Introduction to Natural Language Processing

a course taught as B4M36NLP at Open Informatics

FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

o
iy

Today: Week 3, lecture
Today's topic: Markov Models
Today's teacher: Jan Haji¢

E-mail: hajicQufal.mff.cuni.cz
WWW: http://ufal.mff.cuni.cz/jan-hajic

Jan Haji¢ (UFAL MFF UK) Markov Models Week 3, lecture

Review: Markov Process

* Bayes formula (chain rule):

P(W) = P(W1,w,,...,wr) = ITiey 1 P(Wi|W1,Mn+1,~,Wi-1)
* n-gram language models: §

3
i g
— Markov process (chain) of the order n-1: 5?

P(W) = P(w,w,,...,Wr) = | § P P(Wi{Wini1,Wins2,e ?\Vl 1)
Using just one distribution (Ex.: trigram model: p(w;|w;,,Wi.;)):
Positions: 1 2 3 4 56 7 8 9101112 13 141516

Words: My car d within hours Bob ’s car br .
;T

p(,|br0ke dOWn) = p(W5|<N3,W4)) = p(W14|V\;12,W13)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Markov Properties

* Generalize to any process (not just words/LM):

2016/7

— Sequence of random variables: X = (X,,X,...,Xr)

— Sample space S (states), size N: S = {8,5,52,...,5x}

. Limited History (Context, Horizon):

Vi el T; POXIX,,. X)) = POXIX0)
1737906 7FF 5 1737906 7[[]5.-

E

. Time invariance (M.C.’is Stationary; homogeneous)

Vi €1..T, Vyx € S; P(Xi=y|Xi..=x) = p(y|x)
1 ’EH;H:H:JO 6 ﬂl;fl 5...
\J \J ‘?v\\.//ok...same distribution

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Long History Possible

What if we want trigrams:

173790@/@45.”

* Formally, use transformation:
Define new variables Q;, such that X; = {Q;.;,Q;}:

Then
P(X |Xl 1) P(Ql laQ |Q1 Zan 1) P(Q |Q1 2>Q1 1)
Predicting (X)): A A3 «7 HA3AS5..

History (Xi; = {Qi2,Q. })DII. @ﬂl

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Graph Representation: State Diagram

* S = {80,1,S2,...,5x} . states
* Distribution P(X;|X,.)):

* transitions (as arcs) with probabilities attached to them:

Bigram —

case:
&@ AR .
Q&&
X%
& .
0.4

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

=6. .88 . 1= .528

The Trigram Case

* S = {s¢,51,82,...,Sx} : States: pairs s; = (X,y)

* Distribution P(X;|X;.)): (r.v. X: generates pairs s;)

p(toe)=.6. .88 . .07

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Finite State Automaton

* States ~ symbols of the [input/output] alphabet -

— pairs (or more): last element of the n-tuple

* Arcs ~ transitions (sequence of states)
* [Classical FSA: alphabet symbols on arcs:

— transformation: arcs <> nodes]

Possible thanks to the “limited history” M’ov Property
* So far: Visible Markov Models (VMM)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Hidden Markov Models

* The simplest HMM: states generate [observable] output
(using the “data” alphabet) but remain “invisible”:

. 1= .528

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Added Flexibility

* So far, no change; but different states may
generate the same output (why not?):

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

2016/7

Output from Arcs...

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Added flexibility: Generate output from arcs, not
states:

88 . 1+
1.1+
2. 3+
2 . 4= .624

. and Finally, Add Output Probabilities

* Maximum flexibility: [Unigram] distribution
(sample space: output alphabet) at each output arc:

Isimplified!
p)=.1
. p(0)=.7
s] . - ple)=.2
'@‘&\@
& : 0.88 p(toe) = 6. .& . 7.1..6
088 451]..88‘.
=5 p()=0 p(H=0
22):.2 p(0)=1 plo)=4 4. .10 ..12.70
ple)=3 pe)=0 p(e)=6 =~ 237

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 11

Slightly Different View

* Allow for multiple arcs from s; — s;, mark them by
output symbols, get rid of output distributions:

p(toe) = 48 616 .6+
“<,.6 176 +

S1o2 237

In the future, we will use the view more convenient for the problem at hand.

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 12

Formalization

* HMM (the most general case):
— five-tuple (S, s, Y, Ps, Py), where:
* S = {8¢,81,82,...,57} i the set of states, s, is the initial state,
* Y = {y1,Y25...,yv} is the output alphabet,
* Py(sjls;) is the set of prob. distributions of transitions,

— size of Pg: [S]2.

* Py(yilsis;) is the set of output (emission) probability distributions.

— size of Py: [S2x |Y]

* Example:
-S={x,1,2,3,4},50=%x
-Y={to,e}

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Formalization - Example

* Example:
-S=4{x,1,2,3,4},s5)=x
—Y:{e’o’t} el X 1 2 3 4
. . o x| 1123 474;12:1

— Py x1234PY'tx1234742
x]0[.6]0]4]0 X 8 5| A 7'_
1Jolol.12 0]s8 1 ol [
21o0lo0]o]o0]1 2 ol
3lo]1 0 3 0 —
4lo0lo0 0 4 0

=1

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 14

Using the HMM

* The generation algorithm (of limited value :-)):
1. Startin s =s,.
2. Move from s to s’ with probability Ps(s’[s).
3. Output (emit) symbol y, with probability Ps(y,|s,s’).
4. Repeat from step 2 (until somebody says enough).
* More interesting usage:
— Given an output sequence Y = {y,y...,Yi}, cOmpute its probability.

— Given an output sequence Y = {y,¥2,...,Vx}, compute the most
likely sequence of states which has generated it.

— ...plus variations: e.g., n best state sequences

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 15

HMM Algorithms: Trellis and Viterbi

HMM: The Two Tasks

* HMM (the general case):
— five-tuple (S, S, Y, Ps, Py), where:
* S = {s5,5,...,57} is the set of states, S, is the initial state,
* Y = {y1,¥2-..yv} is the output alphabet,
* Pg(sils;) is the set of prob. distributions of transitions,
* Py(yilsi,s;) is the set of output (emission) probability distributions.
* Given an HMM & an output sequence Y = {y,,y2,...,Yi}:
(Task 1) compute the probability of Y;

(Task 2) compute the most likely sequence of states which has
generated Y.

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Trellis - Deterministic Output

HMM: Trellis:

p(toe)=.6. 88 . 1+
4.1 1= 568

- trellis state: (HMM state, position)
- each state: holds ene number (prob): a
- probability or Y: Za in the last state

time/position ¢

a(.0)=1 a(A1)=.6 aD2)=.568 «(B3)=.568
a(C,1)=4

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Creating the Trellis: The Start

position/stage

* Start in the start state (.),
— setits a(.,0) to 1.
* Create the first stage:
— get the first “output” symbol y,

— create the first stage (column)
— but only those trellis states

which generate y, ¥ t
— set their a(state,l) to the Pg(state|.) a(.,0)

——
* ...and forget about the 0-th stage 1

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 19

Trellis: The Next Step

* Suppose we are in stage i

* Creating the next stage: pOSition/_Stalge
=

2016/7

— create all trellis states in the
next stage which generate
yi+1, but only those reachable
from any of the stage-i states
— set their a(state,i+1) to:
Ps(state|prev.state) . oprev.state, i)
(add up all such numbers on arcs
going to a common trellis state)
— ...and forget about stage i

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

a=.568

20

2016/7

Trellis: The Last Step

Continue until “output” exhausted
— |Y| = 3: until stage 3

last position/stage

Add together all the a(state,|Y)) !
That’s the P(Y). 3 o568
Observation (pleasant): !

— memory usage max: 2[S| on

— multiplications max: [SP?[Y] P(Y)=.568

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

21

Trellis: The General Case (still, bigrams)

* Start as usual:

— start state (.), set its a(.,0) to 1. 1

p(toe) = 48 . .616. .6+
2.1..176 +

201012 = 237

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 22

* Weare in stage i :

2016/7

General Trellis: The Next Step

position/stage
— Generate the next stage i+/ as 0 1

before (except now arcs generate

A8
a=1
output, thus use only those arcs \Z@a - 48

marked by the output symbol y;,;)

— For each generated state, compute a(state,i+1) =
= Zincoming arcs LY (Yin1|State, prev.state) . ofprev.state, i)
Yt

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

23

Trellis: The Complete Example

Stage:

a=.024 +.177408 = .201408

+
/ 6
vt y,: 0 @a;.z%as ® . = 035200
y;5i € |

P(Y) = P(toe) = .236608

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

The Case of Trigrams

* Like before, but:
— states correspond to bigrams,

— output function always emits the second output symbol of the pair
(state) to which the arc goes:

& L oosSi® 2 OI
SN g NS hey
d>
trellis not really neede o)

P00 = pftipie pﬁﬁls not p0551b1

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

Trigrams with Classes

* More interesting:
— n-gram class LM: p(W;|wi.,,Wi.;) = p(Wic;) p(Ci[Ci.2,Ci1)

— states are pairs of classes (c;.,c;), and emit “words”:
(letters in our example)

p(t|lC)=1 usual,
p(o[V)=.3 non-
p(e|V)=.6 overlapping
p(ylV)=.1 classes

ptoey=6.0 . 88 . .0 . .07. .0= 00665
pteoy=06. 1 .88 ..6..07. 3.

Y 0,8,y Y 0,8,y ¢ Beas =6. 0. 88 . .0 . 07. D= 00111
ptyy=.6. 0 ..12 . 0. 1. .0= 0072

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 26

Class Trigrams: the Trellis

* Trellis generation (Y = “toy”):

p(t|C) :_1 o again, trellis useful
p§0||¥)) = 2 “” but not really needed
p(elV) =.

p(yIV)=.1

a=.1584x.07x.1
= 00111

a=.6x.88x.3
0,6,y 0,6,y t Y: t 0 y

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 27

Overlapping Classes

* Imagine that classes may overlap

— e.g. ‘r’ is sometimes vowel sometimes consonant,
belongs to V as well as C:

tr L oeyr p(t/C) =3
@5 p(rlC) =7
() p(o[V)=".1
) ' p(e[V) =
_y p(yIV) =4
' p(tfV) =
p(try) =7

0,C,y,r 0,6,y,I tr

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

28

Overlapping Classes: Trellis Example

p(t|C) - a=1

p(r|lC)=.7)

p(olV)=.1 CL:—..(}ISS);éDx]

p(elV) =

pg‘\\//))_: 2 a=.03168x.07x 4
’ @ = 0008870

a=.18x.88x .2 a=.01512x1x .4
=.03168 =.006048

Y: t r y p(Y)=.006935

0,C,y,r 0,6,y,I t,r

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 29

Trellis: Remarks

* So far, we went left to right (computing o)
* Same result: going right to left (computing f3)

— supposed we know where to start (finite data)
* In fact, we might start in the middle going left and right
* Important for parameter estimation
(Forward-Backward Algortihm alias Baum-Welch)

* Implementation issues:

— scaling/normalizing probabilities, to avoid too small numbers &
addition problems with many transitions

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 30

The Viterbi Algorithm

* Solving the task of finding the most likely sequence
of states which generated the observed data

* 1.e., finding
Spest = argmaxsP(S|Y)
which is equal to (Y is constant and thus P(Y) is fixed):
Spet = argmaxsP(S,Y) =
= argmaxgsP(80,51,52,--+s51,Y 1,Y2,---sYk) =

= argmaxsIi-; x p(yilsi,Si0)p(siSi1)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 31

The Crucial Observation

* Imagine the trellis build as before (but do not
compute the as yet; assume they are o.k.); stage i:

stage
1 2

stage
2

1
NB: remember previous state ©

from which we got the maximum:
“reverse” the arc

O~_ ./
o =max(3,32) = 32 \@}

7 max!

a=.32

this is certainly the “backwards” maximum to (D,2)... but
it cannot change even whenever we go forward (M. property: limited history)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 32

Viterb1 Example

* ‘1’ classification (C or V?, sequence?):

tr ALY oeyr p(tlC) =3
p(r|C) =7
p(o[V)=.1

& p(elV) =
s p(y[V) = .4
p(rV)=.2

8 argmaxyy, p(rry|XYZ) =?
0,8,y,I oeyr Ytr

Possible state seq.: (.,v)(ve)(c,v)[vev], (,c)(co)(cv)[ccv], (,c)(cv)(v,v) [CVV]

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 33

Viterbi Computation

a in trellis

state:
ptiC)=.3 best prob
p(rlC)=.7 from start

to here

Occ=.03528x 1 x .4

= .01411
Oye=.056x .8x .4

> g ,mx
@- a=.08x1x.7 — i
=.056

a=.4x.2
=.08

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 34

Pruning

* Sometimes, too many trellis states in a stage:

2016/7

X:%l = 002

a=.043
el
>< =.001
)
=.231
§ =.0002
Ry
¢ =.000003

A

>< =.000435
()

/ o.=.0066

criteria: (a) a < threshold

(b) Zm < threshold

(c) # of states > threshold

(get rid of smallest o)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

35

HMM: Parameter Estimation
The Baum-Welch Algorithm

* HMM (the general case):
— five-tuple (S, So, Y, Pg, Py), where:
* S = {s,8,,...,57} is the set of states, S, is the initial state,
* Y = {y1,¥2,...,yv} is the output alphabet,
* Pg(sjls:) is the set of prob. distributions of transitions,
* Py(yulsis;) is the set of output (emission) probability distributions.
* Given an HMM & an output sequence Y = {y1,¥2,...,Yi}
v/(Task 1) compute the probability of Y;

v/(Task 2) compute the most likely sequence of states which has
generated Y.

(Task 3) Estimating the parameters (transition/output distributions)

unsupervised (supervised: trivial, use relative frequencies)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 36

A Variant of EM

* Idea (~ EM, for another variant see LM smoothing):
— Start with (possibly random) estimates of Pg and Py.

— Compute (fractional) “counts” of state transitions/emissions
taken, from Pg and Py, given data Y.

— Adjust the estimates of Pg and Py from these “counts” (using
the MLE, i.e. relative frequency as the estimate).

* Remarks:
— many more parameters than the simple four-way smoothing
— no proofs here; see Jelinek, Chapter 9

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 37

Setting

* HMM (without Pg, Py) (S, Sy, Y), and data T = {yi€ Y},

* willuse T ~ |T|

— HMM structure is given: (S, Sy)

— Pg:Typically, one wants to allow “fully connected” graph
* (i.e. no transitions forbidden ~ no transitions set to hard 0)
* why? — we better leave it on the learning phase, based on the data!
* sometimes possible to remove some transitions ahead of time

— Py: should be restricted (if not, we will not get anywhere!)

* restricted ~ hard 0 probabilities of p(y|s,s’)
* “Dictionary”: states <> words, “m:n” mapping on S X Y (in general)s

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 38

Initialization

* For computing the initial expected “counts”
* Important part

— EM guaranteed to find a local maximum only (albeit a good one in
most cases)

* Py initialization more important

— fortunately, often easy to determine
* together with dictionary <> vocabulary mapping, get counts, then MLE

* Pg initialization less important

— e.g. uniform distribution for each p(.|s)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 39

Data Structures

* Will need storage for:
— The predetermined structure of the HMM
(unless fully connected — need not to keep it!)
— The parameters to be estimated (Pg, Py)
— The expected counts (same size as P, Py)
— The training data T= {yi€ Y}, 1

— The trellis (if f.c.): 4+ T Size: T. S (Precisely, |T|.|S|)
Each trellis state: © 0 6 9
two [float] numbers © v @ S
(forward/backward) © © W W)
L LU &

~..and then some)
2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 40

The Algorithm Part I

1. Initialize Pg, Py

2. Compute “forward” probabilities:
* follow the procedure for trellis (summing), compute a(s,i)
* use the current values of Pg, Py (p(s’|s), p(y[s,s’)):
a(s”50) = Z o a(s,i-1) . p(s’ls) . P(Yils,s”)
* NB: do not throw away the previous stage!
3. Compute “backward” probabilities

* start at all nodes of the last stage, proceed backwards, B(s,i)
* i.e., probability of the “tail” of data from stage i to the end of data

B(s"i) = Ly B(s:i+1) . P(sIs’) . Pyinils”s5)
* also, keep the B(s,i) at all trellis states

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

41

The Algorithm Part II

4. Collect counts:
— for each output/transition pair compute
C(y.8,8") = Zico.se1y-y US,1) P(S’[S) p(yiei[s,s”) B(s”,i+1)
7 om \—'——/ ™~

refix prob. L tail prob
one pass through data, P P this transition prob p

ly st t t
oy Sc%g,g’)(iu§;lez }(’:(y,s,s’) (assuming all obsér(\)/tel:tgl}l/ti]i)rrlo%
c(s) = Zges c(s,8”)
5. Reestimate: p’(s’[s) = c(s,8°)/c(s) p’(y]s,s’) = c(y.s,8°)/c(s,s”)

6. Repeat 2-5 until desired convergence limit is reached.

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 42

Baum-Welch: Tips & Tricks

* Normalization badly needed
— long training data — extremely small probabilities
* Normalize o, using the same norm. factor:
N(i) = Zes s,i)

as follows:
* compute o.(s,i) as usual (Step 2 of the algorithm), computing the sum N(i) at
the given stage i as you go.
* at the end of each stage, recompute all as (for each state s):
a*(s,i) = a(s,i) / N(i)
* use the same N(i) for Bs at the end of each backward (Step 3) stage:
B*(s.0) = B(s,1) / N(1)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 43

Example

Task: pronunciation of “the”
Solution: build HMM, fully connected, 4 states:

* S - short article, L - long article, C,V - starting w/consonant, vowel
* thus, only “the” is ambiguous (a, an, the - not members of C,V)

Output from states only (p(w]s,s’) = p(w]s’))

Data Y: an egg and a piece of the big the end
(@) ©
Trellis: W @ ©
) %) 2,
© ®) Q,

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 44

Example: Initialization

* Output probabilities:
Pii(W|c) = c(c,w) / c(c); where c(S,the) = ¢(L,the) = c(the)/2
(other than that, everything is deterministic)
* Transition probabilities:
— Pinie(c’|c) = 1/4 (uniform)
* Don’t forget:
— about the space needed
— initialize a(X,0) = 1 (X : the never-occurring front buffer st.)
— initialize $(s,T) = 1 for all s (except for s = X)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 45

Fill in alpha, beta

* Left to right, alpha:
a(s’) = Xy als,i-1) . p(s’ls) . pOWils’)

. . . output from states
* Remember normalization (N(1)).

* Similarly, beta (on the way back from the end).

an egg and a piece of the big the end
Ot(Q)

@ @ oS @ 57 o ©

© _/ Q,

B(V.6) = BL.7)p(LV)p(the,Ly+ ML) _ ,
L7) «(C8)=aL7)p(ClL)p(big,Cr+
BEIpsVptes) D a(S.p(CIS)p(big.C)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 46

Counts & Reestimation

* One pass through data

At each position 7, go through all pairs (s;,s;:1)

* Increment appropriate counters by frac. counts (Step 4):
* INC(Yir1,8058ic1) = A(Sil) P(Sina[8i) P(Yira|Sir1) D(Siersit1)
e c(¥,8p8i1) += inc (fory at pos i+1)
* ¢(SpSir) T= inc (always)

* ¢(s) += inc (always) of the big

/7 B(C.8)
rv{(5,7
Reestimat f)lf?"lé gﬁﬁ }p(Cﬂ_)p (g OPCE) \
3 S.7Ip(C|S)p(bi C) cg) o
* and hope for increase in p |S) an |L)...!! a(L,7)

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 47

HMM: Final Remarks

* Parameter “tying”:
— keep certain parameters same (~ just one “counter” for all of
them)
— any combination in principle possible
— ex.: smoothing (just one set of lambdas)
* Real Numbers Output
— Y of infinite size (R, R»):
* parametric (typically: few) distribution needed (e.g., “Gaussian”)

* “Empty” transitions: do not generate output

* ~vertical arcs in trellis; do not use in “counting”

2016/7 UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic

48

