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Introduction

Recent work in statistical parsing of English has used lexicalized trees as a representation, and has
exploited parameterizations that lead to probabilities directly associatedepiéimdenciebetween

pairs of words in the tree structure. Parsed corpora such as the Penn treebank have generally been sets
sentence/tree pairs: typically, hand-coded rules are used to assign head-words to each constituent in the
tree, and the dependency structures are then implicit in the tree. In Czech we have dependency
annotations, but no tree structures. For parsing Czech we considered a strategy of converting
dependency structures in training data to lexicalized trees, then running the parsing algorithms originally
developed for English. A few notes about this mapping between trees and dependencies:

® [n general, the mapping from dependencies to tree structures is one-to-many: there are many
possible trees with a given dependency structure.
® |f there are angrossing dependenciegthen there is no possible tree with that set of dependencies.



Input:
sentence with part of speech tags: I/N saw/V the/D man/N
(N = noun, V = verb, D = determiner)

dependency structure:

word parent word parent
number number
I =  faw 1 = 2
saw = wTART 2 = 0
the = man 3 = 4
man = 83w 4 = 2

Output: a lexicalizedtree

(a) X(saw) (b) X(saw) (c) X(saw)
N/}( )
5aw X(saw) X(man)
X(I VvV X(man) | Py Py -
| | = IV  X(man) N V D N
N saw o~ L
| | | gaw D N I saw the man
I the man | |
the man

Figure 1: Converting dependency structures to lexicalized trees with equivalent dependencies. The trees
(@), (b) and (c) all have the input dependency structure: (a) is the “flattest” possible tree; (b) and (c) are
binary branching structures. Any labels for the non-terminals (mat¢keauld preserve the

dependency structure.

Figure 1 shows an input dependency structure, and 3 lexicalized trees with this dependency structure.
We explored different possibilities for the underlying tree structure for the dependency annotations. The
choice of tree structure is crucial in that it determines the parameterization of the model: i.e., the
independence assumptions that the parsing model makes. There are at least 4 degrees of freedom when
deciding on the tree structures:

1. How “flat” should the trees be? The trees can be as flat as possible, as in figure 1(a), or binary
branching as in trees (b) or (c), or somewhere between these two extremes.

2. What set of part of speech (POS) tags should be used?

3. What non-terminal labels should the internal nodes have? The non-teridimatsees (a), (b)
and (c)) could take any value and still preserve the dependency structure.

4. How should we deal with crossing dependencies?

The Baseline Approach



To provide a baseline result we implemented what is probably the simplest possible conversion scheme,
making the following assumptions:

1. The trees were as flat as possible, e.g., as in figure 1(a).

2. The part of speech tags were just the major category for each word (the first letter of the Czech
POS set). For example, N = noun, V = verb, etc.

3. The non-terminal labels were “XP”, where X is the first letter of the POS tag of the head-word
for the constituent. See figure 2 for an example.

4. We ignored the problem of crossing dependencies: effectively any crossing dependencies in
training data are dealt with by reordering the words in the string to give non-crossing structures (a
natural consequence of the algorithm described later in this paper). The sentences in test data are
(of course, for a fair test) left unchanged in order.

VP(saw)

IS

NP(I) V  NP{man)
| | P

N gaw D N
| |

the man

e ——

Figure 2: The baseline approach for non-terminal labels. Each label is XP, where X is the POS tag for
the head-word of the constituent.

Section 7 gives pseudo-code for the algorithm. This baseline approach gave a result of 71.9% accuracy
on the development test set. The next two sections describe a number of modifications to the tree
structures that improved the model, and changes to the probability model itself.

Modifications to the baseline trees

Relative Clauses

In the Prague Dependency Treebank (PDT) the verb is taken to be the head of both sentences and
relative clauses. Figure 3 illustrates how the baseline transformation method can lead to parsing errors
with this style of annotation. The following algorithm was used to modify trees to distinguish relative
clauses:



(sl VE

F W NP
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John Likas /\
ihs woman WP
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wrhe likas ice crearm
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John Likes t1hs vwroman who Likes 158 Cream
(<) WF
NF W NF
| N
John Likas /\
i1hs woman SBAR
L F VF

likes 1os craam

Figure 3: (a) The baseline approach does not distinguish main clauses from relative clauses: both have a
verb as the head, so both are labeled VP. (b) A typical parsing error due to relative and main clauses not
being distinguished. (note that twain clauses can be coordinated by a comma, ashin likes the

woman , the woman likes ice créaifc) The solution to the problem: a modification to relative clause

structures in training data.

® Change the major POS category for all relative pronouns RrooW (W is a new category;
relative pronouns have main P@&nd sub-PO&, 4, 9, E, J, K, Q, or Y. For example,



WP

VE =
i Fl ‘INP Z// Wi 3 ‘%R_.{’P
| | | | | | | |
. wlho lilkes e cream , wlo likes ice cream

® For every relative pronoun dominated byR, with at least one sister to the right:
1. Add a new non-terminal labell&P, spanning all children to the right of the relative

pronoun. e.g.,
v = VI
"
Zf‘—f’i,l/&:ﬁﬁ%xhﬁp "'//F\\""“
' Z Wi VI

I l Ny . | I
' wlio likes ICe creadu who /\
v - % P

likes iee eream

2. Change the label of the phrase dominating the relative pron@BAR. e.g.,

VIt = SBATL
W VP W VP
I I I
. wlha /\\ . whao /\\
% NF A% P
I
lilses 108 Cream [1leeg 108 CTeAm

Dealing with WH-PPs and WH-NPs

Relative pronouns are not the only signals of relative clauses: prepositional phrases containing relative
pronouns (WH-PPs) or noun phrases containing relative pronouns (WH-NPs) can also be important ---
see figure 4 for examples.

To account for these relative clauses we applied two stages of processing: 1) find all WHPPs and
WHNPs in the training data, and change their non-terminal labels accordingly; 2) apply the relative
clause transforms as before but treating WHPPs and WHNPs in the same way as relative pronouns.

Identification of WHPPs and WHNPs is done using the following recursive definitions:

® A WHPP is any PP which has a relative pronoun (POS tag with W as its first letter) as a child.
® A WHNP is any NP which has a relative pronoun (POS tag with W as its first letter) as a child.
® A WHNP is any NP which has a WHNP as a child.
® A WHPP is any PP which has a WHNP as a child.



(al vE = vF

NF WF NF SBAR

| |

ihe By /\ vhe boy /\
FF I gave the bock WHFF WE
I
4o whom o wrhom I zavrs the bock
[k WF ] WF
MF VF MF SBAR
| |
the wroman _‘//\ t1hes vwroman
WF vras good TWHNF WF

wwhose book wwhose book vras good

Figure 4: (a) An example of a PRy whom which has a relative pronoun as its argument. Its
non-terminal label is changed to WHPP, and the phrase is changed to reflect it being a relative clause.
(b) An example of an NRyhose bookwhich has a relative pronoun as a modifier. Its non-terminal is
changed to WHNP, and the relative clause transforms are applied.

Dealing with WH-adverbials

An additional class of relative clause markers are wh-adverbials, for exatmngrieor when(as inthe

country (SBAR where it rainegd)rthe day (SBAR when it poured) treat these we identified cases
where: 1) a phrase was a VP; 2) the first child of the phrase was a comma; 3) the second child was an
adverb (tagge®b). A VP level was added covering all children following Bie and the parent
non-terminal was labele8B. For example

VP

VP
NE VE NP g
| e |
the day e “'“w.____H Llog o
z Dl i ralned
| Dl YR

whei ! | i
: when 1 reaihed

1L

Dealing with Coordination
To deal with cases of coordination two types of changes were carried out:

® For subtrees of coordination cases the internal labels were changed in order to improve the
parameterization of the model (e.g. in Fig. 5, 7).



® New non-terminal labels were used within the tree structure to name new constituents - the orignal
flat trees became more structured to improve the parameterization of the model. Examples are
given in Fig. 8, 10.

Dealing with cases of coordination improved parsing accuracy by 2.6% as shown in table 3.

Handling of Coordination

When the head of the phrase is a conjunction, the original JP-non-terminal of the phrase is changed
using the first letter of the non-terminal of the right-most child (see Fig. 5).

JP(a) — NP{a)
NP(h;) I NP(hy) NP(h;) 1 NP(h)
| | | | | |

Figure 5: Example for handling conjunctioz; andfz; are the headwords of the left and right NP.

Another change for coordination carried out was to create a new non-terminal based on the first letters
of the left-most and the right-most children, e.g. in Fig. 6. After this change the parsing accuracy
actually decreased. The most likely reason for that is the large increase in the number of non-terminals.
The training data became too sparse for estimating the model parameters.

JP(a) — ANP(a)
AP(Ri) 1 NP(hy) AP(Rh1) 1 NP(R,)
| | | | | |

Figure 6: Example for handling conjunctio:, is the headword of the Af:; is the headword of the
NP.

When the head of the phrase is a comma, a colon, etc, the original ZP-non-terminal of the phrase is
changed using the first letter of the non-terminal of the right-most child (see Fig. 7).

ZP(,) — NP(,)

NP(h;) Z NP{h) NP(h;) Z NP{h)
| | | | | |

1 . 1 e

Figure 7: Example for handling punctuation: and are the headwords of the left and right NP.



Figure 7: Example for handling punctuaticf; andf; are the headwords of the left and right NP.

Handling of Comma

A comma, which was the leftmost-child of a node, but not the head of the phrase, was treated in the
following way: an additional non-terminal was added with the comma as the left child and the original
phrase as the right child. This proved especially useful for subordinating sentences. The same change
was carried out for a comma, which was the rightmost child of a given node, but accuracy was not
improved.

NP(h) - NPX(h)
h

Figure 8: Example for handling a comma, which is the left-most child of a phinasehe headword of
the NP. A new non-terminal 'NPX’ is introduced.

Extended Handling of Coordination

In the case that within a coordination more than two elements were coordinated, additional structure was
added to the tree. An additional non-termXRBI, was introduced, whep¢ is a variable that can stand

for any part of speech of the corresponding head-word, e.g. thé¢' tagFig. 9. Including this change

the model was made capable to learn that certain phrases tend to form chains of coordination.
Surprisingly, this change did not improve the parsing accuracy.



Figure 9: Example of handling several components in coordinazpi¥i; and? are the headwords of

the NPs. A new non-terminal 'NP,’ is introduced.
Handling of Brackets and Quotation

Due to the zero-order assumption for the generation of right/left modifiers, left and right brackets are
generated independently of each other. Since the generation process is a zero-markov-order dependency
process, the model fails to learn that the pairs should be on the same level of the tree. We introduced a
new label, e.g. NP-BRACKETS in Fig. 10, so that a pair of brackets is generated in parallel. For cases of
guotation, where the quotes were on the same level of the tree an analogous new label NP-QUOTE was
introduced. This change slightly improved accuracy by 0.2 %.

NP(4) > NP-BRACKETS(%)
//l\
5 N 20 Z(’(’)MNPMJ’)
¢ ooy T

Figure 10: Example for handling bracketsis the head of the NP.

Model Alterations



Preferences for dependencies that do not cross verbs

The models in (Collins 96, 97) had conditioning variables that allowed the model to learn a preference
for dependencies which do not cross verbs. We weren’t certain that this preference would also be useful
in Czech, so we tried the parsing model with and without this condition on the development set (from
the results in table 3, this condition improved accuracy by about 0.9% on the development set).

Punctuation for phrasal boundaries

It has been found that in parsing English it is useful to use punctuation (commas, colons, semicolons
etc.) as an indication of phrasal boundaries (see section 2.7 of (Collins 96)). The basic idea is that if a
constituent #tex2html_wrap_inline551# has two childfeamdY separated by a punctuation mark, then

Y is generally followed by a punctuation mark or the end of sentence marker. In the parsers in (Collins
96,97), this was used as a hard constraint. In the Czech parser we added a cost of -2.5 (log probability)
in the following situation:

® If a constituent X takes another constituent Y as a pre-modifier, and: 1) Y is a
comma/colon/semi-colon; 2) the last word of X is not a punctuation mark (tZgg@ypthe word
following X is not a punctuation mark; 4) the last word of X is not the last word of the sentence.

® |f a constituent Y takes another constituent X as a post-modifier, and conditions 1, 2, 3 and 4 again

apply.
Alternative Part-of-Speech Tagsets

Part of speech (POS) tags serve an important role in statistical parsing by providing the model with a
level of generalization as to how classes of words tend to behave, what roles they play in sentences, and
what other classes they tend to combine with. Statistical parsers of English typically make use of the
roughly 50 POS tags used in the UPenn Treebank corpus, but the Czech PDT corpus used for this
project provides a much richer set of POS tags, with over 3000 possible tags defined by the tagging
system and over 1000 tags actually found in the corpus. Using that large a tagset with a training corpus
of only 19,000 sentences would lead to serious sparse data problems. It's also clear that some of the
distinctions being made by the tags are more important than others for parsing. We therefore explored
different ways of extracting smaller but still maximally informative POS tagsets for use with the Collins
parser.

Description of the Czech Tagset

The POS tags in the Czech PDT corpus (Hajic 98) are encoded in 13-character strings. Table 1 shows
the role of each character. For example, thextagP1-----A--  would be used for a word that had

“noun” as both its main and detailed part of speech, that was masculine, plural, nominative (case 1),
and whose negativeness value was “affirmative”.



1. | Main part of speech
2. | Detailed part of speecf
3. | Gender
4. || Number
5. | Case
6. | Possessor’s gender
7. | Possessor's number
8. | Person
9. || Tense
10. | Degree of comparissopn
11. | Negativeness
12. | Voice
13. | Variant/ register

Table 1: The 13-character encoding of the Czech POS tags.

Within the corpus, each word was annotated with all of the POS tags that would be possible given its
spelling, using the output of a morphological analysis program, and with the single one of those tags that
a statistical POS tagging program had predicted to be the correct tag (Hajic and Hladka 98). Table 2
shows a phrase from the corpus, with the alternative and machine-selected tag for each word. In the
training portion of the corpus, the correct tag as judged by human annotators was also provided.

Form Dictionary Tags Machine Tags
NNMP1-----A--

poslanci NNMP7-----A-- NNMP1-----A--

Parlamentu | NNIS3-----A-- NNIS2-----A--
NNIS6-----A-1

schvalili VpMP---XR-AA- VPMP---XR-AA-

Table 2: Corpus POS tags for “the representatives of the Parliament approved”.
Selection of a More Informative Tagset

In the baseline approach, the first letter, or ;SPMquot;primary part of speech;SPMquot;, of the full POS
strings was used as the tag. This resulted in a tagset with 13 possible values. A number of alternative,
richer tagsets were explored, using various combinations of character positions from the tag string.
Using the second letter, or “detailed part of speech”, resulted in a tagset of 60 tags. (The encoding for
detailed POS values is a strict refinement of that for primary POS---that is, the possible detailed part of
speech values for the different primary parts of speech do not overlap---so using the second letter alone
is the same as using the first two letters together.) Combining the first letter with the fifth letter, which



encodes case information, resulted in 48 possible tags. Each of these richer tagsets yielded some
improvement in parsing performance when compared to the baseline “primary part of speech” tagset,

but a combination of the two approaches did a bit better still The most successful alternative of this sort
was a two-letter tag whose first letter was always the primary POS, and whose second letter was the case
field if the primary POS was one that displays case, while otherwise the second letter was the detailed
POS. (The detailed POS was used for the primary POS values D, J, V, and X; the case field was used for
the other possible primary POS values.) This two-letter scheme resulted in 58 tags, and provided about a
1.1% parsing improvement over the baseline on the development set. Even richer tagsets that also
included the person, gender, and number values were tested without yielding any further improvement,
presumably because the damage from sparse data problems outweighed the value of the additional
information present.

Explorations toward Clustered Tagsets

An entirely different approach, rather than searching by hand for effective tagsets, would be to use
clustering to derive them automatically, We explored two different methods, bottom-up and top-down,

for automatically deriving POS tag sets based on counts of governing and dependent tags extracted from
the parse trees that the parser constructs from the training data. Neither tested approach resulted in any
improvement in parsing performance compared to the hand-designed “two letter” tagset, but the
implemetations of each were still only preliminary, and it might well be that a clustered tagset more
adroitly derived could do better. The bottom-up approach to clustering begins with each tag in a class by
itself. At each step, two classes are joined so as to maximize the average mutual information of the tag
classes, as in the IBM work on “Class-Baseglam Models of Natural Language” (Brovenh al. 92),

except that the mutual information here is calculated not over class bigrams in the text, but over pairs of
governing tag and dependent tag, collected from the parse trees in the training set. Given the parsing
model, the governing tag is the tag of the head of a consituent, and the dependent tag is that of the head
of some subconsituent that is either a pre-modifier or post-modifier. The clustering process could be
stopped at various cutoffs to test different sized tagsets. The top-down clustering began instead with a
cluster tree of a single node, representing all tags in the same class. In each iteration, one leaf of the tree
would be split into subclasses, choosing so as to maximize the total probability over all the parse trees in
the training corpus of each governing tag generating its dependent tag time the probability of the
dependent tag generating the word that actually occurred. (Thus our formulation of top-down clustering
depended on the words in a way that our bottom-up clustering did not.) The algorithm relied on a fixed
set of splitting rules, which were applied to each leaf at each step in order to select the best split. The
splitting rules that were tested involved either a binary split based on whether a given character position
in the tag matched a given value, or an n-ary split into as many children as there were values as a given
character position. It is interesting to note that one early binary split found in the top-down clustering
was based on position 12, which specified the voice of verbs, which had not been tested as a relevant
variable in the hand-designed tagsets. As mentioned above, no clustered tagset was found that
outperformed the initial two-letter hand-designed tagset, but this may have been due to problems in the
inplementations. The comparative measures of parsing performance may also have been thrown off
somewhat by other optimizations made to the parser that depended on the two-letter tags.

Dealing with Tag Ambiguity
One final issue regarding POS tags was how to deal with the ambiguity between possible tags, both in

training and test. In the training data, there was a choice between using the output of the POS tagger or
the human annotator’s judgment as to the correct tag. In test data, the correct answer was not available,



but the POS tagger output could be used if desired. This turns out to matter only for unknown words, as
the parser is designed to do its own tagging, for words that it has seen in training at least 5 times,
ignoring any tag supplied with the input. For “unknown’ words (seen less than 5 times), the parser can
be set either to believe the tag supplied by the POS tagger or to allow equally any of the
dictionary-derived possible tags for the word, effectively allowing the parse context to make the choice.
(Note that the rich inflectional morphology of Czech leads to a higher rate of “unknown’” word forms
than would be true in English; in one test, 29.5% of the words in test data were “unknown”.) Our tests
indicated that if unknown words are treated by believing the POS tagger’s suggestion, then scores are
better if the parser is also trained on the POS tagger’s suggestions, rather than on the human annotator’s
correct tags. Training on the correct tags results in 1% worse performance. Even though the POS
tagger’s tags are less accurate, they are more like what the parser will be using in the test data, and that
turns out to be the key point. On the other hand, if the parser allows all possible dictionary tags for
unknown words in test material, then it pays to train on the actual correct tags. In initial tests, this
combination of training on the correct tags and allowing all dictionary tags for unknown test words
somewhat outperformed the alternative of using the POS tagger’s predictions both for training and for
unknown test words. When tested with the final version of the parser on the full development set, those
two strategies performed at the same level.

First-Order Dependencies

Our parser uses lexicalized-context-free rules of the following type:
P(h) = L(1{) ... Ln(Im YH(hR{ (1) ... Rn(rn)

H is the head-child of the phrase, which inherits the head-wiain its parenP. Ly - - - L, and
Ry --- R, are left and right modifiers ¢1. The generation of the RHS is decomposed into the three
steps:

1. Generate the head constituent ldtel

2. Generate the modifiers to the ridt t of the headd

3. Generate the modifiers to the LL tof the headH

For the english parser the following independence assumption was made: left and right modifiers were
generated by seperdl™* order Markov processes. The generation of a modifier does not depend on the
already generated modifiers. The independence assumptions were changed to include bigram
dependencies while generating the modifiers to the left and to the right. The generation of a left modifier
L; depends now on the immediately preceeding mod.;_; (the same is true for right modifiers). The

head labeH is generated as before.

1. Generate head label, with probability
?H(H | P! h)



2. Generate left modifiers with probability

I P:(L:1)]| Ly, PhH)

i=1.n
3. Generate right modifiers with probability

I Pr(Ri{r)]|Ri—y,PhH)

i=1..m
Due to the introduction of first-order dependencies several changes in the parser code became necessar)

® Parameter-Training: Get the counts to estimate the new bigram probabilities
® Dependency-Modelling: The back-off scheme to handle unseen events is changed
® Parsing-Algorithm: The dynamic programming algorithm for the chart parser is changed

The following lexicalized rule gives an example, for which we show its probability under the
zero-order assumption and tHest-order assumption:

S(bought) = NP(yesterday) NP(IBM) VP(bought)
® Zero-order probability:
P (VP | 5,bought)
P (NP(IBM)| S,VP,bought)
P (NP(yesterday)| 5,VP,bought)

P (STOP | S,VP,bought)
Pr(STOP | S,VP,bought)

P A o

For the first-order assumption the modifier lab¢lBandSTOPare generated using its immediately
preceding modifiers, which are in both cakiéss. STOPis a special modifier, which denotes the end of
the generation of left/right modifiers.

® First-order probability:

P (VP | 5bought)

P (NP(IBM) | S,VP,bought)

P (NP(yesterday)| S, VP,NP, bought)
P (STOP | 5,VP, NP, bought)
Pr(STOP | 5,VPbought)

L 4

The smoothing of dependency probabilities is illustrated using the following example. For illustration
purposes we use linear interpolation for the smoothing. The actual implementation uses a Backing-Off
scheme however. The example distribution is the next to the last term taken from the first-order
probability.



P.1(STOP | S, VP, NP, bought,,) =
21Pe1(STOP | S, VP, NP, bought, )+
29Pe1(STOP | 8, VP, NP, V)+
33Pc1(STOP | 8, VP, NP)

34P:1(STOP | S, VP)

The STOPnon-terminal in the preceding rule example is predicted using the head-word "bought’
together with its part-of-speeth the parent-labed, the head-labéVP and the immediately preceding
modifier NP. The more specific distributions are smoothed using the less specific ones.

Introducing the bigram-dependencies into the parsing model helped to improve parsing accuracy by
about 0.9 % as shown in Table 3.

Results

The parser we used was model 1 as described in (Collins 97). We ran three versions over the final test
set: the baseline version, the full model with all additions, and the full model with everything but the
bigram model. The baseline system on the final test set achieved 72.3% accuracy. The final system
achieved 80.0% accuracy: a 7.7% absolute improvement and a 27.8% relative improvement. The
development set showed very similar results: a baseline accuracy of 71.9% and a final accuracy of
79.3%. Table 3 shows the relative improvement of each component of the model.

Type of change Sub-type Improvement
Tree Modifications| Coordination +2.6%
Relative Clauses +1.5%
Punctuation -0.1% ?7?
Enriched POStags  +1.1%
Model Changes Punctuation +0.4%
Verb Crossing +0.9%
Bigram +0.9%
TOTAL Absolute Change +7.4%
Error reduction 26%




Table 3: A breakdown of the results on the development set.

Table 4 shows the results on the development set by genre. It is interesting to see that the performance
on newswire text is over 2% better than the averaged performance. The Science section of the
development set is considerably harder to parse (presumably because of longer sentences and more ope
vocabulary).

Genre Proportion (Sentencest{) Proportion (Dependencieg) Accuracy | Difference
Newspaper 50% 44% 81.4% +2.1%
Business 25% 19% 81.4% +2.1%
Science 25% 38% 76.0% -3.3%

Table 4: Breakdown of the results by genre. Note that although the Science section only contributes
25% of thesentences test data, it contains much longer sentences than the other sections and therefore
accounts for 38% of thdependenciem test data.

Pseudo-code for the baseline conversion algorithm

Input to the conversion algorithm

® nwordsw,..w,
® nPOS tags$,..t,
® Anndimensional arraf[1 ... n] whereP][i] is the parent ofv, in the dependency structure. We

assume word 0 is the start word.
® For each word an ordered list of its children (which can be derived from theParidymchildsi]
is the number of children fav,. Childdi][ j] is thej'th child for w;, where the children are in

sequential order, i.€hildgi][1] ; SPMIt Childgi][2] ; SPMIt Childgi][3] ... NB. Childs[0], a list
of children for the START word, is always defined also.

For example, for the dependency structure in figure 1:

® w,..w, = {l, saw, the, man}
®t.t,={N,V,D, N}

® P[1]..P[4]={2,0, 4, 3}
® The childs/numchilds arrays:



Numchildgi] | Childdi]
{2}
i
{1,4}
i
{3}

AIW[IN]FRO|—
RlO|N[|O]|F

Output from the conversion function

The output data structure is a tree. The central data type is a hode, i.e. the node of a tree. This a recursiv
data type that specifies the node attributes, including recursive pointers to its children. The “tree” itself
is simply a pointer to the top node in the tree. Nbee data-type has the following attributes:

int type. This is O if the node is internal (a non-terminal or POS tag), 1 if the node is a word.
int headword. The head-word for the node --- if type==1 this is the word itself at this leaf.

int Numchilds. The number of children for the node (by definition, this is O if the type==1).
Node **Childs. An array of pointers to the children of the node, in left to right sequential order.
Node *Headchild A pointer to the head-child of the phrase, which must also be in the Childs
array.

char *label The non-terminal label for the node.

The conversion function

The recursive function has a prototype

Node *create_node(int word)

This function takes the indexord, which can take any value from On,.and returns a pointer to a node
which is the top-most constituent with that word as a head (either a POS tag directly dominating the
word, or a phrase with the word as its head). To create a tree, simply call tree = create_node(0); This
will create a node whose head word is the 0’'th (start) word, i.e. the entire tree. The pseudocode is as
follows:

Node *create_node(int word)

{

/fallocate memory for the POS tag node directly above word
create(Node tagnode);

/fallocate memory for the word itself
create(Node wordnode);

/Inext create the word node
wordnode.type = 1;
wordnode.headword = word;

/Inext create the POS tag directly above the word
tagnode.label =t word;

tagnode.type =0;

tagnode.headword = word;

tagnode.headchild = wordnode;



tagnode.numchilds = 1;
tagnode.childs[0] = wordnode;

/fif the word has no dependent children in the dependency structure,
[lthen just return the POS tag as the node for this word
/(this will happen for words “I"” and “the” in the figure)
if(hnumchilds[word] == 0)

return &tagnode;

/lotherwise we’'ll create another node above the POS tag
create(Node phrasenode);

phrasenode.label =t word + "P";
phrasenode.type =0;
phrasenode.headword = word;
phrasenode.headchild = tagnode;

//Note the node has as 1 more child than the word has dependents,
/las there is an extra child for the head of the phrase, the POS

/Itag for the word

phrasenode.numchilds = numchilds[word]+1;

/Inow recursively build the children

I

/lthe one subtlety is that the head of the phrase, the tagnode
/lthat we have just built, has to be inserted at the right place
/lin the childs sequence

n=0;

/fflag = 0 indicates the head of the phrase has not been inserted
llyet

flag = 0;

for(i=1;i <= numchilds[word];i++)

if(flag == 0 &&
word < i)

/linsert the head node
phrasenode.childs[n] = tagnode;
n++;

flag = 1;

Ilrecursively create the sub-tree for the i'th dependent,
/land put it in the phrasenode.childs array
phrasenode.childs[n] = create_node(childs[word][i]);

if(flag == 0)

/linsert the head node at the end of the phrase
phrasenode.childs[n] = tagnode;

}

return &phrasenode;
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