
Introduction to Natural Language Processing

a course taught as B4M36NLP at Open Informatics

by members of the Institute of Formal and Applied Linguistics

Today: Week 3, lecture
Today’s topic: Markov Models

Today’s teacher: Jan Hajič

E-mail: hajic@ufal.mff.cuni.cz

WWW: http://ufal.mff.cuni.cz/jan-hajic

Jan Hajič (ÚFAL MFF UK) Markov Models Week 3, lecture 1 / 1

2016/7

Review: Markov Process
• Bayes formula (chain rule):

 P(W) = P(w1,w2,...,wT) = i=1..T p(wi|w1,w2,..,wi-n+1,..,wi-1)

• n-gram language models:
– Markov process (chain) of the order n-1:

 P(W) = P(w1,w2,...,wT) = i=1..T p(wi|wi-n+1,wi-n+2,..,wi-1)
Using just one distribution (Ex.: trigram model: p(wi|wi-2,wi-1)):

 Positions: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 Words: My car broke down , and within hours Bob ’s car broke down , too .

 p(,|broke down) = p(w5|w3,w4)) = p(w14|w12,w13)

ap
pr

ox
im

at
io

n

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 2

2016/7

Markov Properties

• Generalize to any process (not just words/LM):
– Sequence of random variables: X = (X1,X2,...,XT)

– Sample space S (states), size N: S = {s0,s1,s2,...,sN}

 1. Limited History (Context, Horizon):
 i 1..T; P(Xi|X1,...,Xi-1) = P(Xi|Xi-1)

 1 7 3 7 9 0 6 7 3 4 5... 1 7 3 7 9 0 6 7 3 4 5...

 2. Time invariance (M.C. is stationary, homogeneous)
 i 1..T, y,x  S; P(Xi=y|Xi-1=x) = p(y|x)
 1 7 3 7 9 0 6 7 3 4 5...

? ok...same distribution

1 7 3 7 9 0 6 7 7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 3

2016/7

Long History Possible

• What if we want trigrams:
 1 7 3 7 9 0 6 7 3 4 5...

• Formally, use transformation:
 Define new variables Qi, such that Xi = {Qi-1,Qi}:

 Then

 P(Xi|Xi-1) = P(Qi-1,Qi|Qi-2,Qi-1) = P(Qi|Qi-2,Qi-1)

 Predicting (Xi): 1 7 3 7 9 0 6 7 3 4 5...

  1 7 3 0 6 7 3 4

History (Xi-1 = {Qi-2,Qi-1}):  1 7 9 0 6 7 3

9 0

 0

 9

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 4

2016/7

Graph Representation: State Diagram

• S = {s0,s1,s2,...,sN}: states

• Distribution P(Xi|Xi-1):
• transitions (as arcs) with probabilities attached to them:



a

t

o

e
0.6

0.40.3
0.4

0.2

0.88
1

0.12

1

p(toe) = .6 .881 = .528

en
ter

 he
re sum of outgoing probs = 1

Bigram
case:

p(o|a) = 0.1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 5

2016/7

The Trigram Case

• S = {s0,s1,s2,...,sN}: states: pairs si = (x,y)

• Distribution P(Xi|Xi-1): (r.v. X: generates pairs si)



o

t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 .88.07  .037

en
ter

 he
re

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1

1

1

1

p(one) = ?

not allowed
impossible

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 6

2016/7

Finite State Automaton

• States ~ symbols of the [input/output] alphabet
– pairs (or more): last element of the n-tuple

• Arcs ~ transitions (sequence of states)

• [Classical FSA: alphabet symbols on arcs:
– transformation: arcs  nodes]

• Possible thanks to the “limited history” M’ov Property

• So far: Visible Markov Models (VMM)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 7

2016/7

Hidden Markov Models

• The simplest HMM: states generate [observable] output
(using the “data” alphabet) but remain “invisible”:



3

1

4

2
0.6

0.40.3
0.4

0.2

0.88
1

0.12

1

p(toe) = .6 .881 = .528

en
ter

 he
re

p(4|3) = 0.1

a

t
e

o

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 8

2016/7

Added Flexibility

• So far, no change; but different states may
generate the same output (why not?):



3

1

4

2
0.6

0.40.3
0.4

0.2

0.88
1

0.12

1

p(toe) = .6 .881 +

 .4 .11 = .568

en
ter

 he
re

p(4|3) = 0.1

t

t
e

o

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 9

2016/7

Output from Arcs...

• Added flexibility: Generate output from arcs, not
states:



3

1

4

2
0.6

0.40.3
0.4

0.2

0.88
1

0.12

1

en
ter

 he
re

 0.1

t

t
e

o

e

o
e

e

o

t

p(toe) = .6 .881 +

 .4 .11 +

 .4 .2.3 +

 .4 .2.4 = .624

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 10

2016/7

... and Finally, Add Output Probabilities

• Maximum flexibility: [Unigram] distribution
(sample space: output alphabet) at each output arc:



3

1

4

2
0.6

1
0.4 0.88 1

0.12

en
ter

 he
re

p(t)=.5
p(o)=.2
p(e)=.3

p(toe) = .6   .88   1  +

 .4   .1 .88 
+

 .4  1.12 

  .237

!simplified!

p(t)=.8
p(o)=.1
p(e)=.1

p(t)=0
p(o)=0
p(e)=1

p(t)=.1
p(o)=.7
p(e)=.2

p(t)=0
p(o)=.4
p(e)=.6

p(t)=0
p(o)=1
p(e)=0

0.88

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 11

2016/7

Slightly Different View

• Allow for multiple arcs from si  sj, mark them by
output symbols, get rid of output distributions:



3

1

4

2
t,.48

t,.2
o,.616 e,.6

e,.12

en
ter

 he
re

p(toe) = .48 .616 .6+
 .2 1 .176 +

 .2 1 .12  .237

e,.176

o,.06

e,.06

e,.12
o,.08

o,1
t,.088 o,.4

In the future, we will use the view more convenient for the problem at hand.

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 12

2016/7

Formalization

• HMM (the most general case):
– five-tuple (S, s0, Y, PS, PY), where:

• S = {s0,s1,s2,...,sT} is the set of states, s0 is the initial state,

• Y = {y1,y2,...,yV} is the output alphabet,

• PS(sj|si) is the set of prob. distributions of transitions,

– size of PS: |S|2.

• PY(yk|si,sj) is the set of output (emission) probability distributions.

– size of PY: |S|2 x |Y|

• Example:
– S = {x, 1, 2, 3, 4}, s0 = x

– Y = { t, o, e }

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 13

2016/7

Formalization - Example

• Example:
– S = {x, 1, 2, 3, 4}, s0 = x

– Y = { e, o, t }

– PS: PY:

0

0

0

0

0

0

0

0

0

.6 .40 0

0

0

1 0 0

.12 .88

10

10 0

x 1 2

2

3

3

4

4

1

x

x 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

xx 1 2

2

3

3

4

4

1

x
t

o
e

.8 .5

.10

0

0
0

.7
.2

 = 1

 = 1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 14

2016/7

Using the HMM

• The generation algorithm (of limited value :-)):
1. Start in s = s0.

2. Move from s to s’ with probability PS(s’|s).

3. Output (emit) symbol yk with probability PS(yk|s,s’).

4. Repeat from step 2 (until somebody says enough).

• More interesting usage:
– Given an output sequence Y = {y1,y2,...,yk}, compute its probability.

– Given an output sequence Y = {y1,y2,...,yk}, compute the most
likely sequence of states which has generated it.

– ...plus variations: e.g., n best state sequences

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 15

HMM Algorithms: Trellis and Viterbi

2016/7

HMM: The Two Tasks

• HMM (the general case):
– five-tuple (S, S0, Y, PS, PY), where:

• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,

• Y = {y1,y2,...,yV} is the output alphabet,

• PS(sj|si) is the set of prob. distributions of transitions,

• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}:
(Task 1) compute the probability of Y;

(Task 2) compute the most likely sequence of states which has
generated Y.

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 17

2016/7

Trellis - Deterministic Output

HMM:



C

A

D

B

0.40.3

0.2

0.88
1

0.12

1

p(toe) = .6 .881 +

 .4 .11 = .568

en
ter

 he
re

p(4|3) = 0.1

t

t
e

o

Y: t o e

 time/position t
0 1 2 3 4...

(,0) = 1 (A,1) = .6

(C,1) = .4

.6

.4B,0

,0

C,0

D,0

A,0

B,1

,1

C,1

D,1

A,1

B,2

,2

C,2

D,2

A,2

B,3

,3

C,3

D,3

A,3

(D,2) = .568 (B,3) = .568- trellis state: (HMM state, position)

Trellis:

- each state: holds one number (prob): 

“rollout”

- probability or Y:  in the last state

+

.88

.1 1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 18

2016/7

Creating the Trellis: The Start

• Start in the start state (),
– set its (,0) to 1.

• Create the first stage:
– get the first “output” symbol y1

– create the first stage (column)

– but only those trellis states

 which generate y1

– set their (state,1) to the PS(state|) (,0)

• ...and forget about the 0-th stage

.6

.4

,0

C,1

A,1

 position/stage
0 1

 y1: t

 = .6
 = 1
}

1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 19

2016/7

Trellis: The Next Step

• Suppose we are in stage i

• Creating the next stage:
– create all trellis states in the

 next stage which generate

 yi+1, but only those reachable

 from any of the stage-i states

– set their (state,i+1) to:

 PS(state|prev.state) (prev.state, i)

 (add up all such numbers on arcs

 going to a common trellis state)

– ...and forget about stage i

C,1

A,1

 yi+1 = y2: o

 = .6

 = .4

.88

.1

D,2
 = .568

 position/stage
 i=1 2

+

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 20

2016/7

Trellis: The Last Step

• Continue until “output” exhausted
– |Y| = 3: until stage 3

• Add together all the (state,|Y|)

• That’s the P(Y).

• Observation (pleasant):
– memory usage max: 2|S|

– multiplications max: |S|2|Y|

B,
3
B,
3

D,2  = .568

 = .568

P(Y) = .568

 last position/stage

1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 21

2016/7

Trellis: The General Case (still, bigrams)

• Start as usual:
– start state (), set its (,0) to 1.



C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

en
ter

 he
re

e,.176

o,.06

e,.06

e,.12
o,.08

o,1
t,.088 o,.4

p(toe) = .48 .616 .6+
 .2 1 .176 +

 .2 1 .12  .237

,0

 = 1

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 22

2016/7

General Trellis: The Next Step

• We are in stage i :
– Generate the next stage i+1 as

 before (except now arcs generate

 output, thus use only those arcs

 marked by the output symbol yi+1)

– For each generated state, compute (state,i+1) =

 = incoming arcsPY(yi+1|state, prev.state) (prev.state, i)



C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

en
ter

 he
re

e,.176

o,.06

e,.06

e,.12
o,.08

o,1
t,.088 o,.4

.48

.2

,0

C,1

A,1 = .48

 = 1

 = .2

y1: t

 position/stage
0 1

...and forget about stage i as usual.

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 23

2016/7

Trellis: The Complete Example
Stage:

0 1 1 2 2 3



C

A

D

B
t,.48

t,.2
o,.616 e,.6

e,.12

en
ter

 he
re

e,.176

o,.06

e,.06

e,.12
o,.08

o,1
t,.088

o,.4

C,1

A,1

.48

.2

,0

C,1

A,1 = .48

 = 1

 = .2

y1: t

A,2

D,2

1

.616

y2: o

A,2

D,2

 = .2

  .29568

B,3

D,3

.12

.176

.6

y3: e

 = .024 + .177408 = .201408

 = .035200

P(Y) = P(toe) = .236608

+

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 24

2016/7

The Case of Trigrams
• Like before, but:

– states correspond to bigrams,
– output function always emits the second output symbol of the pair

(state) to which the arc goes:

 Multiple paths not possible trellis not really needed



o

t

t,o

t,e
0.6

0.4
0.88

0.12

p(toe) = .6 .88.07  .037

en
ter

 he
re

o,n

e,n

n,e

1

o,e

0.07

0.93

1

1

1

1

1

not allowed
impossible



t

t,o

o,e

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 25

2016/7

Trigrams with Classes

• More interesting:
– n-gram class LM: p(wi|wi-2,wi-1) = p(wi|ci) p(ci|ci-2,ci-1)

 states are pairs of classes (ci-1,ci), and emit “words”:



V

C

C,V

0.6

0.4
0.88

p(teo) = .6   .88  .07   .
00665

en
ter

 he
re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1
p(t|C) = 1 usual,
p(o|V) = .3 non-
p(e|V) = .6 overlapping
p(y|V) = .1 classes

t t

to,e,yo,e,y

o,e,y

p(toy) = .6 .88.07   .00111

p(toe) = .6 .88.07   .00665

p(tty) = .6 .121   .0072

(letters in our example)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 26

2016/7

Class Trigrams: the Trellis

• Trellis generation (Y = “toy”):


C

C,V

V,V

 = 1

 = .6 x 1

 = .6 x .88 x .3

 = .1584 x .07 x .1

 .00111



V

C

C,V

0.6

0.4
0.88en

ter
 he

re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t t

to,e,yo,e,y

o,e,y

p(t|C) = 1
p(o|V) = .3
p(e|V) = .6
p(y|V) = .1

Y: t o y

again, trellis useful
but not really needed

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 27

2016/7

Overlapping Classes

• Imagine that classes may overlap
– e.g. ‘r’ is sometimes vowel sometimes consonant,

belongs to V as well as C:



V

C

C,V

0.6

0.4
0.88en

ter
 he

re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
p(try) = ?

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 28

2016/7

Overlapping Classes: Trellis Example



C

C,V

V,V

 = 1

 = .6 x .3
 = .18

 = .18 x .88 x .2
 = .03168

 = .03168 x .07 x .4

 .0008870



V

C

C,V

0.6

0.4
0.88en

ter
 he

re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

1

t,r t,r

t,ro,e,y,ro,e,y,r

o,e,y,r

Y: t r y p(Y) = .006935

C,C
 = .18 x .12 x .7
 = .01512

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

C,V
 = .01512 x 1 x .4

 .006048

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 29

2016/7

Trellis: Remarks

• So far, we went left to right (computing )

• Same result: going right to left (computing )
– supposed we know where to start (finite data)

• In fact, we might start in the middle going left and right

• Important for parameter estimation

 (Forward-Backward Algortihm alias Baum-Welch)

• Implementation issues:
– scaling/normalizing probabilities, to avoid too small numbers &

addition problems with many transitions

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 30

2016/7

The Viterbi Algorithm

• Solving the task of finding the most likely sequence
of states which generated the observed data

• i.e., finding

 Sbest = argmaxSP(S|Y)

which is equal to (Y is constant and thus P(Y) is fixed):

 Sbest = argmaxSP(S,Y) =

 = argmaxSP(s0,s1,s2,...,sk,y1,y2,...,yk) =

 = argmaxSi=1..k p(yi|si,si-1)p(si|si-1)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 31

2016/7

The Crucial Observation

• Imagine the trellis build as before (but do not
compute the s yet; assume they are o.k.); stage i:

C,1

A,1

 = .6

 = .4

.5

.8

D,2
 = max(.3,.32) = .32

 stage
 1 2

? max!

this is certainly the “backwards” maximum to (D,2)... but
it cannot change even whenever we go forward (M. property: limited history)

NB: remember previous state
from which we got the maximum:

C,1

A,1

D,2
 = .32

 stage
 1 2

“reverse” the arc

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 32

2016/7

Viterbi Example

• ‘r’ classification (C or V?, sequence?):



V

C

C,V

0.6

0.4
0.88en

ter
 he

re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
argmaxXYZ p(rry|XYZ) = ?.8

Possible state seq.: (V)(V,C)(C,V)[VCV], (C)(C,C)(C,V)[CCV], (C)(C,V)(V,V) [CVV]

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 33

2016/7

Viterbi Computation



V

C

C,V

0.6

0.4
0.88en

ter
 he

re

V,C
1

V,V

0.07

0.93

C,C
0.12 1

1

.2

t,r t,r

o,e,y,ro,e,y,r

o,e,y,r

p(t|C) = .3
p(r|C) = .7
p(o|V) = .1
p(e|V) = .3
p(y|V) = .4
p(r|V) = .2

t,r
.8



C

C,V

V,V

 = 1

 = .6 x .7
 = .42

 = .42 x .88 x .2
 = .07392

C,C
 = .42 x .12 x .7
 = .03528

C,V
C,C = .03528 x 1 x .4

 .01411

V

 = .4 x .2
 = .08

V,C

 = .08 x 1 x .7
 = .056

 = .07392 x .07 x .4

 .002070

V,C = .056 x .8 x .4

 .01792 = max

{

Y: r r y
 in trellis
state:
best prob
from start
to here

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 34

2016/7

Pruning

• Sometimes, too many trellis states in a stage:

 = .002

 = .043

 = .001

 = .231

 = .0002

 = .000003

 = .000435

 = .0066

A

F

G

K

N

Q

S

X

criteria: (a)  < threshold
(b) < threshold
 (c) # of states > threshold
 (get rid of smallest )

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 35

2016/7

HMM: Parameter Estimation
The Baum-Welch Algorithm

• HMM (the general case):
– five-tuple (S, S0, Y, PS, PY), where:

• S = {s1,s2,...,sT} is the set of states, S0 is the initial state,

• Y = {y1,y2,...,yV} is the output alphabet,

• PS(sj|si) is the set of prob. distributions of transitions,

• PY(yk|si,sj) is the set of output (emission) probability distributions.

• Given an HMM & an output sequence Y = {y1,y2,...,yk}:
(Task 1) compute the probability of Y;

(Task 2) compute the most likely sequence of states which has
generated Y.

(Task 3) Estimating the parameters (transition/output distributions)
unsupervised (supervised: trivial, use relative frequencies)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 36

2016/7

A Variant of EM

• Idea (~ EM, for another variant see LM smoothing):
– Start with (possibly random) estimates of PS and PY.

– Compute (fractional) “counts” of state transitions/emissions
taken, from PS and PY, given data Y.

– Adjust the estimates of PS and PY from these “counts” (using
the MLE, i.e. relative frequency as the estimate).

• Remarks:
– many more parameters than the simple four-way smoothing

– no proofs here; see Jelinek, Chapter 9

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 37

2016/7

Setting
• HMM (without PS, PY) (S, S0, Y), and data T = {yiY}i=1..|T|

• will use T ~ |T|

– HMM structure is given: (S, S0)

– PS:Typically, one wants to allow “fully connected” graph
• (i.e. no transitions forbidden ~ no transitions set to hard 0)

• why?  we better leave it on the learning phase, based on the data!

• sometimes possible to remove some transitions ahead of time

– PY: should be restricted (if not, we will not get anywhere!)
• restricted ~ hard 0 probabilities of p(y|s,s’)

• “Dictionary”: states  words, “m:n” mapping on S  Y (in general)s

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 38

2016/7

Initialization

• For computing the initial expected “counts”
• Important part

– EM guaranteed to find a local maximum only (albeit a good one in
most cases)

• PY initialization more important
– fortunately, often easy to determine

• together with dictionary  vocabulary mapping, get counts, then MLE

• PS initialization less important
– e.g. uniform distribution for each p(.|s)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 39

2016/7

Data Structures

• Will need storage for:
– The predetermined structure of the HMM

 (unless fully connected need not to keep it!)

– The parameters to be estimated (PS, PY)

– The expected counts (same size as PS, PY)

– The training data T = {yi  Y}i=1..T

– The trellis (if f.c.):
C,1

V,1

S,1

L,1

C,2

V,2

S,2

L,2

C,3

V,3

S,3

L,3

C,4

V,4

S,4

L,4

C,T

V,T

S,T

L,T

....... }
T

S

Each trellis state:
two [float] numbers
(forward/backward)

Size: T  S (Precisely, |T||S|)

(...and then some)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 40

2016/7

The Algorithm Part I
1. Initialize PS, PY

2. Compute “forward” probabilities:
• follow the procedure for trellis (summing), compute (s,i)

• use the current values of PS, PY (p(s’|s), p(y|s,s’)):

 (s’,i) = ss’ (s,i-1)  p(s’|s)  p(yi|s,s’)

• NB: do not throw away the previous stage!

3. Compute “backward” probabilities
• start at all nodes of the last stage, proceed backwards, (s,i)

• i.e., probability of the “tail” of data from stage i to the end of data

 (s’,i) = ss’ (s,i+1)  p(s|s’)  p(yi+1|s’,s)

• also, keep the (s,i) at all trellis states

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 41

2016/7

The Algorithm Part II

4. Collect counts:
– for each output/transition pair compute

 c(y,s,s’) = i=0..k-1,y=y (s,i) p(s’|s) p(yi+1|s,s’) (s’,i+1)

 c(s,s’) = yY c(y,s,s’) (assuming all observed yi in Y)

 c(s) = s’S c(s,s’)

5. Reestimate: p’(s’|s) = c(s,s’)/c(s) p’(y|s,s’) = c(y,s,s’)/c(s,s’)

6. Repeat 2-5 until desired convergence limit is reached.

one pass through data,
prefix prob. tail prob

this transition prob

output prob

i+1

only stop at (output) y

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 42

2016/7

Baum-Welch: Tips & Tricks

• Normalization badly needed
– long training data extremely small probabilities

• Normalize , using the same norm. factor:

 N(i) = sS (s,i)

as follows:
• compute (s,i) as usual (Step 2 of the algorithm), computing the sum N(i) at

the given stage i as you go.

• at the end of each stage, recompute all s (for each state s):

*(s,i) = (s,i) / N(i)

• use the same N(i) for s at the end of each backward (Step 3) stage:

*(s,i) = (s,i) / N(i)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 43

2016/7

Example

• Task: pronunciation of “the”

• Solution: build HMM, fully connected, 4 states:
• S - short article, L - long article, C,V - starting w/consonant, vowel

• thus, only “the” is ambiguous (a, an, the - not members of C,V)

• Output from states only (p(w|s,s’) = p(w|s’))
• Data Y: an egg and a piece of the big the end

 Trellis:

L,1

V,2

S,4 S,T-1

L,T-1

.......

C,5

V,6

S,7

L,7

V,T

C,8

V,3

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 44

2016/7

Example: Initialization

• Output probabilities:
pinit(w|c) = c(c,w) / c(c); where c(S,the) = c(L,the) = c(the)/2

(other than that, everything is deterministic)

• Transition probabilities:
– pinit(c’|c) = 1/4 (uniform)

• Don’t forget:
– about the space needed
– initialize (X,0) = 1 (X : the never-occurring front buffer st.)
– initialize (s,T) = 1 for all s (except for s = X)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 45

2016/7

Fill in alpha, beta

• Left to right, alpha:
(s’,i) = ss’ (s,i-1)  p(s’|s)  p(wi|s’)

• Remember normalization (N(i)).

• Similarly, beta (on the way back from the end).

output from states

L,1

V,2

S,4 S,T-1

L,T-1

C,5

V,6

S,7

L,7

V,T

C,8

V,3

an egg and a piece of the big the end

(V,6)

(C,8) = (L,7)p(C|L)p(big,C)+
 (S,7)p(C|S)p(big,C)

(L,7)

(S,7)

(L,7)

(S,7)

(V,6) = (L,7)p(L|V)p(the,L)+
 (S,7)p(S|V)p(the,S)

(C,8)

S,7

L,7

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 46

2016/7

Counts & Reestimation

• One pass through data

• At each position i, go through all pairs (si,si+1)

• Increment appropriate counters by frac. counts (Step 4):
• inc(yi+1,si,si+1) = a(si,i) p(si+1|si) p(yi+1|si+1) b(si+1,i+1)

• c(y,si,si+1) += inc (for y at pos i+1)

• c(si,si+1) += inc (always)

• c(si) += inc (always)

• Reestimate p(s’|s), p(y|s)
• and hope for increase in p(C|S) and p(V|L)...!!

V,6

S,7

L,7

C,8

of the big

inc(big,L,C) = (L,7)p(C|L)p(big,C)(C,8)

(L,7)

(S,7)
(C,8)

S,7

L,7 inc(big,S,C) = (S,7)p(C|S)p(big,C)(C,8)

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 47

2016/7

HMM: Final Remarks

• Parameter “tying”:
– keep certain parameters same (~ just one “counter” for all of

them)

– any combination in principle possible

– ex.: smoothing (just one set of lambdas)

• Real Numbers Output
– Y of infinite size (R, Rn):

• parametric (typically: few) distribution needed (e.g., “Gaussian”)

• “Empty” transitions: do not generate output
• ~ vertical arcs in trellis; do not use in “counting”

UFAL MFF UK @ FEL/Intro to Statistical NLP I/Jan Hajic 48

