
- 1-  

Corpora and evaluation tools for multilingual  
named entity grammar development 

 

Christian Bering1, Witold Drozdzynski2, Gregor Erbach1, Clara Guasch3,  
Petr Homola1, Sabine Lehmann3, Hong Li2, Hans-Ulrich Krieger2, Jakub Piskorski2,  

Ulrich Schäfer2, Atsuko Shimada2, Melanie Siegel1, Feiyu Xu2, Dorothee Ziegler-Eisele1 
 

1 Saarland University, Computational Linguistics Department, Saarbrücken 
2 DFKI GmbH, Language Technology Lab, Saarbrücken 

3 Acrolinx GmbH, Berlin 
 

Abstract 
We present an effort for the development of multilingual named entity grammars in a unification-
based finite-state formalism (SProUT). Following an extended version of the MUC7 standard, we 
have developed Named Entity Recognition grammars for German, Chinese, Japanese, French, 
Spanish, English, and Czech. The grammars recognize person names, organizations, geographical 
locations, currency, time and date expressions. Subgrammars and gazetteers are shared as much as 
possible for the grammars of the different languages. Multilingual corpora from the business domain 
are used for grammar development and evaluation. The annotation format (named entity and other 
linguistic information) is described. We present an evaluation tool which provides detailed statistics 
and diagnostics, allows for partial matching of annotations, and supports user-defined mappings 
between different annotation and grammar output formats. 

1 Introduction 
Motivation 
Named Entity Recognition (NER) is a fundamental technology for a number of advanced information 
management applications, including search engines, question answering systems, customer relationship 
management (CRM) systems, text mining and business intelligence. All of these applications can 
benefit from accurate NER. For example, search engines and question answering systems can be 
enhanced by allowing searches and questions for particular persons, companies or locations. In CRM 
applications, such as automatic e-mail answering, accurate NER will enable a link between customer e-
mails and data stored in a customer database. In text mining, accurate NER will allow the construction 
of databases with information extracted about particular entities. 

Multilingual NER is important for globalised CRM, e.g., automatic e-mail categorization and 
answering for customers from different linguistic communities. Other applications of multilingual NER 
are cross-language information retrieval, and business intelligence applications, where information 
about a particular person or company has to be extracted from textual sources in different languages. 

Challenges 
There are a number of challenges in multilingual information extraction. With non-Western-European 
languages, the issue of different alphabets and character sets has to be dealt with. Different languages 
have different tokenization conventions. For example, some languages (German) use a blank space 
between the dash (Gedankenstrich) and the surrounded words, while others attach the dash without a 
space (Spanish). However, in German a dash attached to a word normally indicates a split compound 
(“Ein- und Ausgang” for “Eingang und Ausgang”, entry and exit). Other issues are different number 
(decimal point vs. comma), time, and currency formats.  

There is a large overlap between different languages within organization names. Some names and 
acronyms such as “New York”, “George Bush”, or “IBM” are identical in most languages, although 
they may carry different inflections. They enable the re-use of lexicons and gazetteers across different 
languages. In other cases there are differences, e.g., “London” vs. “Londres”, “Firenze” vs. “Florence” 
vs. “Florenz”, “NATO” vs. “OTAN”, or Pope “Johannes Paul” vs. “John Paul”. It would be tempting 
to include all variants into a single list, but in some cases this leads to undesired ambiguities, e.g.  
“München” (German) vs. “Munich” (English) vs. “Monaco” (Italian). Including the last form in the 
German grammar would associate the wrong reference to the string “Monaco”. 

We try to re-use linguistic resources as much as possible while avoiding the mentioned problems. 

Our Approach 
In order to address the challenges of multilingual NER, we have employed a language-independent 
finite-state formalism [Becker et. al, 2002], in which language resources and processing components 
(such as morphological analyzers) for different languages are integrated (see section 2). All languages 



- 2-  

use the same tokenizer and token classes.  In order to ensure consistency and maintainability of multi-
lingual grammars, we make use of shared resources (lexicon, gazetteer, and grammar rules). To 
facilitate the usage of NER results across languages, the grammars for all languages produce a uniform 
language-independent output structure, for which type definitions have been written in TDL.  

Multilingual Named Entity Corpora 
Corpora with annotated named entities are essential for developing and evaluating NE grammars. We 
try to re-use existing corpora (e.g., from the Message Understanding Conference MUC (Chinchor, 
1997), plus other sources) as much as possible, but also annotate corpora for languages for which no 
suitable NE-annotated corpora are available.  

The annotation of the corpora may differ from the output structures produced by the grammar in 
several crucial aspects: 

- use of different classes of named entities, or different granularities (e.g., organization and its 
subclasses company, university, government etc.) 

- the extent of a NE may be different: e.g., a person name may or may not include a function 
and a title (“President George Bush” vs. “George Bush”) 

- the markup of the corpus may be textually oriented (e.g., as XML tags) while output of 
grammar is a semantic structure 

Such differences may arise because 
- existing corpora which were developed with a different purpose are re-used, 
- the output structure of the grammar is changed after corpora were annotated, 
- the corpora are annotated for multiple uses, of which NER is only one. 

These differences pose challenges for testing and evaluation of grammars with respect to a corpus, 
since a NE may be recognized correctly according to the intentions of the grammar developer, but may 
be annotated differently in the corpus. In order to address such mismatches, we have developed a 
diagnostic and evaluation tool, which allows for user-defined mappings between different NE classes, 
for controlled partial overlap between recognized and annotated NEs, and supports user-defined 
mappings between text-based and semantically-based annotations and output structures.  

2 SProUT: A Unification-Based Finite-State Toolkit 
In this section we describe SProUT, a platform for the development of multilingual text processing 
components, which constitutes the underlying framework for NE grammar development. Considering 
construction of efficient and domain-adaptive text-processing systems, the main motivation for 
developing SProUT comes from the need to have a system that (i) allows a flexible integration of 
different processing modules and (ii) to find a good trade-off between processing efficiency and 
expressiveness. On the one hand, very efficient finite state devices have been successfully applied to 
real-world applications. On the other hand, unification-based grammars (UBGs) are designed to 
capture fine-grained syntactic and semantic constraints, resulting in better descriptions of natural 
language phenomena. In contrast to finite state devices, unification-based grammars are also assumed 
to be more transparent and more easily modifiable. Our idea now is to take the best of these two 
worlds, having a finite state machine that operates on typed feature structures (TFSs). I.e., transduction 
rules in SProUT do not rely on simple atomic symbols, but instead on TFSs, where the left-hand side 
(LHS) of a rule is a regular expression over TFSs, representing the recognition pattern, and the right-
hand side (RHS) is a sequence of TFSs, specifying the output structure. Consequently, equality of 
atomic symbols is replaced by unifiability of TFSs and the output is constructed using TFS unification 
w.r.t. a type hierarchy. 

2.1 XTDL – The Formalism of SProUT 
XTDL combines two well-known frameworks: typed feature structures and regular expressions. XTDL 
is defined on top of TDL, a definition language for TFSs (Krieger and Schäfer, 1994) that is used as a 
descriptive device in several grammar systems (LKB, PAGE, PET). We use the following fragment of 
TDL, including coreferences and functional application. 

type-def ::= type { avm-def | sub-def } "." 
type ::= identifier 
sub-def ::= ":<" type 
avm-def ::= ":=" avm 
avm ::= term { "&" term }* 
term ::= type | fterm | string | coref 
fterm ::= "[" [ attr-val { "," attr-val }* ] "]" 
attr-val ::= attribute avm 



- 3-  

attribute ::= identifier 
coref ::= "#"identifier 

Apart from the integration into the rule definitions below, we also employ this fragment in SProUT for 
the establishment of a type hierarchy of linguistic entities. In the example definition below, the morph 
type inherits from sign and introduces three more morphologically motivated attributes with the 
corresponding typed values. 

morph := sign & [ POS  atom, STEM atom, INFL infl ]. 

The next figure depicts a fragment of the type hierarchy used in the example. 

 

*rule* 

present token morph 

de en separator url 

atom 

tokentype 

*top* 

*avm* 

infl 

lang 

index-avm sign tense 

 
 

A rule in XTDL is defined as a recognition pattern for the LHS, written as a regular expression, and an 
output description on the RHS. A named label serves as a handle to the rule. Regular expressions over 
TFSs describe sequential successions of linguistic signs. We provide a couple of standard operators; 
see the EBNF below. Concatenation is expressed by consecutive items. Disjunction, Kleene star, 
Kleene plus, and optionality are represented by the operators |, *, +, and ?, resp. {n} after an expression 
denotes an n-fold repetition. {m,n} repeats at least m times and at most n times.  

rule ::= identifier ":>" regexp "->" {fterm}* [fun-op]"." 
regexp ::= avm | "(" regexp ")" | regexp {regexp}+ | regexp "|" {regexp}+ | regexp { "*" | "+" | "?" } |  
  regexp "{" int [ "," int ] "}" 
fun-op ::= "where" { coref "=" fun-app }+ 
fun-app ::= identifier "(" term { "," term }* ")" 

 
The XTDL grammar rule below illustrates the syntax. It describes a sequence of morphologically 
analyzed tokens (of type morph). The first TFS matches one or zero items (?) with part-of-speech 
Determiner. Then, zero or more Adjective items are matched (*). Finally, one or two Noun items 
({1,2}) are consumed. The use of a variable (e.g., #1) in different places establishes a coreference 
between features. This example enforces, e.g., agreement in case, number, and gender for the matched 
items. I.e., all adjectives must have compatible values for these features. Eventually, the description on 
the RHS creates a feature structure of type phrase, where the category is coreferent with the category 
Noun of the right-most token(s) and the agreement features result from the unification of the agreement 
features of the morph tokens 

np :> 
   (morph & [ POS  Determiner, INFL  [CASE #1, NUM #2, GEN #3 ]] )?  
   (morph & [ POS  Adjective, INFL  [CASE #1, NUM #2, GEN #3 ]] )*  
   (morph & [ POS  Noun & #4, INFL  [CASE #1, NUM #2, GEN #3 ]] ){1,2} 
 -> phrase & [CAT #4, AGR agr & [CASE #1, NUM #2, GEN #3 ]]. 

The choice of TDL has a couple of advantages. TFSs as such provide a rich descriptive language over 
linguistic structures and allow for a fine-grained inspection of input items. They represent a 
generalization over pure atomic symbols. Unifiability as a test criterion, whether a transition is viable, 
can be seen as a generalization over symbol equality. Coreferences in feature structures express 
structural identity. Their properties are exploited in two ways. They provide a stronger expressiveness 
since they create dynamic value assignments on the automaton transitions and thus exceed the strict 
locality of constraints in an atomic symbol approach. Furthermore, coreferences serve as a means of 
information transport into the output description on the RHS of the rule. Finally, the choice of feature 
structures as primary citizens of the information domain makes composition of modules very simple, 
since input and output are all of the same abstract data type. 

2.2 System Description  
The core of the SProUT system is comprised of following components: 



- 4-  

• a finite-state machine toolkit for building, combining and optimizing various types of finite-
state devices, 

• a flexible XML-based regular compiler for converting regular patterns into their 
corresponding compressed finite-state representation (Piskorski et al., 2002), 

• the JTFS package which provides standard operations for constructing and manipulating 
TFSs (e.g., unification), and 

• an XTDL grammar interpreter. 

The grammar interpretation is divided into two steps. Firstly, regular patterns (LHS of rules) are 
employed to match text fragments using solely unifiability to filter the potential candidates for the 
space consuming unification. Secondly, appropriately instantiated LHS patterns are used for the 
construction of the output structures via unification (RHS). Since the output of the interpreter are again 
TFSs, the result can be used to feed (higher-level) linguistic processing components. In this way, 
SProUT supports cascaded architectures straightforwardly. 

Currently, the system provides three online linguistic processing components, including a tokenizer, 
gazetteer, and a morphological analyzer. The tokenizer maps character sequences to tokens and 
performs fine-grained token classification. The task of gazetteer is recognition of named entities based 
on static named-entity lexica. The morphology unit provides lexical resources for English, German1, 
French, Italian, and Spanish which were compiled from the full-form lexica of MMorph2 (Petitpierre 
and Russell, 1995). For Asian language, we integrated Chasen (Asahara and Matsumoto, 2000) for 
Japanese and Shanxi (Liu, 2000) for Chinese. The backbone architecture of SProUT is depicted in 
figure 1. 

FINITE-STATE
MACHINE
TOOLKIT

XTDL
INTERPRETER

REGULAR
COMPILER

XTDL
GRAMMAR

EXTENDED
OPTIMIZED

FINITE-STATE
NETWORK

LEXICAL
RESOURCES

INPUT DATA

STRUCTURED
OUTPUT DATA

G R A M M A R      D E V E L O P M E N T
E N V I R O N M E N T

O N L I N E    P R O C E S S I N G

STREAM OF
TEXT ITEMS

…. [..] [..] [..] ….

LINGUISTIC
PROCESSING
RESOURCES

JTFS

 
Figure 1. Architecture of SProUT 

SProUT comes with a user-friendly grammar development environment. The development process is 
started with a project definition. A project is defined as a specific application in SProUT, e.g., NER or 
template filling (IE). A project consists of a grammar definition and a system configuration. Given a 
new project (see figure 2), an offline defined type hierarchy based on TDL has to be loaded. A 
grammar developer can navigate through the type hierarchy. An XTDL grammar can consist of more 
than one grammar file (see left upper frame in figure 2). The grammar rules are listed in the left down 
frame. Rule names can be assigned colors for targeted visualization of searching results. 

The grammarians can switch between three views of the edited grammars: XML, XTDL and equation. 
The equation mode presents graphical visualization of the rules; see the right upper frame in figure 2. 
SProUT automatically converts one format to another. 

System configuration allows the specification of the individual processing components and 
corresponding resources required by the grammar. The grammar can be tested against an input text, 
where the instantiated rules and matched text spans are highlighted. An example of testing named 
entity grammars for Japanese is demonstrated in figure 3. The current system is implemented in Java 
and C++, and runs on both MS Windows and Linux OS.  
 

                                                           
1 The German morphology is equipped with an online shallow compound recognition. 
2 An additional compaction of the original MMorph was performed by substituting special readings through more general ones 
using type generalization and subsumption checking. 



- 5-  

 
 

Figure 2. The grammar development environment of SProUT 
 

  
 

Figure 3. The multilingual NER application 

3 Multilingual Grammar Development 
A guiding principle for our multilingual named entity grammar development is maximal sharing of 
resources across different languages. Token classes, output structures and grammar fragments are 
shared for different languages, improving the maintainability and consistency of linguistic resources. 



- 6-  

Shared Token classes 
NER makes heavy use of surface-oriented features for recognizing particular kinds of NEs. For 
example, a string consisting entirely of upper-case letters is likely to be an acronym (used in grammars 
for organization names), while a string consisting of four digits is likely to be a year (used in grammars 
for date expressions). We make use of special token classes and subclasses for these kinds of strings. 

Different languages have different tokenization conventions. For example, some languages (German) 
use a blank space between the dash (Gedankenstrich) and the surrounded words, while others attach the 
dash without a space (Spanish). However, in German a dash attached to a word normally indicates a 
split compound (“Ein- und Ausgang” for “Eingang und Ausgang”, entry and exit). 

Despite these differences, we have agreed on a single set of token classes for the Western European 
languages, in order to simplify the overall system and to facilitate the sharing of grammar fragments – 
which make use of the token classes – across languages. The full list of token classes is given in the 
following. [examples for each class to be provided in the final version of the paper.] 

 

any_natural_number := tokentype & [INDEX '1]. 
twoDigitNumber :=  any_natural_number & [SUBINDEX '2]. 
fourDigitNumber :=  any_natural_number & [SUBINDEX '3]. 
point_or_comma := tokentype &  [INDEX '2]. 
number_percent_composition := tokentype &  [INDEX '3]. 
number_dot_compositum := tokentype &  [INDEX '4]. 
number_word_composition := tokentype &  [INDEX '5]. 
digit_salsh_compound := tokentype &  [INDEX '7]. 
digit_dash_compositum  := tokentype &  [INDEX '8]. 
all_caps_words := tokentype &  [INDEX '9]. 
digit_colon_compositum := tokentype &  [INDEX '10]. 
lowercase_word := tokentype &  [INDEX '11]. 
first_capital_word := tokentype &  [INDEX '12]. 
words_slash_compound_first_capital := tokentype &  [INDEX '13]. 
mixed_word_first_lower := tokentype &  [INDEX '14]. 
words_slash_compound_first_capital := tokentype &  [INDEX '13]. 
mixed_word_first_lower := tokentype &  [INDEX '14]. 
decimal_number_with_period  := tokentype &  [INDEX '23]. 
decimal_number_with_coma := tokentype &  [INDEX '24]. 
e_mail_adress  := tokentype &  [INDEX '32]. 
url_adress := tokentype &  [INDEX '33]. 
mixed_word_first_capital := tokentype &  [INDEX '34]. 
separator_symbol :=  tokentype &  [INDEX '40]. 
digit_bsalsh_compositum := tokentype &  [INDEX '102]. 
complex_compound_first_capital  := tokentype &  [INDEX '103]. 
word_slash_compound_dash_first_capital := tokentype &  [INDEX '105]. 
word_slash_compound_dash_first_lower := tokentype &  [INDEX '106]. 
contains_digits_and_letters_and_other_symbols := tokentype &  [INDEX '122]. 
word_apostrophe := tokentype & [INDEX '125]. 
 
Shared Output Structures 
The grammars for all six languages produce the same, semantically oriented output structures. The 
possible output structures have been defined by type definitions in TDL. A sample type definition for 
persons and locations is given in the following. The type definition defines the features and subtypes 
for each type.  
 
ne_type := sign & [DESCRIPTOR string]. 
 

enamex := ne_type. 
 

ne-person := enamex & 
        [TITLE list-of-strings, 
         GIVEN_NAME list-of-strings, 
         SURNAME list-of-strings, 
         P-POSITION list-of-strings, 
         NAME-SUFFIX string]. 
 

ne-location := enamex & 
        [LOCTYPE loc-type, 



- 7-  

         LOCNAME string]. 
 

loc-type :< atom. 
river := loc-type. 
continent := loc-type. 
country := loc-type. 
province := loc-type.  
city := loc-type.  

 

The use of shared output structures facilitates the construction of multilingual applications, as the 
interface between the application and the grammar will be the same for the different languages.  

Shared Grammars 
One of the main advantages of the SProUT system is its emphasis on reusable and easily extensible 
grammars. This section shows how the possibilities offered by the linguistic engine have been used to 
develop multilingual parallel grammars for English, French, and Spanish.  

SProUT allows us to define any number of cascaded rules and to distribute them in a number of files. 
This feature has been used to implement grammars for English, French and Spanish in such a way that 
some generic files are shared by the three languages, while others are language-specific. The basic idea 
here was to make use of the fact that some key element structures are identical in the three languages, 
e.g. date formats such as "20.10.2001" (to refer to the 20th of October 2001) are used in English, 
French and Spanish. This structure has been defined in a generic data grammar file which is shared by 
the three languages. Structures such as "20th of October 2001", "20 octobre 2001" or "20 de octubre 
del 2001", on the other hand, are defined in the corresponding language-specific files. This design has 
various advantages. In the first place, it makes the grammars easily reusable and extensible. Secondly, 
the grammar development turns out to be much more efficient and less time-consuming and error-
prone, since in some cases the three languages can be corrected at once by simply modifying the 
generic structures. This modular approach to multingual grammar writing also facilitates the addition of 
new languages, as the experience of writing the English grammars clearly proved. After having written 
the generic components for French and Spanish, and the language specific grammars for both 
languages, the English grammars could be developed very quickly and efficiently. We believe that this 
method could be easily extended to other West-European languages.  The following (simplified) 
examples illustrate how language specific grammars make use of general rules. The first rule 
(general_monetary_amount) specifiies the types of numeric tokens that can refer to a monetary amount.  
The second rule (general_currency) defines signs or acronyms that are internationally used to refer to 
currencies. The signs are specified as tokens, and the acronyms are listed in the gazetteer (see end of 
this section). Finally, general_money will match things like "$300" or "5.000 CAD", that is, a monetary 
amount followed by a currency sign or acronym.  
 
general_monetary_amount :>  
  token & [ TYPE any_natural_number ,         SURFACE #amount ]  
  | token & [ TYPE decimal_number_with_coma , SURFACE  #amount ]  
  | token & [ TYPE decimal_number_with_period , SURFACE #amount ]  
 -> dummy. 
 
general_currency : >  Gazetteer & [TYPE generalCurrencyAcronyms, SURFACE #currency]  
  | token & [ SURFACE "¥" ,   ID #currency & "JPY" ]             
  | token & [ SURFACE "$" ,      ID #currency & "USD" ]             
  | token & [ SURFACE "€",      ID #currency & "EUR" ]             
  | token & [ SURFACE "£",      ID #currency & "GBP"  
 -> dummy. 
 
general_money    :>  
             ( @seek(general_monetary_amount) 
               @seek(general_currency) ) 
 |   
 (  @seek(general_currency) 
               @seek(general_monetary_amount)  ) 
    -> 
               money & [ CURRENCY  #currency , 
                         AMOUNT    #amount , 
                         MAGNITUDE #magnitude ]. 

In order to make sure that language specific monetary expressions were recognized, we only needed to 
expand the general rules with language specific contexts. Thus, en_monetary_amount below ensures 
that not only "300" but also the English expression "300 million" is recognized as a monetary amount., 



- 8-  

and  en_currency adds English currency expressions (listed in the gazetteer) to the general list of signs 
and acronyms specified in general_currency. 
en_monetary_amount  :> 
  @seek(general_monetary_amount)  
 (  
 (morph & [ STEM    "million" ,   ID #magnitude & "10e6" ]  
 | token & [ SURFACE "m",    ID #magnitude & "10e6" ]  
 | morph & [ STEM    "billion" ,   ID #magnitude & "10e12" ]) 
 ) ? 
        -> dummy.   
 
en_currency :>  
  Gazetteer & [TYPE en_currency, SURFACE #currency] 
  | 
  @seek(general_currency) 
 -> dummy. 

By using these two rules, which include general rules, en_money below makes sure that complete 
monetary expressions combining both general and language specific tokens (e.g. "$300 million", or 
"300 million dollars") are matched. 
en_money    :>   
               ( @seek(en_currency) 
                 @seek(en_monetary_amount) ) 
  |   
 ( @seek(en_monetary_amount) 
                 @seek(en_currency)  ) 
               -> 
               money & [ CURRENCY  #currency , 
                        AMOUNT    #amount , 
   MAGNITUDE #magnitude ]. 

Parallel structures to en_monetary_amount, en_currency and en_money had been previously written for 
French and Spanish, so the work involved in generating the English rules came down to copying those 
rules  into a new file, changing the words for "million" and "billion" and providing the Gazetteer list for 
English currencies.  

This procedure has not only been used for generic vs. language-specific grammars, but also for the 
development of general vs. application-specific grammars. Thus, the grammars for general NER were 
used for the European project AIRFORCE (AIR FOReCast in Europe)3, whose aim is to evaluate the 
contribution of advanced statistical methods, combining intelligent agents and data mining algorithms 
to forecast the number of air passengers for various destinations in Europe. Text mining for 
AIRFORCE involved extracting only certain named entities, and all we had to do was implement the 
new application-specific rules on top of the already existing ones. As an example, our general 
grammars recognized all types of dates, but in the new application we only wanted to get some of the 
dates in a given text, namely those that referred to events for which we had information on the number 
of visitors they attracted. What we did was add rules constraining the contexts of the dates we were 
interested in. The following examples illustrate this.  

The first rule below (en_deictic_year) defines a key element covering date structures such as "last 
year", "past year" or "next year". The first rule is embedded in the second rule 
en_airforce_visitors_year, which uses yet another key element en_visitors_number (covering structures 
like e.g. "2000 visitors"). The second rule would cover a sentence such as "Last year the event attracted 
2000 visitors".  
en_deictic_year :> 
  (morph & [STEM "this" , ID "this" & #year_id] 
    token & [SURFACE "year" ] ) 
  | 
  ( 
   (  morph & [STEM "last" , ID "last" & #year_id] 
    | morph & [STEM "past" , ID "last" & #year_id] 
   )   
   token & [SURFACE "year"] 
  ) 
  | 
  ( morph & [STEM "next" , ID "next" & #year_id] 
    token & [SURFACE "year"] 
  ) 

-> dummy. 

                                                           
3 For more information, please see the official page of the project: www.sofresud.com/airforce/ 



- 9-  

en_airforce_visitors_year :> 
  @seek(en_deictic_year)  
  token* 
  morph & [STEM "attract"]) 
  @seek(en_visitors_number) 

-> statistics & [  VISITORS  #visitorsNumber ,  YEAR  #year_id]. 

The new rules that were written for the specific application could be added in different files, so that the 
general rules for dates did not need to be modified at all.  

The division into shared generic and language-specific parts has also been applied in the gazetteer, a 
component which is used to store lists of locations, companies, names, etc. Thus, names that are 
common to the three languages, e.g., "Amsterdam" have been defined in generic lists, while language-
specific denominations such as "Brussels", "Bruxelles" and "Bruselas" are stored in the corresponding 
language-specific lists. This helps reducing the size of lists, which is important especially in the domain 
of NE-grammar development, where this storage of information is heavily used.  

The development of multilingual parallel grammars as described above has turned out to be very 
efficient, since by increasing modularity, it also increases reusability and extensibility.   

4 Multilingual Named Entity Corpora 
We use corpora annotated with named entities for grammar development, and for evaluation of the 
grammars with respect to recall, precision, and F-measure. Ideally, the markup used in the annotated 
corpora would correspond exactly to the output produced by the grammar, so that mismatches could be 
detected easily. Such an ideal case is possible in large-scale evaluations, such as MUC, but is likely to 
exceed the resources of most application-oriented projects, which have to re-use existing corpora even 
if they do not fit perfectly with their objectives.  

In our case, we have made use of the following corpora annotated with NEs. 

• English corpora from the MUC7 evaluations 
• Japanese and Chinese corpora annotated according to MUC7 conventions 
• German corpora annotated in the COLLATE project with a superset of MUC7 annotations4 
• German, English, French and Spanish texts annotated with Named Entities, from JRC 
• Spanish data from the CoNLL-2002 Language-Independent NER task 
• English and French corpora from the business domain annotated with named entities 

according to the MUC7 guidelines within our project 

In some cases, it makes sense to use multiple corpora for the same language due to different and 
complementary coverage of each corpus. The different corpora may be very rich or poor with 
respect to particular kinds of named entities (e.g. company names are very frequent in business 
news), and may cover different domains and genres. In particular, it may make sense to have some 
corpora with development and test data for language-independent NER, complemented by domain-
specific corpora for particular applications such as business or sports.  

While our multilingual grammars make produce the same language-independent output structures 
for each language, the annotated corpora contain differences 

• in annotation format,  
• in the types of named entities annotated, and 
• in the attributes used to describe each NE.  

The first kind of difference, superficial syntactic differences, can be dealt with by a transformation to a 
common (XML-based) format, while the other two kinds of differences are more serious. We do not 
address them by modifying or re-annotating the corpus, but rather by using a flexible evaluation tool, 
which can deal with differences between the output structures produced by a NE grammar and the NE 
annotations in the evaluation corpus, as described in the following section. 

By following this approach, we can achieve maximal re-use of existing corpora, and can limit labor-
intensive corpus annotation to cases where the coverage of the existing corpora with respect to 
language, domain or genre is insufficient. 

                                                           
4 This German corpus has been annotated on multiple linguistic layers (Named Entity, domain templates, coreference), and is 
being used for other purposes besides NER (Callmeier et al., 2002) 



- 10-  

5 Evaluation Tool 
We have developed a tool  (jTaCo) for the evaluation of grammars with respect to a corpus annotated 
with corresponding structures. The tools works by removing any annotations from the corpus, and 
feeding the unannotated texts to the grammar. It then compares the grammar output to the original 
annotated files, and produces detailed statistics, evaluation scores, and diagnostic output for helping the 
grammar writer by highlighting differences between the grammar output and the annotated corpus. The 
architecture of jTaCO is shown in figure 4. 
 

jTaCo

AnnotationParser

Parser

TaggingComparator

OutputGenerator

Annotated Corpus

True Annotation

Raw Text

Parsed Annotation

Comparison Result

Result Tables
 

 
Figure 4.Architecture of  jTaCO 

 

jTaCo can be configured to deal with various problems in evaluating grammars with respect to a 
corpus:  

• use of different classes of named entities, or different granularities (e.g., organization and its 
subclasses company, university, government etc.) 

• the extent of a NE may be different: e.g., a person name may or may not include a function 
and a title (“Chairman and CEO Bill Gates” vs. “Bill Gates”) 

• the markup of the corpus may be textually oriented (e.g., as XML tags) while output of 
grammar is a semantic structure 

For the first problem, jTaCo allows the user to declare the equivalence of classes, and subclass 
relationships.  

For the second problem, jTaCo can be configured to accept particular named entities as recognized 
correctly even if the left and right boundaries are not exactly the same as in the corpus. The user can 
specify that only the left or right boundary must be matched, that the recognized NE must be included 
in the annotated one or vice versa, or that the NEs must overlap, but not match exactly. The size of the 
allowable mismatch on each side (number of tokens) can be specified by the user. These options can be 
specified separately for each NE class, and for each input corpus. 

The third problem arises from the fact that manual corpus annotation is generally additive, i.e., the 
original corpus is preserved and annotations are added to it, while NLP applications such as NER are 
often transformative, i.e., the original input is being replaced by higher-level representations (tokens, 
morphological, syntactic, semantic). SProUT produces typed feature structures as output, but stores 
information in the output structure about the origin of each output structure with respect to tokens in 
the input. This correspondence between the semantic output structure and the input from the test corpus 
is used for evaluating the output structure against the corpus. In case of a semantic output structure, the 
problem of partial recognition of NPs is not matching of string boundaries, but matching of semantic 
representations against a named entity annotated in the corpus.  

The solutions to the first and second problem are fully implemented and configurable in a graphical 
user interface. The solution to the third problem is still being implemented. 

6 Conclusion and Future Work 
We have addressed a fundamental problem in re-using heterogeneously annotated corpora as training 
and testing data for multilingual grammar development, and have outlined our approach to the problem. 



- 11-  

With the increasing availability of annotated corpora on the web or through distribution agencies, such 
as ELRA or LCD, the re-use of annotated corpora becomes an attractive and cost-effective option, 
compared to the special-purpose annotation efforts. In this work, we have described methods and tools 
for re-using annotated corpora for the development and evaluation of NE grammars.  

7 Acknowledgements 
The research underlying this paper was supported by research grants from the German Bundesmini-
sterium für Bildung, Wissenschaft, Forschung und Technologie (Projects WHITEBOARD, 01 IW 002, 
and COLLATE, 01 IN A01), and from the European Commission (Project AIRFORCE, IST-12179). 

8 References 
[Asahara, 2000] M. Asahara and Y. Matsumoto. Extended Models and Tools for High-Performance 
Part-of-Speech Tagger, In Proceedings of the 18th COLING, pages 21-27, 2000. 
[Becker et. al, 2002] M. Becker, W. Dro�d�y�ski, H.U. Krieger, J. Piskorski, U. Schäfer, F. Xu. 
SProUT - Shallow Processing with Typed Feature Structures and Unification. In Proceedings of ICON 
2002 - International Conference on NLP, Mumbai, India, December, 2002. 
[Chinchor 1997] Nancy Chinchor. MUC7 Named Entity Task Definition. Technical Report, NIST, 
September 1997. 
[Callmeier et al. 2002] U. Callmeier, G. Erbach, I. Gogelgans, S. Hansen, K. Kunz and D. Ziegler-
Eisele. COLLATE Annotationsschema. Technical Report, Saarland University, 2002. 
[Krieger and Schäfer, 1994] H.-U. Krieger, U. Schäfer. TDL – A Type Description Language for 
Constraint-Based Grammars. In Proceedings of COLING, pages 893-899, 1994. 
[Liu, 2001] K. Liu. Research of automatic Chinese word segmentation. In International Workshop o n 
Innovative Language Technology and Chinese Information Processing (ILT&CIP-2001), 2001. 
[Petitpierre and Russell, 1995] D. Petitpierre and G. Russell. MMORPH-The Multext Morphology 
Program, 1995. Multext deliverable report 2.3.1. ISSCO, University of Geneva. 
[Piskorski et. al, 2002] J. Piskorski, W. Dro�d�y�ski, F. Xu, O. Scherf. A Flexible XML-based Regular 
Compiler for Creation and Converting Linguistic Resources. In Proceedings of LREC 2002 

[Piskorski, 2002] J. Piskorski. DFKI Finite-State Machine Toolkit. Research Report RR-02-04, DFKI 
GmbH - German Research Center for Artificial Intelligence, Saarbrücken, Germany, 2002. 
 
 


