SYSTEM OF SEMANTIC TYPES IN PDEV

Outline of the presentation

Prague, Dec 6, 2010

by Martin Holub and Lenka Smejkalova

Institute of Formal and Applied Linguistics
Charles University in Prague

1) The Prague-&-Brno PDEV team, the goals

* The team members:
 - Silvie Cinkova, Martin Holub, Lenka Smejkalova = Prague team
 - Adam Rambousek, Pavel Rychly = Brno team, infrastructure
 - Patrick Hanks = the CPA author, lexicographer, advisor

* PDEV as an NLP applicable source?
 - for NLP application the PDEV data should
 - be consistent as much as possible
 - make at least a representative sample (in statistical sense, we need corpus coverage)
 - be clear enough at least for humans (to test it we measure inter-annotator agreement)

* Two basic NLP tasks:
 - pattern recognition and pattern discovering
 - from the machine learning point of view:
 - the first task is a (standard) classification task, while
 - the second task is a clustering task
 - strategic application at UFAL: machine translation
 - fundamental assumption: patterns imply meaning, the task is semantically oriented
*** 2) Basic PDEV structure

* Three main components
 - pattern database
 - manually tagged reference samples attached to each PDEV entry
 - system of semantic types, corpus-driven, linguistically oriented

* What is a "good PDEV ontology"???
 - our view (if PDEV is used for NLP): "good ontology" means a system of semantic types that helps to automatically recognize patterns well

*** 3) Terminology: Semantic Types vs. Lexical Sets

* Terms
 - semantic types = "labels" used in pattern definitions
 - lexical sets = "groups of paradigmatically related words that may fill the argument positions in a pattern"

* Needs
 - humans need clear and consistent definitions of semantic types
 - on the other hand, for machine learning we do not need to define semantic types, because computers cannot understand human definitions; for machine learning purposes we need consistent (training) data - the greater volume, the better
 - lexical sets should be extracted from a large corpus and optimized by computer so that they serve to pattern recognition
 - to extract the whole set of nouns for a given semantic type we need the union of all relevant lexical sets
4) **Unclear semantic types can be a cause of inconsistencies in PDEV data**

- there is no documentation of the system of semantic types used in PDEV -- neither definitions, nor relations
- possible inconsistencies in using semantic types have not been explored/mapped yet

- consistent using and interpretation of semantic types requires their definitions:
 - we need good/clear definitions of semantic types in order to keep pattern database consistent: so that different lexicographers can use the established set of semantic types consistently
 - definitions of semantic types are also important for interpretation:
 - for lexicographers who browse the dictionary
 - for annotators (to make manually tagged data of good quality) and
 - for "normal" PDEV users

5) **The existing data about semantic types in the current PDEV**

* Extracting lexical sets from manually tagged sentences
 - the data used (about 200K manually tagged sentences)
 - verb arguments extraction using an automatic parser
 - the tools to browse the data:
 - filtering and sorting according to frequency and PMI
 - displaying relevant sentences

* Manually tagged data
 - almost 9000 pairs (ST, noun) tagged by Patrick, tagset={'T','C','M'}
 - randomly selected from the whole set extracted from tagged sentences
 - we obtained a small samples for some semantic types
 - machine learning still unsuccessful as the feature set used does not provide enough information

6) **Conclusion: what we need in the nearest future**

- semantic types definitions, guidelines for their use/interpretation
- more consistently annotated data for lexical sets extraction