Wild Experimenting in MT

Ondřej Bojar, Aleš Tamchyna and Jan Berka

February 17, 2012
Overview:

- A Dravidian language with more than 60 million native speakers.
- Official language in India, Sri Lanka, Singapore.
- Long history and tradition – a classical language.

MT-related properties:

- Uses its own script.
- Written left-to-right.
- Agglutinating language.
- SOV word order.
Components of Phrase-based MT (1/2)

- **Word alignment**
 - Learned from sentence-aligned parallel data.
 - Example query:
 What is the probability of 'car' given German 'Auto'?
 - Implemented in GIZA++.

- **Translation model = phrase table**
 - Trained heuristically based on the word alignment.
 - Example query:
 What is the probability of 'a fast car' given 'ein schnelles Auto'?
 - Implementation included in Moses toolkit.

- **Language model**
 - Trained from target-side monolingual data.
 - How probable are the words 'a fast car' in an English sentence?
 - Various toolkits exits: SRILM, IRSTLM,...
Feature weights
- Result of optimization towards a metric of translation quality.
- Should the decoder trust language model score? How badly should the decoder penalize changes in word order?
- Optimization algorithms/metrics are an active area of research.
- Most commonly used is Minimum Error Rate Training (MERT), optimizing for BLEU.

Decoder
- Combines all previous steps in a model that generates translations based on input sentences.
- Searches the hypothesis space for the most adequate translation.
- Many decoders exist, we will be using Moses.
In our SMT playground for eman, the components correspond to seeds:

<table>
<thead>
<tr>
<th>Pipeline Step</th>
<th>eman Seed</th>
<th>Examples of Seed Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word alignment</td>
<td>align</td>
<td>corpus, source/target language</td>
</tr>
<tr>
<td>Translation model</td>
<td>tm</td>
<td>align step</td>
</tr>
<tr>
<td>Language model</td>
<td>lm</td>
<td>srilm step, target language</td>
</tr>
<tr>
<td>Weights tuning</td>
<td>mert</td>
<td>model step, sentences for tuning</td>
</tr>
<tr>
<td>Translation</td>
<td>translate</td>
<td>mert step, input sentences</td>
</tr>
<tr>
<td>Evaluation</td>
<td>eval(uator)</td>
<td>translate step, MT metric</td>
</tr>
</tbody>
</table>

- User defines steps based on seeds.
- **eman**:
 - Executes the steps.
 - Handles step dependencies, status, cloning,...
Tutorial Outline

- Install eman, prepare the environment for experimenting.
- A quick introduction to using eman.
- Run a baseline experiment English→Tamil.
- Explore ways to improve the translation quality.
What’s wrong with the baseline?

- Tamil is an agglutinating language.
 - One stem/lemma has many forms \Rightarrow data sparsity.
 - Word affixes encode a lot of information.
 - This information is mostly represented by syntax in English.

- Tamil has a different word order.
 - English is an SVO language, Tamil is SOV.
 - English *pre*-positions are Tamil *post*-positions.
 - Overall, Tamil constituents tend to be head-final.

- We are using tiny data. Well, that’s a technical constraint.
Solutions? (1/4)

We need better word alignment.

- Instead of form → form, let’s try stem4 → stem4.
- Stemming all words to 4 characters:
 - is crude, linguistically incorrect.
 - almost always improves BLEU score (unless data is really large).
⇒ Reduction of data sparsity outweighs stemming errors.
Employ splitting of Tamil affixes.
Align true Tamil stems instead of the crude approximation.

- Will the BLEU score be higher than with stem4→stem4?
Translate into a different language ta_split with affixes split from stems.

- Bound morphemes become free.
 ⇒ Word:morpheme ratio more similar to English.
- Data are dramatically less sparse.
- Can we directly compare BLEU with translations into 'normal' Tamil?
Solutions? (4/4)

Treex to the rescue: change source-side word order.

- Less distortion (i.e. need to reorder words when translating).
- Run your Treex reordering scenario on the English data.
- Do a complete training/evaluation pipeline.