Introduction to Natural Language Processing

a course taught as B4M36NLP at Open Informatics

by members of the Institute of Formal and Applied Linguistics

Today: Week 2, lecture
Today’s topic: Language Modelling & The Noisy Channel Model
Today’s teacher: Jan Hajič
E-mail: hajic@ufal.mff.cuni.cz
WWW: http://ufal.mff.cuni.cz/jan-hajic
The Noisy Channel

• Prototypical case:

Input: 0,1,1,1,0,1,0,1,...
Output (noisy): 0,1,1,0,0,1,1,0,...

The channel (adds noise)

• Model: probability of error (noise):

Example: p(0|1) = .3 p(1|1) = .7 p(1|0) = .4 p(0|0) = .6

• The Task:

known: the noisy output; want to know: the input (decoding)
Noisy Channel Applications

• OCR
 - straightforward: text → print (adds noise), scan → image

• Handwriting recognition
 - text → neurons, muscles (“noise”), scan/digitize → image

• Speech recognition (dictation, commands, etc.)
 - text → conversion to acoustic signal (“noise”) → acoustic waves

• Machine Translation
 - text in target language → translation (“noise”) → source language

• Also: Part of Speech Tagging
 - sequence of tags → selection of word forms → text
Noisy Channel: The Golden Rule of ...

• Recall:

\[
p(A|B) = \frac{p(B|A) \ p(A)}{p(B)} \quad \text{(Bayes formula)}
\]
\[
A_{\text{best}} = \text{argmax}_A p(B|A) \ p(A) \quad \text{(The Golden Rule)}
\]

• \(p(B|A)\): the acoustic/image/translation/lexical model
 – application-specific name
 – will explore later

• \(p(A)\): \textbf{the language model}
The Perfect Language Model

- Sequence of word forms [forget about tagging for the moment]
- Notation: \(A \sim W = (w_1, w_2, w_3, \ldots, w_d) \)
- The big (modeling) question:
 \[p(W) = ? \]
- Well, we know (Bayes/chain rule →):
 \[p(W) = p(w_1, w_2, w_3, \ldots, w_d) = \]
 \[= p(w_1) \times p(w_2|w_1) \times p(w_3|w_1, w_2) \times \ldots \times p(w_d|w_1, w_2, \ldots, w_{d-1}) \]
- Not practical (even short \(W \rightarrow \) too many parameters)
Markov Chain

• Unlimited memory (cf. previous foil):
 – for w_i, we know all its predecessors $w_1, w_2, w_3, ..., w_{i-1}$

• Limited memory:
 – we disregard “too old” predecessors
 – remember only k previous words: $w_{i-k}, w_{i-k+1}, ..., w_{i-1}$
 – called “k^{th} order Markov approximation”

• + stationary character (no change over time):
 \[p(W) \approx \prod_{i=1..d} p(w_i | w_{i-k}, w_{i-k+1}, ..., w_{i-1}), \quad d = |W| \]
n-gram Language Models

• (n-1)th order Markov approximation → n-gram LM:

\[p(W) = \prod_{i=1..d} p(w_i | w_{i-n+1}, w_{i-n+2}, ..., w_{i-1}) \]

• In particular (assume vocabulary |V| = 60k):

 • 0-gram LM: uniform model, \(p(w) = 1/|V| \), 1 parameter
 • 1-gram LM: unigram model, \(p(w) \), \(6 \times 10^4 \) parameters
 • 2-gram LM: bigram model, \(p(w_i | w_{i-1}) \) \(3.6 \times 10^9 \) parameters
 • 3-gram LM: trigram model, \(p(w_i | w_{i-2}, w_{i-1}) \) \(2.16 \times 10^{14} \) parameters
Maximum Likelihood Estimate

• MLE: Relative Frequency...
 – ...best predicts the data at hand (the “training data”)

• Trigrams from Training Data T:
 – count sequences of three words in T: $c_3(w_{i-2}, w_{i-1}, w_i)$
 [NB: notation: just saying that the three words follow each other]
 – count sequences of two words in T: $c_2(w_{i-1}, w_i)$:
 • either use $c_2(y, z) = \sum_w c_3(y, z, w)$
 • or count differently at the beginning (& end) of data! $p(w_i | w_{i-2}, w_{i-1})$

\[
= \text{est. } \frac{c_3(w_{i-2}, w_{i-1}, w_i)}{c_2(w_{i-2}, w_{i-1})}
\]
LM: an Example

• Training data:

\(<s> <s> \text{He can buy the can of soda.} \)

– Unigram:
 \(p_1(\text{He}) = p_1(\text{buy}) = p_1(\text{the}) = p_1(\text{of}) = p_1(\text{soda}) = p_1(.) = .125 \)
 \(p_1(\text{can}) = .25 \)

– Bigram:
 \(p_2(\text{He}|<s>) = 1, p_2(\text{can}|\text{He}) = 1, p_2(\text{buy}|\text{can}) = .5, \)
 \(p_2(\text{of}|\text{can}) = .5, p_2(\text{the}|\text{buy}) = 1, \ldots \)

– Trigram:
 \(p_3(\text{He}|<s>,<s>) = 1, p_3(\text{can}|<s>,\text{He}) = 1, \)
 \(p_3(\text{buy}|\text{He,can}) = 1, p_3(\text{of}|\text{the,can}) = 1, \ldots, p_3(.)|\text{of,soda}) = 1. \)

– Entropy:
 \(H(p_1) = 2.75, H(p_2) = .25, H(p_3) = 0 \quad \leftarrow \text{Great?!} \)
LM: an Example (The Problem)

• Cross-entropy:
• $S = \langle s \rangle \langle s \rangle$ It was the greatest buy of all.
• Even $H_S(p_1)$ fails ($= H_S(p_2) = H_S(p_3) = \infty$), because:
 – all unigrams but $p_1(\text{the})$, $p_1(\text{buy})$, $p_1(\text{of})$ and $p_1(\text{.})$ are 0.
 – all bigram probabilities are 0.
 – all trigram probabilities are 0.
• We want: to make all (theoretically possible*) probabilities non-zero.

*in fact, all: remember our graph from day 1?
LM Smoothing
(And the EM Algorithm)
Why do we need Nonzero Probs?

• To avoid infinite Cross Entropy:
 – happens when an event is found in test data which has not been seen in training data
 \[H(p) = \infty: \text{prevents comparing data with } > 0 \text{ "errors"} \]
• To make the system more robust
 – low count estimates:
 • they typically happen for “detailed” but relatively rare appearances
 – high count estimates: reliable but less “detailed”
Eliminating the Zero Probabilities: Smoothing

- Get new \(p'(w) \) (same \(\Omega \)): almost \(p(w) \) but no zeros
- Discount \(w \) for (some) \(p(w) > 0 \): new \(p'(w) < p(w) \)
 \[\sum_{w \in \text{discounted}} (p(w) - p'(w)) = D \]
- Distribute \(D \) to all \(w \); \(p(w) = 0 \): new \(p'(w) > p(w) \)
 - possibly also to other \(w \) with low \(p(w) \)
- For some \(w \) (possibly): \(p'(w) = p(w) \)
- Make sure \(\sum_{w \in \Omega} p'(w) = 1 \)
- There are many ways of smoothing
Smoothing by Adding 1

- Simplest but not really usable:
 - Predicting words w from a vocabulary V, training data T:
 \[p'(w|h) = \frac{c(h,w) + 1}{c(h) + |V|} \]
 - for non-conditional distributions: $p'(w) = \frac{c(w) + 1}{|T| + |V|}$
 - Problem if $|V| > c(h)$ (as is often the case; even $>> c(h)$!)

- Example: Training data:
 - $V = \{\text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, . }\}$, $|V| = 12$
 - $p(\text{it}) = .125$, $p(\text{what}) = .25$, $p(.) = 0$
 - $p(\text{what is it?}) = .25^2 \times .125^2 \approx .001$
 - $p(\text{it is flying.}) = .125 \times .25 \times 0^2 = 0$
 - $p'(\text{it}) = .1$, $p'(\text{what}) = .15$, $p'(.) = .05$
 - $p'(\text{what is it?}) = .15^2 \times .1^2 \approx .0002$
 - $p'(\text{it is flying.}) = .1 \times .15 \times .05^2 \approx .00004$
Adding less than 1

• Equally simple:
 – Predicting words \(w \) from a vocabulary \(V \), training data \(T \):
 \[
 p'(w|h) = \frac{c(h,w) + \lambda}{c(h) + \lambda|V|}, \; \lambda < 1
 \]
 • for non-conditional distributions: \(p'(w) = \frac{c(w) + \lambda}{|T| + \lambda|V|} \)

• Example: Training data: <s> what is it what is small ? \(|T| = 8\)
 • \(V = \{ \text{what, is, it, small, ?, <s>, flying, birds, are, a, bird, . } \} \), \(|V| = 12\)
 • \(p(\text{it}) = .125, \; p(\text{what}) = .25, \; p(.) = 0 \)
 \(p(\text{what is it?}) = .25^2 \times .125^2 \approx .001 \)
 \(p(\text{it is flying.}) = .125 \times .25 \times 0^2 = 0 \)
 • Use \(\lambda = .1 \):
 • \(p'(\text{it}) \approx .12, \; p'(\text{what}) \approx .23, \; p'(.) \approx .01 \)
 \(p'(\text{what is it?}) = .23^2 \times .12^2 \approx .0007 \)
 \(p'(\text{it is flying.}) = .12 \times .23 \times .01^2 \approx .000003 \)
Smoothing by Combination: Linear Interpolation

• Combine what?
 • distributions of various level of detail vs. reliability

• n-gram models:
 • use (n-1)gram, (n-2)gram, ..., uniform

 ___________________________reliability
 ___________________________detail

• Simplest possible combination:
 – sum of probabilities, normalize:
 • p(0|0) = .8, p(1|0) = .2, p(0|1) = 1, p(1|1) = 0, p(0) = .4, p(1) = .6:
 • p'(0|0) = .6, p'(1|0) = .4, p'(0|1) = .7, p'(1|1) = .3
Typical n-gram LM Smoothing

• Weight in less detailed distributions using $\lambda=(\lambda_0, \lambda_1, \lambda_2, \lambda_3)$:

$$p'_{\lambda}(w_i | w_{i-2}, w_{i-1}) = \lambda_0 p_3(w_i | w_{i-2}, w_{i-1}) + \lambda_1 p_2(w_i | w_{i-1}) + \lambda_2 p_1(w_i) + \lambda_3 / |V|$$

• Normalize:

$\lambda_i > 0$, $\sum_{i=0..n} \lambda_i = 1$ is sufficient ($\lambda_0 = 1 - \sum_{i=1..n} \lambda_i$) (n=3)

• Estimation using MLE:

 – fix the p_3, p_2, p_1 and $|V|$ parameters as estimated from the training data
 – then find such $\{\lambda_i\}$ which minimizes the cross entropy (maximizes probability of data): $-(1/|D|) \sum_{i=1..|D|} \log_2(p'_{\lambda}(w_i|h_i))$
Held-out (Cross-validation) Data

• What data to use?
 – try the training data T: but we will always get $\lambda_3 = 1$
 • why? (let p_{iT} be an i-gram distribution estimated using r.f. from T)
 • minimizing $H_T(p'_{\lambda})$ over a vector λ, $p'_{\lambda} = \lambda_3 p_{3T} + \lambda_2 p_{2T} + \lambda_1 p_{1T} + \lambda_0 / |V|$
 – remember: $H_T(p'_{\lambda}) = H(p_{3T}) + D(p_{3T} || p'_{\lambda})$
 • (p_{3T} fixed \rightarrow $H(p_{3T})$ fixed, best)
 – which p'_{λ} minimizes $H_T(p'_{\lambda})$? ... a p'_{λ} for which $D(p_{3T} || p'_{\lambda}) = 0$
 – ...and that’s p_{3T} (because $D(p||p) = 0$, as we know).
 – ...and certainly $p'_{\lambda} = p_{3T}$ if $\lambda_3 = 1$ (maybe in some other cases, too).
 • ($p'_{\lambda} = 1 \times p_{3T} + 0 \times p_{2T} + 0 \times p_{1T} + 0 / |V|$)
 – thus: do not use the training data for estimation of λ!
 • must hold out part of the training data (heldout data, H):
 • ...call the remaining data the (true/raw) training data, T
 • the test data S (e.g., for comparison purposes): still different data!
The Formulas

- Repeat: minimizing $-(1/|H|)\sum_{i=1..|H|}\log_2(p_\lambda'(w_i|h_i))$ over λ

 $$p_\lambda'(w_i|h_i) = p_\lambda'(w_i|w_{i-2},w_{i-1}) = \lambda_3 p_3(w_i|w_{i-2},w_{i-1}) + \lambda_2 p_2(w_i|w_{i-1}) + \lambda_1 p_1(w_i) + \lambda_0 /|V|$$

- “Expected Counts (of lambda)”: $j = 0..3$

 $$c(\lambda_j) = \sum_{i=1..|H|} (\lambda_j p_j(w_i|h_i) / p_\lambda(w_i|h_i))$$

 $$\lambda_{i,\text{next}} = c(\lambda_j) / \sum_{k=0..3} (c(\lambda_k))$$

E-step

M-step
The (Smoothing) EM Algorithm

1. Start with some λ, such that $\lambda_j > 0$ for all $j \in 0..3$.
2. Compute “Expected Counts” for each λ_j.
3. Compute new set of λ_j, using the “Next λ” formula.
4. Start over at step 2, unless a termination condition is met.
 • Termination condition: convergence of λ.
 – Simply set an ε, and finish if $|\lambda_j - \lambda_{j,\text{next}}| < \varepsilon$ for each j (step 3).
 • Guaranteed to converge:
 follows from Jensen’s inequality, plus a technical proof.
Remark on Linear Interpolation Smoothing

• “Bucketed” smoothing:
 – use several vectors of λ instead of one, based on (the frequency of) history: $\lambda(h)$
 • e.g. for $h = \text{(micrograms, per)}$ we will have
 \[\lambda(h) = (0.999, 0.0009, 0.00009, 0.00001) \]
 (because “cubic” is the only word to follow...)
 – actually: not a separate set for each history, but rather a set for “similar” histories (“bucket”):
 \[\lambda(b(h)), \text{ where } b : V^2 \rightarrow N \text{ (in the case of trigrams)} \]
 b classifies histories according to their reliability (\sim frequency)
Bucketed Smoothing: The Algorithm

• First, determine the bucketing function b (use heldout!):
 – decide in advance you want e.g. 1000 buckets
 – compute the total frequency of histories in 1 bucket ($f_{\text{max}}(b)$)
 – gradually fill your buckets from the most frequent bigrams so that the sum of frequencies does not exceed $f_{\text{max}}(b)$ (you might end up with slightly more than 1000 buckets)

• Divide your heldout data according to buckets

• Apply the previous algorithm to each bucket and its data
Simple Example

- Raw distribution (unigram only; smooth with uniform):
 \[p(a) = .25, \quad p(b) = .5, \quad p(\alpha) = \frac{1}{64} \text{ for } \alpha \in \{c..r\}, \quad = 0 \text{ for the rest: } s,t,u,v,w,x,y,z \]

- Heldout data: baby; use one set of \(\lambda \) (\(\lambda_1 \): unigram, \(\lambda_0 \): uniform)

- Start with \(\lambda_1 = .5 \): \[p'_{\lambda}(b) = .5 \times .5 + .5 / 26 = .27 \]

 \[p'_{\lambda}(a) = .5 \times .25 + .5 / 26 = .14 \]

 \[p'_{\lambda}(y) = .5 \times 0 + .5 / 26 = .02 \]

\[c(\lambda_1) = .5 \times .5 / .27 + .5 \times .25 / .14 + .5 \times .5 / .27 + .5 \times 0 / .02 = 2.72 \]

\[c(\lambda_0) = .5 \times .04 / .27 + .5 \times .04 / .14 + .5 \times .04 / .27 + .5 \times .04 / .02 = 1.28 \]

 Normalize: \(\lambda_{1,\text{next}} = .68, \quad \lambda_{0,\text{next}} = .32. \)

 Repeat from step 2 (recompute \(p'_{\lambda} \) first for efficient computation, then \(c(\lambda_i), \ldots \))

Finish when new lambdas almost equal to the old ones (say, < 0.01 difference).