
This paper is going to be part of a report whose full citation may once be like this:

[1] [HAJIČ ET AL. 1998]
Jan Hajič, Eric Brill, Michael Collins, Barbora Hladká, Doug Jones, Cynthia Kuo, Lance Ramshaw, Oren Schwartz, Christoph Tillmann,
Daniel Zeman: Core Natural Language Processing Technology Applicable to Multiple Languages. The Workshop 98 Final Report. At:
http://www.clsp.jhu.edu/ws98/projects/nlp/report/. Center for Language and Speech Processing, Johns Hopkins University, Baltimore 1998.

1

Workshop '98 Final Report: Zeman's Parser

Daniel Zeman
ÚFAL, MFF, Univerzita Karlova, Praha
zeman@ufal.mff.cuni.cz

The subpart of this project which is internally called 9802, involved a parser for Czech based on direct
statistical modeling of tag / word dependencies in Czech. In comparison to the 9801 parser, this does not use
any grammar, and works directly with dependency trees instead of parse trees.

Several techniques were developed in preparation for this workshop, that had not been published before and that
help the tag-based part of the parser. Although they were prepared before the workshop, the workshop brought a
great deal to their implementing for the Prague Dependency Treebank, and to testing them thoroughly.

Then the second part of the workshop was devoted to lexicalizing the parser, i.e. to developing a new statistical
model that deals with dependencies between words rather than between the morphological tags. It is true that
this part did not help the parser as much as expected (and as reported for other parsers for English) but the
outcomes are still challenging and the model developed here enables to continue with the research in future.

Let us very briefly look at the structure of the parser. Its main task can be characterized by the following
expression:

() () ()()TpTSpSTp
TT

⋅= maxargmaxarg

It means that the parser wants to find the dependency tree T that maximizes p(T|S) where S is the sentence being
parsed. In other words, we want to construct the tree that most likely is a dependency structure of the sentence S.
Because in no way we are able to decide among all possible trees in the universe, we have to decompose the tree
probability into edge probabilities. These can be estimated from the relative frequencies of dependencies in
training data. Then, using the Viterbi search algorithm, we try to find the tree with the highest possible product
of probabilities of its edges. Here we take a significant simplification that the dependency probabilities are
statistically independent, i.e.

() ()∏
=

=
n

i
idpTp

1

This obviously is not true and weakens the parser so that we had to introduce various constraints, additional
models and techniques that help us a little to work around this weakness. A list of them follows; a more detailed
description will be given later in this report.

• Crossing dependencies (so-called non-projective constructions) are not allowed.

• A supervised reduction of morphological tag set was done. The number of different tags occurring in corpus
decreased from about 1000 to about 400.

• A new model for valency was added. It says the parser how likely a node with a given tag has a particular
number of child nodes.

• We take into account whether the words forming a dependency are adjacent in the sentence or not.

• We take into account whether the dependency goes to the right (the governing node precedes the dependent
one in the sentence) or to the left.

The following table gives a brief summary of the results in terms of parsing accuracy. That is, each number is
the percentage of dependencies generated by the parser that were correct. Unless stated otherwise, all the
numbers characterize parsers trained on over 19000 sentences (approx. 300000 words) and tested on one of the
two test data sets, the development test data, and the evaluation test data. The e-test data was used only at the
very end of the workshop to cross-validate the results, so most stages have been tested with the d-test only. The
training set and both the test sets contained texts from three different sources, from a daily newspaper, from a

mailto:zeman@ufal.mff.cuni.cz

2

business weekly, and from a scientific magazine. It turned out to be much more difficult to parse the last one
(mainly because of the sentence length) so it seems reasonable to give separate results for the scientific
magazine (labeled �sci�) and for the rest (labeled �norm�).

The baseline parser includes all the techniques whose development started before the workshop so "baseline"
may be read as �before lexicalization�. A deeper description of the techniques and a more diversified summary
of their contribution to the parsing accuracy will be given later in this report. The final results include the
lexical part of the parser as well as some minor improvements that will be described later, too.

D-test E-test
norm sci all norm sci all

Baseline 54 48 51 57 51 54
Final 57 52 55 58 53 56

1. The basic model
The backbone of the present parser is a statistical model that was first studied in [ZEMAN 1998 A]. (It is referred
to as �the unigram model� there.) Let us now briefly summarize the fundaments of this model.

The main information the parser relies on (and thus the main thing to gather statistics about) is the dependencies
between the words in a sentence. A word can be represented either by its morphological tag (containing the
part-of-speech information as well as the inflection) or by some kind of lexical information. Or both.

During the training phase, the parser reads hand-annotated trees and saves the number of times a particular word
was hanged on the other one. This way it estimates a probability for each dependency (tree edge) it sees in the
data.

In the parsing phase, the parser tries to find the dependencies between tags so that the final tree has the highest
possible probability. More formally, it searches for

()STp
T

maxarg (1)

where S is a sentence and T is its dependency tree. In the first approach we assumed that the only condition that
bound p(T) with S was that the nodes of the tree had to be exactly the words of the sentence (except of the root
� see the format of the Prague Dependency Treebank (PDT)). Otherwise, we dealt with an unconditional
probability p(T). Now there is a few new conditions using the word order information; they will be described
later.

For simplicity the parser also assumes that the probability of the whole tree is a product of the probabilities of all
dependencies in it. In other words, the probability of each particular dependency shall be statistically
independent on any other edge in the tree:

() ()∏
=

=
n

i
idpTp

1

(2)

Obviously this is not true, so there is a significant loss of accuracy which we try to compensate with additional
models and features. These will be described later.

2. Ambiguous morphological tags
In our approach the parser needs the input sentences to have morphological tags already assigned to each of the
words. Unfortunately, word forms in Czech are highly ambiguous, so for many words there may be a lot of tags,
each of them potentially describing the word in some context. Ideally we would need to apply a dictionary (or a
morphological analyzer) which would assign a set of all possible tags to each of the words, and then a tagger that
would say which tag from the set is true in this particular sentence. Nevertheless, the parser actually does not
need a tagger. Instead of a unique tag, automatically assigned by a tagger, it can use the whole set from the
dictionary.

The solution is as follows: When training, in each dependency we count all possible tag combinations. But they
represent only one occurrence of an edge, so we add their numbers in register by 1/n rather than by 1, where n is
the number of tag combinations for the edge. When parsing, our estimation of the edge probability is the sum of
the relative frequencies of all possible tag combinations for the given edge.

3

The tag ambiguity however increases the computational complexity. Most Czech words have ambiguous tags.
Some words can have a relatively big set of them � for instance, there is a class of adjectives which all have an
ambiguous form with 27 tags. Combined with lexical ambiguity (word form appurtenance to dictionary
headwords), the number can yet increase, and a dependency between two such word forms is not very rare. So,
to estimate one edge probability, the parser might need to access the table more than 700 times. Moreover, the
tag ambiguity has influence on the accuracy of the results, as will be shown later.

3. Searching edges and building the tree
Obviously it is not trivial to select the optimal set of dependencies that maximizes the probability of the whole
tree. Initially we used a greedy algorithm: in each step we added the edge that had the highest probability. Of
course the set of allowed dependencies was constrained, the governing node had to be already added to the tree
while the dependent node was not allowed to be there.

The greedy algorithm gives maximum probability only for non-oriented trees where p(A,B) = p(B,A). For our
case it is only an approximation, maybe too strong. It is impossible to find the real maximum (it needs
exponential time) but we tried a Viterbi search. The set of all partially completed trees was truncated to N best of
them. In each step we added M most promising (read: most probable) edges to each tree which gave N×M new
trees; then the trees were sorted by their probabilities and the stack was truncated at the level N again. In most
experiments (unless stated otherwise) we used N=M=5. Hopefully, in some cases this caused the most probable
edge to be preserved for use in next rounds with even better gain.

The experiments showed that the initial model was so bad (31%1, i.e. only some five points over a naive parser
which creates chain-trees) that the Viterbi search did not improve anything. In fact almost all the generated trees
had higher probability than the �truth� from test data because the probability distribution modeled the reality
badly. But as we added new features and additional models, the influence of the Viterbi search increased.

4. Projectivity and crossing dependencies
Let us now discuss the first constraint we imposed on the model. As mentioned before, the version 1 parser did
not use the word order of the sentence. But the actual word order information is important for parsing even in
such a �free� word order language as Czech. For instance, in the generated parses it was quite often that a noun
was connected to a preposition at the other end of the sentence, possibly with commas and verbs in-between,
only because this particular dependency was relatively frequent in the training data. We cannot easily employ the
absolute distance of the words to solve this problem because anytime there may be a phrase of an arbitrary
length between the governing and the dependent node; however, there is another phenomenon that seems to be
present with most of the ill-formed dependencies. It is called crossing dependencies or non-projective
constructions.

Here is an example of a correct and a generated parse. The original sentence was �Bohu�el ale jednorázové,
tak�e velkou část spolknou daně.� which can be translated as �Unfortunately, [the donation was] given whole at
a time so that a big part will be swallowed by taxes.�. Note the crossing edges in the second tree. The floating
point numbers in the second tree indicate the probabilities of the dependencies of every node on its parent.

1 For details, see [ZEMAN 1998 A].

4

Figure 1: A correct parse and a generated parse for the same sentence.

Projectivity is a property that combines tree structure and the word order in sentence. A dependency A-B (where
A is the governing node) is a projective construction if and only if all the words that are placed between A and
B are included in the subtree of A. If you display the tree so that the x-coordinates of nodes correspond to the
word order, each non-projective dependency will cross at least one perpendicular from another node. (It will not
necessarily cross another dependency: in our example the nodes 3, 5, 7, and 9 are connected non-projectively.)

Let us mention that sometimes the non-projective constructions are not errors. The tree at the Figure 2 is an
example of a correct parse with a crossing dependency. Such constructions are generally allowed in Czech but
they are rare. Roughly 1.8% of all dependencies in the PDT are non-projective; the average length of a tree in the
corpus is 16.3 words (dependencies). About 79.4% of all trees contain no crossing edge. The number of trees
that contain one or no crossing dependency is 93.8%, and the number of trees with at most two such
dependencies is 98.3%.

This investigation shows that it is a good idea to disable non-projectivities at all until the parser achieves an
accuracy level beyond 90%. The experiments showed that using this constraint the parser improved its
performance from 31 to 41%, resp. 42% (the first one using the greedy algorithm, the second one using the
Viterbi search).

5. Proportional training
This chapter discusses an issue that we hoped might
help the parser in case there is no tagger available
and the morphological tags are not disambiguated.

As we mentioned before, the ambiguous tag
combinations over an edge get a uniform
distribution of probabilities. However, some of them
are more probable than the other. The model may
reflect this because particular tag combinations may
have been present in various edges. But this is only
an indirect binding and we wanted to emphasize the
differences between particular tags, some of them
being very frequent while the others were hardly to
see at all.

So we built a small unigram probability distribution
for the tags and then, training the tree structures,
instead of increasing the frequency of each tag
combination by 1/n we weighted the frequency by the
probability of the tags in the given combination. Of
course it was normalized so that the values for all
combinations in one edge summed to 1. However, this
Figure 2: An example of a correct parse with a
crossing dependency.

5

feature did not improve the results at all, they were
even worse than before. So we omitted the
proportional training in ongoing research.

6. Reduced set of morphological tags
Some of the morphological information encoded in
the tags has no influence on syntax. For instance, all
adjectives, verbs and adverbs can have positive and
negative forms, whereas the negative form is
constructed completely regularly by simply inserting
the prefix �ne-� to the word beginning. This has no
influence on the syntax because the negative forms
behave syntactically exactly the same way that the
positive ones do. So using such information in syntax
training may damage the results. For instance,
suppose we have seen a positive form of a word
depending on a given other word n-times but we have
not ever seen the negative form in this context. Then
the edge with the negative form will get a probability
of zero (or close to zero when smoothed) but in fact it

should have the same probability as the one with positive form.

There are many other tags that we have merged together. Besides the negation, we also dropped degree of
comparison of adjectives and adverbs, merged some classes of pronouns and numerals with nouns or adjectives,
respectively, some classes of numerals match even adverbs. We also discarded information of some
morphological and semantic subclasses (SUBPOS), and about the vocalization of prepositions. The VAR
category (distinguishing some archaic, rarely used, and otherwise specific forms) had already been ignored. On
the other hand, we split the tag for punctuation into several new tags in order to distinguish between commas,
full-stops etc. Before the reduction there was 1279 tags present in the training part of PDT, out of about 3000
possible. After the reduction this number decreased to about 452 so the reduction rate is approximately 65%.

Note that this is a supervised reduction where a human has to say what shall be preserved and what shall not.
There have been attempts to reduce the tag set using mutual information and a clustering algorithm2. These two
approaches have not yet been studied together and compared.

7. Valency
Some of the words tend to have many dependents while some others are almost all the times leaves, and the
prepositions take mostly exactly one dependent � a head of a noun phrase. The parser described so far does not
reflect this observations and, e.g., if there is one preposition in the sentence but several nouns, it often wants to
hang all the nouns to the single preposition. To avoid this, we introduced an additional model which knows how
often a given tag is a leave, how often it has one child node, how often two, and how often three or more. This is
what we call �valency�. The parser multiplies the edge probability estimations by the probability of the
governing node having n+1 children where n is the current number of children. With the ambiguous tags we use
an average valency probability over all ambiguous tags for the governing node.

8. Direction and distance
Finally, we introduced two important features that reflect the mutual positions of the two dependency members
in the sentence.

The first one is direction. The model assigns separate probabilities to a dependency where the depending node is
(in the sentence) to the left of the governing node, and to the same dependency where it is to the right of the
governing node. For instance, a preposition stands always to the left of its dependent. This feature (together with
reduced tags and valency) pushes the accuracy to 49.6%; a more detailed summary of the results will be given
later.

2 See [RAMSHAW] in this report.

0
10
20
30
40
50
60
70
80
90

100

R
4

ZS
B

PR
C

X
3

V
PP

1A

no child
one
two
three
more

6

The second thing is distance, or better, adjacency. Now the parser only asks whether the two nodes are adjacent
in the sentence or not. Separate probability estimates are kept for both choices. This feature (together with
reduced tags and valency) pushes the accuracy to 48.5%.

Both direction and distance together bring the parser to 53% on the same small test data.

9. Summary of Version 2 results
Some of the features presented in the previous paragraphs immediately and significantly improve the results
while some others work only when combined together. For this reason it was not always possible to specify the
effect of a feature in terms of one number. Rather we present here a table of a number of feature combinations
and the achieved accuracy levels. All experiments were run with the same small set of 199 sentences (trees) and
3036 words (dependencies).

Legend:

The column labeled N shows the number of correctly
assigned dependencies, out of the 3036 total. The
column numbered A shows the accuracy rate in %.

plain This model does not employ any of the

following features. However, it disables the
crossing dependencies, which is its only
difference from the version 1 parser.

bt The Viterbi 5-best search was used instead of a
greedy algorithm. (Searching for a tree which
has the highest possible product of
probabilities of its edges.)

red The reduced set of morphological tags was
used both for training and parsing.

val Valency. A separate distribution of
probabilities of number of child nodes for a
given tag in the parent node.

prop Proportional training. In an edge that contained n p
counted with a weight corresponding to unconditio
combination. The former method counted each com
distribution.

sou Adjacency (distance). For each particular tag depe
distinguished the case, when both words were adja

shr Dependency direction. For each particular tag dep
distinguished the case, when the governing word l
governing word lay right to the dependent one.

Note that not all possible feature combinations are included

The last table row shows the maximum performance of the
during the preparation phase before the Workshop 98. Duri
compatible with the workshop data, and it was tested on lar
gave 51% accuracy, which was the baseline for the works

Figure 3: Valency distributions of four different tags.
R4 is a preposition with accusative (e.g. “na”). ZSB is
the tag for the sentence root. PRCX3 is the reflexive
pronoun “se”. VPP1A is a verb in the present tense,
plural, and the 1st person (e.g. “jedeme”). The cases
like the first three motivated the valency effort.
Model N A
prop 1226 40.3821
val+prop 1235 40.6785
plain (only without non-proj) 1237 40.7444
bt+prop 1241 40.8762
red+val 1241 40.8762
red+prop 1242 40.9091
bt+red+prop 1253 41.2714
red 1256 41.3702
bt+red 1256 41.3702
red+val+prop 1258 41.4361
bt 1259 41.4690
bt+val 1271 41.8643
bt+val+prop 1313 43.2477
bt+red+val 1360 44.7958
bt+red+val+prop 1361 44.8287
bt+red+prop+val+sou 1458 48.0237
bt+red+val+sou 1472 48.4848
bt+red+prop+val+shr 1492 49.1436
bt+red+val+shr 1505 49.5718
bt+red+prop+val+sou+shr 1599 52.6680
bt+red+val+sou+shr 1620 53.3597
ossible tag combinations, each combination was
nal relative frequency of the tags participating on the
bination with a weight of 1/n so there was a uniform

ndency, both training and parsing phases
cent, from the other cases.

endency, both training and parsing phases
ay left to the dependent word, from the case, when the

 in this table.

 �version 2� parser that was mostly implemented
ng the first half of the workshop, it was adjusted to be
ger sets of data. With the workshop d-test data set, it
hop's second part.

7

10. Different sources of morphological information
The version 1 parser worked with whole sets of ambiguous tags for each particular word, as assigned by the
dictionary. The Workshop 98 version of the PDT allowed to use the disambiguated tags as well. Now there are
two other sources of tags: a human annotation (available for training data only), and tags automatically assigned
by a tagger (here a probabilistic one). We have mentioned that the ambiguous dictionary tags add computational
complexity both in time and space. But we also confirmed the expectation that parsing with the dictionary tags is
less accurate than with the disambiguated tags.

In these experiments we investigated different combinations of morphology sources for training and testing. Our
training data set contained 13481 sentences. The tests were done on the workshop d-test data, i.e. 3697
sentences. The tagger was trained on approx. 200 000 words outside the treebank.

Training Testing Accuracy
13481 sentences 3697 sentences

dictionary dictionary 51.42
human dictionary 52.59
human tagger 53.44
dictionary tagger 53.72
tagger tagger 54.08

We were unable to test also the human-human combination because the test data are not annotated manually.
However, we tried this with a small 124-sentence-set cut off the training data (of course, this portion had not
been used to train the parsers involved in the experiment). Surprisingly, the human-human combination was by
more than 3 percent points worse than the tagger-tagger combination. Eventually this might have been an effect
of overtraining: the parser training dealt with some rare constructions that caused some errors in the average test
data. Such strange constructions were however hidden by the tagger since it was not able to recognize them.

The better performance of the tagger-tagger combination over the human-tagger one can be explained more
easily. The parser probably learned how to deal with the errors the tagger does. The similarity of the training and
the test data turned out to be much more important than the accuracy of its morphological annotation (when the
tagger accuracy is at least 92%, which is here the case).

The probability distributions for 13481 sentences

Number of different
dependencies

Maximum possible
(uniform) entropy Entropy Perplexity

human 16163 13.98 11.30 2523
tagger 17391 14.09 11.42 2734
dictionary 82525 16.33 12.65 6442

11. Lexicalization
Finally, the second half of the workshop has been devoted to lexicalizing the parser. So far the parser made no
use of lexical information at all: it relied completely on the morphological tags. But it is obvious that there are
dependencies in which the lexical side could help a lot. Some notorious examples would be bindings of verbs,
some preposition-noun pairs or idiomatic phrases at all. This expectation is supported by the results that are
reported for other parsers with English: once they got lexicalized, their performance significantly improved (by
about 10 percent points � see also [CHARNIAK 1997]).

We wanted to build a new statistical model that would be similar to the present one in terms of collecting
frequencies of particular word pairs but it would identify a word by its lexical contents rather than by the
morphological tag. Then we would combine this new model with the old (morphological), and we would hope
we'd get better results.

As we mentioned in the beginning, there are two different lexical attributes for each word. One of them is the
word form as it appeared in the sentence. The other is the lemma or the dictionary headword that the form
belongs to. Similarly to the morphological tags, the lemmas can be ambiguous, i.e. there can be two different
lemmas that, together with some particular tags, can create the same word form. For instance, the word form �je�
can be either the singular 3rd person present tense of the verb �být� (�to be� � so the form means �he is�) or the
plural accusative of the pronoun �on� (�he� � so the form means �them�). However, the lemma ambiguity is
not as high as the tag ambiguity. A probabilistic lemmatizer can do at 98% accuracy.

8

Now the question was whether to use the forms or the lemmas. The lemmas are a little ambiguous while the
forms are not at all. On the other hand, the forms are much sparser than the lemmas. According to an electronic
dictionary of Czech, the potential of the language would be about 700K of lemmas but about 20M of forms!
However, in our training data only about 20K lemmas and 50K forms were seen3. The ratio between possible
and present will still increase to the power of two since we are working with word pairs rather than words.
Another issue is that lemmas bear a different piece of information than tags while forms are in some sense
subsets of tags. If we build our model with forms, we will be able to back off to tags whenever we fall against an
unknown word pair. If we use lemmas, we shall treat the lexical and the morphological models as independent
and combine them on a same-level basis.

We decided to use the lemmas. And similarly to the tags, for both training and parsing we used the lemmas
automatically disambiguated by a lemmatizer.

12. Number of different lemmas and forms in the data
In the following table there are some figures supporting the arguments in the previous section. The columns
represent different sorts of information: the lemmas assigned by a dictionary, by a lemmatizer or by a tagger, and
the word forms. The rows give the numbers how many different entities of the respective category have been
seen in the data N times or more; N is given in the first column. We can see that there are more word forms than
the lemmas but they are sparser.

Lemmas
Dictionary

Lemmas
Lemmatizer

Lemmas
Human

Forms

≥≥≥≥ 1000 24 25 24 19
≥≥≥≥ 100 217 221 225 145
≥≥≥≥ 50 528 530 528 364
≥≥≥≥ 25 1207 1208 1207 879
≥≥≥≥ 5 5165 5051 5071 5964
> 0 23474 21711 21647 58347

Once we decided to use the lemmas, we trained a model of automatically-assigned-lemma dependencies which
had the following parameters (cf. parameters of the morphological models presented above).

The probability distribution for 13481 sentences

Number of different
dependencies

Maximum possible
(uniform) entropy Entropy Perplexity

automatic lemmas 118827 16.86 15.22 38083

13. How to combine the lexical model with the morphological one
Keeping with the fact that lemmas and tags bear independent pieces of information, we did not want to use the
old morphological model just as a back-off. Rather we tried to get a new probability distribution as a weighted
interpolation of the two:

() () () ()212121 ,1,, ttpllpwwp ⋅−+⋅= λλ (3)

During the workshop we did not attempt to implement an automatic method of estimation of the λ weight from
held-out data. Instead, we experimented with several weights estimated by hand.

3 We have run several experiments to count the lemmas/forms and to extract their histograms. We do not want to diffuse this
for-and-against-summary but we think the results could be of interest so we are presenting them in a separate section.

9

Unfortunately this use of the lexical information does not seem to help as expected. In the following table we can
see the influence of the weight λ. The number 1 means that the lexical model was used alone. It is not surprising
that id did badly because the lemma dependency distribution is sparse. We had hoped that the lexical model

would made different errors than the morphological one and that the combination of them would do much better.
As we see from the table, the combination really did better but it was not able to exceed the accuracy of the
morphological model alone. The result for the weight 0.5 forms a local maximum: this confirms that the both
models really are good at different areas and that they are able to support each other. But the potential is eather
not as great as expected or, more likely, it is not exploited entirely using this method. So the main task for the
future work is to explore the methods of combination of two statistical model and to find a more suitable one.

In attempt to improve the accuracy at the workshop we introduced some minor changes. Firstly we stopped to
trust lower counts. We considered unknown all dependencies that had been seen only five times or less. (The
number five had been found experimentally: it gave the best results on the d-test data, together with four, while
three and six worked worse.) We did not want to treat the unknown lexical dependencies the same way as
impossible pairs. So in that cases the combined probability was taken as the morphological one with weight 1
(i.e. lexical weight zero) while for the �impossible� (not seen at all) dependencies we still used the old scheme,
i.e. half-half weights, thus the result was half the morphological probability. This pushed the accuracy to 54%
but it still was not better than the version 2 results.

Then, finally, we changed the beam width (stack size) for the Viterbi search from 5 to 50. This of course
lengthened the run time by ten but it improved the accuracy by one point. The 55% accuracy is the best we are
able to achieve at the moment.

14. Results
The following table gives a summary of the results. Unlike the other experiments, the final runs were done with a
parser trained on all the 19 126 sentences (327 597 words) and tested on both the development test data, and the
evaluation test data. The e-test data was used first here at the end to cross-validate the results. The training set
and both the test sets contained texts from three different sources, from a daily newspaper (Mladá fronta Dnes
and Lidové noviny), from a business weekly (Československý Profit), and from a scientific magazine (Vesmír). It
turned out to be much more difficult to parse the last one (mainly because of the sentence length) so it seems
reasonable to give separate results for the scientific magazine (labeled �sci�) and for the rest (labeled �norm�).

The baseline parser is actually the version 2 parser with all the features discussed in sections 1 � 9, except of the
proportional training, which is now obsolete. Thus �baseline� may be read as �before lexicalization�. The only
middle step is the shift from the dictionary-generated ambiguous data to the automatically disambiguated data.
The final results include the lexical part of the parser as well as the minor improvements discussed after the
lexicalization.

D-test E-test

0 10 20 30 40 50 60

0

0,2

0,5

0,8

1

10

norm sci all norm sci all
Baseline 54 48 51 57 51 54
Disambiguated 56 51 54
Final 57 52 55 58 53 56

The processing of the 3697 sentences of the d-test data by the version 2 parser takes on a 686 Intel equipped with
Linux about 3 1/2 hours. This number increases with the introduction of the lexical model and with making the
Viterbi stack larger. Training the version 2 parser on 19000 sentences takes about 12 minutes. The time
dramatically increases with the lexical model because the parser needs to build its lexicon during the training.

15. Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant No. (#IIS-
9732388), and was carried out at the 1998 Workshop on Language Engineering, Center for Language and
Speech Processing, Johns Hopkins University. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the National Science
Foundation or The Johns Hopkins University.

The author�s participation in the project, and the preparation of the annotated data, were also supported by the
Grant Agency of the Czech Republic (Grant No. 405/96/K214), and by the Ministry of Education of the Czech
Republic (project No. VS96151).

16. References
[1] [CHARNIAK 1997]

Eugene Charniak: Statistical Techniques for Natural Language Parsing. In: AI Magazine, Volume 18, No. 4. American Association for
Artificial Intelligence, 1997.

[2] [COLLINS 1996]
Michael Collins: A New Statistical Parser Based on Bigram Lexical Dependencies. In: Proceedings of the 34th Annual Meeting of the ACL,
Santa Cruz 1996.

[3] [COLLINS 1997]
Michael Collins: Three Generative, Lexicalised Models for Statistical Parsing. In: Proceedings of the 35th Annual Meeting of the ACL,
Madrid 1997.

[4] [ZEMAN 1998 A]
Daniel Zeman: A Statistical Approach to Parsing of Czech. In: Prague Bulletin of Mathematical Linguistics 69. Univerzita Karlova, Praha
1998.

