td>
<td>-37.8163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the house is a little</td>
<td>-7 -28.5107 -2.52573 -5</td>
<td>-38.0364</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the is a small house</td>
<td>0 -35.6899 -2.52573 -5</td>
<td>-38.2156</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>is it a little house</td>
<td>-4 -30.3603 -3.91202 -5</td>
<td>-38.2723</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the house is a small</td>
<td>-7 -28.7683 -2.52573 -5</td>
<td>-38.294</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it ’s a small house</td>
<td>0 -34.8557 -3.91202 -5</td>
<td>-38.7677</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this house is a little</td>
<td>-7 -28.0443 -3.91202 -5</td>
<td>-38.9563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>it ’s a little house</td>
<td>0 -35.1446 -3.91202 -5</td>
<td>-39.0566</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>this house is a small</td>
<td>-7 -28.3018 -3.91202 -5</td>
<td>-39.2139</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Moses: Open Source Toolkit

- **Open source** statistical machine translation system (developed from scratch 2006)
 - state-of-the-art *phrase-based* approach
 - novel methods: *factored translation models*, *confusion network decoding*
 - support for *very large models* through *memory-efficient* data structures

- Documentation, source code, binaries **available** at http://www.statmt.org/moses/

- Development also **supported by**
 - EC-funded *TC-STAR* project
 - *US* funding agencies DARPA, NSF
 - universities (Edinburgh, Maryland, MIT, ITC-irst, RWTH Aachen, ...)

MT Marathon
Spring School, Lecture 3
28 January 2009
Phrase-based models
Phrase-based translation

- Foreign input is segmented in phrases
 - any sequence of words, not necessarily linguistically motivated
- Each phrase is translated into English
- Phrases are reordered

Morgen → fliege → ich → nach Kanada → zur Konferenz

Tomorrow → I → will fly → to the conference → in Canada
Phrase-based translation model

- Major components of phrase-based model
 - phrase translation model \(\phi(f|e) \)
 - reordering model \(\omega^d(start_i-end_{i-1}-1) \)
 - language model \(p_{LM}(e) \)

- Bayes rule

\[
\arg\max_e p(e|f) = \arg\max_e p(f|e) p(e) = \arg\max_e \phi(f|e) p_{LM}(e) \omega^d(start_i-end_{i-1}-1)
\]

- Sentence \(f \) is decomposed into \(I \) phrases \(\bar{f}_1^I = \bar{f}_1, ..., \bar{f}_I \)

- Decomposition of \(\phi(f|e) \)

\[
\phi(\bar{f}_1^I | \bar{e}_I) = \prod_{i=1}^{I} \phi(\bar{f}_i | \bar{e}_i) \omega^d(start_i-end_{i-1}-1)
\]
Advantages of phrase-based translation

- *Many-to-many* translation can handle non-compositional phrases
- Use of *local context* in translation
- The more data, the *longer phrases* can be learned
Phrase translation table

- Phrase translations for *den Vorschlag*

| English | $\phi(\text{e}|\text{f})$ | English | $\phi(\text{e}|\text{f})$ |
|----------------|-----------------------------|-----------------------------|-----------------------------|
| the proposal | 0.6227 | the suggestions | 0.0114 |
| 's proposal | 0.1068 | the proposed | 0.0114 |
| a proposal | 0.0341 | the motion | 0.0091 |
| the idea | 0.0250 | the idea of | 0.0091 |
| this proposal | 0.0227 | the proposal , | 0.0068 |
| proposal | 0.0205 | its proposal | 0.0068 |
| of the proposal| 0.0159 | it | 0.0068 |
| the proposals | 0.0159 | ... | ... |
How to learn the phrase translation table?

- Start with the *word alignment*:

```
Maria no daba una bofetada a la bruja verde
Mary witch green the slap not did
```

- Collect all phrase pairs that are *consistent* with the word alignment.
Consistent with word alignment

- **Consistent with the word alignment** :=
 phrase alignment has to *contain all alignment points* for all covered words

\[(\bar{e}, \overline{f}) \in BP \iff \forall e_i \in \bar{e} : (e_i, f_j) \in A \rightarrow f_j \in \overline{f}\]

AND \[\forall f_j \in \overline{f} : (e_i, f_j) \in A \rightarrow e_i \in \bar{e}\]
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),

(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch)
Word alignment induced phrases

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (a la bruja verde, the green witch),
(Maria no daba una bofetada a la, Mary did not slap the),
(daba una bofetada a la bruja verde, slap the green witch)
Word alignment induced phrases (5)

(Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja, witch), (verde, green),
(Maria no, Mary did not), (no daba una bofetada, did not slap), (daba una bofetada a la, slap the),
(bruja verde, green witch), (Maria no daba una bofetada, Mary did not slap),
(no daba una bofetada a la, did not slap the), (daba una bofetada a la bruja verde, slap the green witch),
(Maria no daba una bofetada a la, Mary did not slap the), (daba una bofetada a la bruja verde, slap the green witch),
(no daba una bofetada a la bruja verde, did not slap the green witch),
(Maria no daba una bofetada a la bruja verde, Mary did not slap the green witch)
Probability distribution of phrase pairs

- We need a **probability distribution** $\phi(f|e)$ over the collected phrase pairs

\Rightarrow Possible *choices*

- *relative frequency* of collected phrases: $\phi(f|e) = \frac{\text{count}(f,e)}{\sum_{f} \text{count}(f,e)}$

- or, conversely $\phi(e|f)$

- use *lexical translation probabilities*
Reordering

- *Monotone* translation
 - do not allow any reordering
 → worse translations

- *Limiting* reordering (to movement over max. number of words) helps

- *Distance-based* reordering cost
 - moving a foreign phrase over n words: cost ω^n

- *Lexicalized* reordering model
Lexicalized reordering models

- Three orientation types: monotone, swap, discontinuous
- Probability $p(\text{swap}|e, f)$ depends on foreign (and English) phrase involved

[from Koehn et al., 2005, IWSLT]
Learning lexicalized reordering models

- Orientation type is *learned during phrase extractions*
- *Alignment point* to the *top left* (monotone) or *top right* (swap)?
- For more, see [Tillmann, 2003] or [Koehn et al., 2005]