
1

A Statistical Approach to Parsing of Czech

Daniel Zeman
ÚFAL, MFF, Univerzita Karlova, Praha
zeman@ufal.mff.cuni.cz

The present paper is based on my dissertation that was defended at Charles University in
May 1997. I introduce here a simple probabilistic model of Czech syntax, based on training
data extracted from a text corpus. Then I try to employ this model in building syntactic trees
of Czech sentences. In this paper, a brief description of the model is given, as well as a
summary of the test results. The work is one of the first attempts to use statistical learning
methods for parsing of Czech. It is to be said here that the procedures used to parse English
cannot be easily ported to Czech because some specific characteristics of Czech (free word
order, and rich flexion implying a huge number of word forms) cause a different behaviour of
a parser. The work presented is neither final, nor satisfying solution of the problem. It rather
demonstrates the primary results and proposes some basic ideas of further research.

1. Introduction
The task of parsing text (or speech) is something that a human being solves many times every
day. Reading a text or listening to someone, one needs to parse each sentence if s/he wants to
understand the utterance. One needs to know, for instance, that in the sentence �The child ate
the yellow apple.� the word �yellow� combines with the word �apple� rather than with
�child�. Wrongly parsed sentences would have significantly different meanings.

Although a native speaker is not probably aware of that, s/he actually is parsing constantly.
Foreigners may have some difficulties if their mother tongues have an essentially different
syntax. They may be parsing knowingly. And if we want the sentence meanings to be
distinguished by a computer, e.g. in machine translation, we have to deal with syntax more
than would like to.

On the other side, when writing a text, a human has to know about the syntax in order to form
grammatically correct sentences. Particularly in Czech, where many syntactic relations are
expressed by choosing adequate word forms, there are many opportunities to make a �syntax
error�. Today we are used to write texts in a word processor and we expect our errors to be
corrected by the computer. Spell-checkers find for us any non-existing word forms we write
down. But even a spell-checker will fail to recognise a syntactically wrong sentence formed
by word forms that are acceptable in another context. Instead, we need a grammar checker
which is another important application to employ at least some steps of a syntactic analyser.

What do we actually mean by �parsing�? In general, it means finding the grammatical
structure of a sentence. There might be several ideas what this structure looks like; however,
we are not going to consider the various possible approaches, rather we will present the one
we will be dealing with. At this point, let us say that in our approach the structure of a
sentence is represented by a dependency tree where the nodes are the words from the
sentence, and the edges are dependencies between them. (A more formal definition of the
structure will be given later.) So, we can say that the task of parsing involves constructing a
dependency tree, given a string of word forms, constituting a sentence.

With statistical modelling, we will look at parsing as a random process, and we will try to
predict its behaviour. We will have at our disposal a sample of previous the output of the

mailto:zeman@ufal.mff.cuni.cz

2

process, which represents an incomplete knowledge about the process. Our goal will be to
analyse this sample statistically and to construct a model � a probabilistic distribution
allowing us to say, which dependency tree is the most probable for a given plain sentence.

In Section 2 we give a formal definition of the parsing problem. We define the model in
Section 3, which is a theoretical background; then, in Section 4 we describe the algorithm
used to build the model and to employ it in parsing. In Section 5 we introduce methods of
testing the model, and we present the results of the experiments. Finally, in Section 6, we
summarise the results and discuss several ideas about improvements and directions of further
research.

2. Sentences and Dependency Trees
A sentence is a sequence of words s s sn1 2, , ,Κ . Generally we do not need to know what is a
word. It can be simply the word form which appeared in the sentence but it might also contain
some morphological information, the lemma and so on. Additional symbols such as numbers
and interpunction are considered separate words.

A dependency tree is formed by a set of nodes V and a set of edges H. Each node
corresponds to a word from the sentence, except for the root of the tree. Each edge represents
a dependency between a governor and its subordinate constituents. The definition of a tree
requires that there is exactly one node superior to any constituent of the sentence. However,
every node may have any number of subordinate constituents. The root of the tree is identified
by a special node #. It does not correspond to any word from the sentence, it only serves as
the root marker. Each tree has exactly one # node. The nodes are ordered so that we can
define depth-first and width-first tree searches.

Note that we have not defined any rule saying how a tree is constructed given a sentence.
Rather we are hoping that our statistical model discovers those rules and describes them in
terms of probability. So our intuitive knowledge of how a tree is constructed will be used only
indirectly, as we will define the model.

3. The Statistical Model
Let S be a sentence of n words. According to our definition, the dependency tree of that
sentence will consist of 1+n nodes (including the root #) and n edges. There are () 11 −+ nn
such trees. Among them, we want to select the most probable one, i.e. the tree that a human
would assign to the given sentence most often. Formally, we are looking for a tree M, defined
as

()SMpMmaxarg

From the Bayes� rule we get:

() () ()
()Sp

MpMSp
SMp

⋅
=

Here ()Sp is only a constant that has no influence on the result:

3

() ()
() () ()()MpMSp
Sp

MpMSp
MM ⋅=

⋅
maxargmaxarg

The ()MSp is the probability that the tree M was constructed exactly from the sentence S.
Since we are able to get back the original sentence from the tree (e.g. by having preserved the
original word forms and original word order as an additional info to each node), we
understand the ()MSp to be only a technical tool. It is a binary function giving one if the tree
is correct and corresponding to S, and zero otherwise.

The real strength then resides in ()Mp , the probability of the tree. Unfortunately we are not
able to model it directly: since there is such a big number of trees, we cannot get a parsing
sample large enough to estimate their probabilities. We are forced to simplify the task
essentially and to approximate the probabilities in some way, which on the other hand cannot
be done without a loss of accuracy.

First, we reduce ()Mp to the probability ()Hp of an edge sequence H. We can do that
because every tree is well-defined by the set of its edges. There is a small problem with the
fact that not every sequence of edges on a given set of nodes is a tree. Nonetheless, we can
define a special tree #M that does not correspond to any real sentence and assign it to all
wrong edge sequences. We can think of this tree as of an empty tree, containing only the root.
It is clear that ()#MSp will be always zero. We see that if the probability of the tree is
replaced by the probability of an edge sequence, the most probable tree will be just #M .
However, the proportions among the other trees are left intact, so that we have not distorted
the results so far.

We can break ()Hp down as follows:

() () () ()p H p h p h h p h h hn n= ⋅ ⋅ ⋅ −1 2 1 1 1Κ Κ, ,

Now it is time to reduce the complexity and the number of parameters of our model. We
cannot expect that our sample (training) data will make it possible to us to estimate
probabilities that are conditional in more than one dimensions. The longer vectors of edges we
consider, the lower is the recall (the fewer times we find a vector in the training sample). On
the other hand, if we reduce the vectors to one member, getting unconditional probabilities,
we lose significantly on the precision. Let us have a look at the unconditional, so-called
unigram language model. We suppose that for every edge ih it holds that

() ()p h h h p hi i i1 1, ,Κ − =

Then we see that

() ()p H p hi
i

n

=
=

∏
1

Now the problem is much more simple because we can estimate the edge probabilities ()ihp
by the relative frequencies from the training data, ()ihp~ . Since we suspect that the unigram
model is insufficiently precise, we will also study the bigram model where

() ()111 ,, −− = iiii hhphhhp Κ

and

4

() () () () () ()p H p h p h h p h h p h p h hn n i i
i

n

= ⋅ ⋅ ⋅ = ⋅− −
=
∏1 2 1 1 1 1

2
Κ

If we have a large sample of training data, we shall be able to estimate probabilities of pairs of
edges, too. However, we face here an additional problem, the one of specifying the order of
the edges. If we want to make the probability conditional on the preceding edge, we have to
specify which edge precedes the given one. This is why we have required that the nodes of
the dependency tree are ordered and that we can define depth-first or width-first search. Now
we can assign the same order to the edges since each node (except of the root) has exactly one
input edge. We do not know whether there is a stronger correlation between depth-first
neighbours, or between the width-first ones, and whether there is any correlation at all. So we
are going to try both orders in our experiments.

Finally we want to emphasise one aspect of the above language model definition. We
transposed the probability of a tree to the probability of an edge sequence, where the word
sequence implies that a predefined edge order exists. It means that among two edge
permutations, at most one may be considered correct, while the other is assigned the special
tree #M .

4. The Algorithms
The procedure will consist of two phases, one of training and another of parsing. During the
training period we will go through the training data, read dependency trees and count
frequencies of all the edges or edge pairs, respectively. After this phase, we are able to
estimate their unigram probabilities as

() () ()
c
hchphp == ~

where ()hc is the number of all occurrences of the edge h , and c is the number of all
occurrences of all edges in the training data sample. Similarly, we can estimate the bigram
probabilities as

() () ()
()1

1
11

,~
−

−
−− ==

i

ii
iiii hc

hhchhphhp

where ()ii hhc ,1− is the number of all occurrences of the edge pair ii hh ,1− (in the given order).

The trained probability distribution has one essential disadvantage: it is very sparse:
especially with the bigram model there are many edge pairs that have not occurred in the
training data and so they get a probability of zero. But we should not simply forbid such pairs
because once we might want to use the language model together with an additional source of
information. If this additional info absolutely prefers one of those �unseen� pairs, and that pair
has a probability slighter higher than zero, it still can be selected. That is why we should avoid
the zero probabilities. We have to smooth the distribution so that it does not contain any zero
holes. With smoothing we will gain an additional advantage: we will be able to distinguish
more subtly the edges that were seen in the training sample in a context different from that of
the test data.

We do that by adding the unigram probabilities to the bigram ones. Albeit we have not yet
seen the edge pair ii hh ,1− , it is still possible that we have seen the edge ih alone. However, if
we have not seen the edge ih at all, it would get again the zero probability. To avoid this case,

5

we add also a constant, the uniform probability 2
1~
L

p = where L is the size of the lexicon

and thus 2L is the number of possible edges. Since the sum of three probabilities is not itself
a probability (it can exceed 1), we have to weight each component by a λ from the interval
()1;0 ; the sum of all weights must be 1:

() () () phphhphhp iiiii
~~~

01121 λλλ ++= −−

In our experiments we use estimated values of weights. With bigram models we use
99,02 =λ , 009,01 =λ , and 001,00 =λ . With the unigram model we use 99,01 =λ , and
01,00 =λ .

The syntactic analysis proper is performed in the second phase as we construct the
dependency tree. Here we use the trained and smoothed probability distribution to find the
best, i.e. the most probable tree. We will construct the tree using the greedy algorithm. We
start with a discrete graph, containing the root only. Then, in each step we add the edge that
increases the tree probability at most. Note that not all remaining edges are allowed to be
added in each step, but only those that will not violate the correctness of the tree. Particularly,
we are allowed to add those edges whose superior word has already been added to the tree,
and the subordinated one has not. With the bigram models, we additionally have to reduce the
allowable set to those edges that keep the given search order. By that we guarantee that the
�guard� probability ( )MSp  will be equal to 1. Note that the greedy algorithm does not
guarantee that ( )Mp  is the highest possible value. Rather it is an approximation we use to
reduce the computational complexity.

We have not specified yet how the training data that we have at our disposal look like. In
particular, we must specify what we understand under a �word�. It might be a lexical unit
(lemma), a word form, a tag containing some morphological information, or any combination
of the above. Since the available data resources are quite poor at the time (April 1997) we
give up training based on lexical information and concentrate ourselves on the morphological
tags. At the moment, we work with resources in which the tags are not disambiguated, so that
most of the word forms have a set of tags associated with them. Exactly one of the elements
of the set is correct in the given context but we do not know which one it is. That is why we
have to deal with whole tag sets.

It is the matter of course that both the training and the parsing phases must be amended when
training on disambiguated sets of tags. If there is an edge in the training sample whose
governing node contains i and subordinate node contains j tags then we have to record all

ji ×  possible combinations (tag edges). We have to remember that these combinations
represent only one edge occurrence in the training data. In order to keep the relation to
frequencies of the other edges, we distribute the occurrence among the particular tag
combinations. E.g., if there is an edge with the superior node [solí,
NFS7A|NFP2A|VPX3A] and the subordinated node [bílou, AFS41A|AFS71A] then
that edge actually represents exactly one of the combinations NFS7A-AFS41A, NFS7A-
AFS71A, NFP2A-AFS41A, NFP2A-AFS71A, VPX3A-AFS41A, and VPX3A-AFS71A.
Instead of incrementing frequency of some edge by one, we raise the frequencies of each
combination by 6

1 . Then, during the parsing phase, we compute the probability of an event
disjunction:



6

( ) ( ) ( ) ( )p h h p h p h p h hk k k1 1 1∨ ∨ = + + − ∧ ∧Κ Κ Κ

The last equation member is equal to zero if no tag combination occurs in one edge more than
once. It is true that in our data such a repetition is possible, but the reasons are not relevant for
our task. Therefore we record every combination only once.

In the same view we have to deal with the context edges in bigram models. If the edge ih
contains the tag combinations ei ,1  to ei ki,  and its context edge 1−ih  contains the combinations
ei−1 1,  to ei ki− −1 1,  then, in the training phase, we record each combination from the edge in scope
gradually in contexts of all combinations from the context edge, each time with the frequency

1

1k ki i⋅ −
. In the parsing phase, we have to remember how the probabilities are estimated by the

frequencies. Because every edge frequency is actually a sum of frequencies of tag
combinations, we get:

( )
( )
( )

p h h
c e e

c e
i i

i j i l
l

k

j

k

i l
l

k

ii

i−

−
==

−
=

=
∧

−

−

∑∑

∑
1

1
11

1
1

1

1

, ,

,

We see that the ambiguity of morphological tags increases enormously the computational
complexity, especially with the bigram distribution. Since certain words can have up to 27
possible tags, we may need about half a million accesses to the table to estimate one
probability value!

5. Testing and Results
We have at our disposal sample data containing 1150 trees. We reserve 100 of them for
testing purposes because the model cannot be tested on the same data it has been trained by.
The rest 1050 trees (18015 words) form our training sample.

Table 1. Basic characteristics of particular models. T is the number of training trees. By
�param�s� we mean the number of different edges (or edge pairs) that occurred in the training
sample. The value is higher than the number of words with the unigram model, because some
edges are labelled by sets of tag combinations. The entropy of a model is defined by the
equation

( ) ( ) ( )∑
=

−=
2

1
2log

L

i
ii hphpH α

for the unigram model and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑ ∑∑
= == = =

−=−==
2 22 2 2

1 1
2

1 1 1
2 log,log

L

i

L

j
ijji

L

i

L

i

L

j
ijijiii hhphhphhphhphphHhpH αβα

for the bigram model. The perplexity is ( ) ( )αα HP 2= .



7

Basic model characteristics words param’s entrop
y

perplexity

unigram, T=50 684 3127 9,43 689
unigram, T=250 3960 10 305 10,64 1599
unigram, T=1050 18 015 23 099 11,12 2227
bigram depth-first, T=50 684 78 026 2,51 6
bigram depth-first, T=250 3960 439 964 3,64 13
bigram depth-first, T=1050 18 015 1 901 85

8
bigram width-first, T=50 684 51 775 2,70 7
bigram width-first, T=250 3960 456 723 3,88 15
bigram width-first, T=1050 18 015 1 943 86

4

We tested each model in the following way: we took a tree from the test data, reconstructed
the plain sentence (i.e. removed the tree structure) and made it the input of the parsing
procedure. After parsing, we thus had two trees, the old one 0M  from the data, and the new
one 1M , generated by the parser. Then we counted the wrong edges, i.e. the number of words
that were subordinated to different nodes in both trees. We defined the success rate as the
number of all wrong edges in the test output, divided by the number of all edges in the test
data. Note that for this purpose we compared the word occurrences rather than the contents of
the tag sets. Hence if two words had the same tag sets and the parser swapped their positions
in the tree, they both were counted as wrong edges.

Table 2. Again, T is the number of the training trees. Z is the number of the test trees.

Success rate T = 50
Z = 5

T = 250
Z = 25

T = 1050
Z = 100

unigram 25 % 32 % 31 %
bigram depth-first 29 % 22 % 30 %
bigram width-first 23 % 23 % 27 %

Table 3. The cross entropy is defined as follows:

( ) ( ) ( )∑
=

−=
2

1
2log~�

L

i
ii hphpH α

for the unigram model and

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )∑∑∑ ∑∑
= == = =

−=−==
2 22 2 2

1 1
2

1 1 1
2 log,~log~~�~�

L

i

L

j
ijji

L

i

L

i

L

j
ijijiii hhphhphhphhphphHhpH αβα

for the bigram model. As before, the symbol p~  denotes the relative frequency in the test data
rather than probability. The higher the cross entropy is, the more edges of the test data are not
known from the training data.

Cross entropy T = 50
Z = 5

T = 250
Z = 25

T = 1050
Z = 100

unigram 21,68 14,84 12,60
bigram depth-first 21,98 10,81
bigram width-first 21,45 11,11



8

We see that the results are not very satisfactory. It is surprising that the error rate with
bigrams is higher than that with unigrams. Most likely insufficient data resources cause this.
However, it is also possible that the defined context has a minor influence in the parsing
process. The disadvantage of limiting allowed edges by depth-first or width-first search order
then comes to the foreground.

Our parser is only slightly more successful than a procedure that assigns trees to sentences in
a certain pre-defined way. After this procedure, each word depends on the preceding word in
the sentence, only the first word and the final period depend on the root. We do not present
any comparison here because in the experiments the error rate was measured in a different
way in order to compare it to the work of Ribarov (1996). For details, see Zeman (1997) and
Ribarov (1996).

An important question is whether the errors of our method are caused mostly by concessions
made in the model definition or by an inaccurate construction of the most probable tree. If the
model (together with training data) is accurate, the original trees from the data will get higher
probabilities than the wrong trees generated by the parser. We have demonstrated
experimentally that this is the weakness of our method, see the next table.

Table 4. The values N , and 0N  are the numbers of tested trees, and the numbers of cases
when the generated tree received a higher probability than the original one, respectively. We
also define the difference of two trees as

( ) ( ) ( )00, MpMpMMd −=

where ( )Mp  is the probability of the tree M, normalised to the number of nodes as follows.

( ) ( )p M p hi
n

i

n

=
=

∏
1

Actually it is a geometrical average of edge probabilities. Note that a positive difference
indicates the generated tree being more probable, and a negative one indicates the opposite. In
Table 4 we present average differences.

Average probability difference between generated
and original tree

N N0 d(M,M0)

unigram, T = 50 5 5 +6,0.10-3

unigram, T = 250 25 22 +2,9.10-3

unigram, T = 1050 100 89 +2,8.10-3

bigram depth-first, T = 50 5 5 +1,8.10-3

bigram width-first, T = 50 5 5 +2,0.10-3



Table 5. The last experiment will show the influence of the smoothing weights iλ . If it

appeared significant, we could specify the
weights by the EM algorithm instead of
estimating them. We experimented with an
unigram model, trained on 250 and tested
on 25 sentences. Gradually we dropped the
value of 1λ  and raised 0λ . We have
demonstrated that there is almost no
influence on the error rate and, as the
figure shows, only a minor influence on
the cross entropy.

6. Summary
With the data available in April 1997, none
of the tested methods seems to be useful
for parsing Czech. Our observations point
to a weakness of the probability
distribution rather than to a bad edge
searching (the greedy algorithm). This does no
should be completely thrown out. We have m
forced partly by the time and space computati
quality of available data. Let us summarise no
may therefore become an object of further res
correspond to their importance.)

1. The model uses dependencies between mo
between lexical units. For example, a com
any other punctuation mark, although it su
final full stop. An �ideal� model should ta
as morphological relations between the go
take at least an advantage of bigrams.

2. The fact that one node can have several va
significant source of inaccuracy. For insta
a preposition at the beginning of the sente
however, in our model both derived edge 
many defects of this type. Very often there
that can be assigned to a substantive or ad
a significant role in finding dependencies 
or between the predicate and the subject). 
morphological analysis (or tagging) is ava
time the complexity of the computation sh

3. In some cases we might use less and in oth
the difference between particular pronoun
syntax while their gender, number and cas
an essential difference between a comma a
code ZIP is assigned to both of them (see

4. The smoothing weights were estimated. A
this approximation makes no difference to
9

t mean, however, that the statistical approach
ade several simplifications and approximations,
onal complexity, partly just by the amount and
w some points of possible improvements, which
earch. (The order of items does not necessarily

rphological tags but ignores the relations
ma in the sentence is marked by the same tag as
rely behaves in a different way than, e.g., the
ke into account a combination of lexical as well
verning and dependent nodes, and, if possible,

riants of morphological tags is most likely a
nce, the Czech word form �V� may be not only
nce but also a Roman number symbol 5;
groups receive the same weight. We can list
 are several combinations of number and case

jective word form. Exactly these attributes play
(the agreement between a noun and its attribute
We believe that as soon as adisambiguated
ilable, the precision will increase. At the same
ould fall down.

er cases more specialised tags. For example,
 types should not have major influence on the
e are quite important. On the other hand there is
nd the final full stop, but in our data the same

 also point 1).

s shown in Table 5, under current circumstances
 the success rate of the model. However, certain

Relation between Cross Entropy 
and Smoothing

0

5

10

15

20

25

0,9
9 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0

lambda[1]
cr

os
s 

en
tr

op
y



10

changes of cross entropy in the same Table mark that with much more data we can expect
an increasing influence of the smoothing weights. Then we could improve the result by
training the weights with some variant of the EM algorithm.

5. We have not used all the information we had about the sentence. In particular, we should
consider the word order, suppress the non-projective edges, and find a suitable way to use
the distance between the superior and the subordinate nodes in the sentence.

6. In Ribarov (1996), the tree is not constructed from an empty one. Instead, the sentence is
deterministically structured to a start tree where each word depends on the preceding one,
only the first word and the final  full stop depend on the root. Then the start tree is
adjusted as long as there is an edge improving probability. It might be interesting to
change our method this way; however this probably will not improve anything before we
construct a better probability distribution.

7. The training data contained errors � that is, errors with respect to the rules a human uses
to parse a sentence, because otherwise the �truth� is defined just by the contents of the
training sample. If these mistakes appear with the same frequency in the test data, their
existence shall not hinder. (Examples: badly placed end of the sentence; sentence parsed
as a chain where each word depends on the preceding one.)

7. Acknowledgements
The research would not be possible without a corpus of manually annotated sentences (the
training data). The (yet incomplete) corpus we used has been made available by the grant
GAČR No. 405/96/K214 and by the project of the Ministry of Education of the Czech
Republic No. VS96151.

8. References
[1] [BAHL ET AL. 1989]

Lalit Bahl, Peter Brown, Peter de Souza, Robert Mercer: A Tree-Based Statistical Language Model for Natural Language Speech
Recognition. In: IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 37, No. 7, July 1989. Yorktown Heights.

[2] [BROWN ET AL. 1993]
Peter Brown, Stephen della Pietra, Vincent della Pietra, Robert Mercer: The Mathematics of Machine Translation: Parameter Estimation.
In: Computational Linguistics, 19 (2): 1993, pp. 263-312.

[3] [COVER, THOMAS 1991]
Thomas Cover, Joy Thomas: Elements of Information Theory. John Wiley & Sons, Inc., New York 1991.

[4] [DEMPSTER ET AL. 1976]
Arthur Dempster, N. M. Laird, Donald Rubin: Maximum Likelihood from Incomplete Data via the EM Algorithm. In: Journal of the Royal
Statistical Society, Series B, Volume 39, London 1977, pp. 1-38..

[5] [HOLAN ET AL. 1995]
Tomá� Holan, Vladislav Kuboň, Martin Plátek: An Implementation of Syntactic Analysis of Czech. In: Fourth International Workshop on
Parsing Technologies. Praha, 1995.

[6] [CHOMSKY 1957]
Noam Chomsky: Syntactic Structures. Mouton & Co. Publishers, Den Haag 1957.

[7] [OLIVA 1989]
Karel Oliva: A Parser for Czech Implemented in Systems Q. Explizite Beschreibung der Sprache und automatische Textverarbeitung XVI.
Matematicko-fyzikální fakulta Univerzity Karlovy, Praha 1989.

[8] [PETKEVIČ 1998]
Vladimír Petkevič: Underlying Structure of Sentence Based on Dependency. Filozofická fakulta Univerzity Karlovy, Praha (in press).

[9] [RIBAROV 1996]
Kiril Ribarov: Automatická tvorba gramatiky přirozeného jazyka (diploma thesis). Matematicko-fyzikální fakulta Univerzity Karlovy,
Praha 1996.

[10] [SGALL ET AL. 1969]
Petr Sgall, Ladislav Nebeský, Alla Goralčíková, Eva Hajičová: A Functional Approach to Syntax in Generative Description of Language.
American Elsevier, New York 1969.



11

[11] [ZEMAN 1997]
Daniel Zeman: Pravděpodobnostní model významových zápisů vět (diploma thesis). Matematicko-fyzikální fakulta Univerzity Karlovy,
Praha 1997.


