
A Machine Learning Approach to Automatic Functor Assignment
in the Prague Dependency Treebank

Zdeněk Žabokrtský
�

Petr Sgall
�

Sašo Džeroski
�

�
Center for Computational Linguistics

Charles University, Prague, Czech Republic�
zabokrtsky,sgall � .ufal.mff.cuni.cz�

Jožef Stefan Institute
Ljubljana, Slovenia

saso.dzeroski@ijs.si

Abstract
The aim of this paper is to describe and evaluate a system that automates a part of the transition from analytical to tectogrammatical
tree structures within the Prague Dependency Treebank. In particular, it assigns functors to autosemantic words. The system is based
on the machine learning approach of decision tree induction. The resulting software tool is incorporated into the annotation process
and significantly reduces the manual annotation effort during the transition from analytical tree structures to the tectogrammatical tree
structures, which consumes a huge amount of time of linguistic experts.

1. Introduction
1.1. Prague Dependency Treebank

The Prague Dependency Treebank is a research project
at the Center for Computational Linguistics1, Charles Uni-
versity, Prague. It is aimed at a complex annotation of a
part of the Czech National Corpus (CNC). The sentences
from the CNC are assigned their underlying representations
in three steps of annotation: morphological, analytical, and
tectogrammatical. PDT thus differs from most annotation
schemes in that it reaches representations suitable as in-
put for a semantic interpretation, making use of a longterm
theoretical research taking into account most different re-
lationships between (dependency-based) syntax and (inten-
sional) semantics, see (Hajičová et al.,1998), (Hajičová et
al.,2002).

At the morphological level, a tag and a lemma are as-
signed to each word form from the input text. At the ana-
lytical level, the linear sequence of words and punctuation
marks is enriched with a dependency structure representing
the given sentence. In the resulting analytical tree structure
(ATS), each node is assigned its analytical function (such
as Subject, Object, Adverbial, Attribute).

During the transition from ATSs to tectogrammatical
tree structures (TGTSs), the topology of the tree is changed.
The difference can be seen in Figure 1 (a) and (b) (see Fig-
ure 2 for one more example of TGTS). Neither function
words (prepositions, auxiliaries, conjunctions except coor-
dinating conjunctions), nor punctuation marks have their
own nodes in a TGTS; their counterparts are captured in
the attributes of the remaining nodes, representing the lex-
ical words. Besides lexical words, there are also nodes for
coordination and apposition.

Each of these words is annotated with values of its
grammatemes, i.e. morphological attributes as number,
tense, modality, and its functor, which represents its syn-
tactic position within the sentence, e.g., Actor, Patient, Ad-
dressee, Effect, Origin, various types of spatial and tempo-

1http://ckl.mff.cuni.cz

ral circumstantials, Means, Manner, Condition, etc. There
are approximately 60 functors (arguments or theta roles,
and adjuncts). Functors provide a detailed information on
the relation between the given node and its governing node.
See the appendix for the list of the most frequent functors
and their examples.

The examples of TGTSs are given in Figures 1(b) and 2.
The respective sentences are as follows:

(1)
lit.:

Michálková
Michálková

upozornila,
pointed-out

že
that

zatı́m
meanwhile

je
is

zbytečné
superfluous

podávat
to-submit

na
to

správu
administration

žádosti
requests

či
or

žádat
to-ask

ji
it

o
for

podrobnějšı́
more-detailed

informace.
information.

‘M. pointed out that for the time being it was su-
perfluous to submit requests to the administration,
or to ask it for a more detailed information.’

(2)
lit.:

Hodnotná
Valuable

a
and

okouzlujı́cı́
fascinating

kulturnı́
cultural

událost
event

je
is

důkazem,
proof

že
that

dlouhodobě
longterm

kvalitnı́
high-quality

dramaturgie
dramaturgy

výstav
of-exhibitions

Malovaného
of-Painted

domu,
House,

kterou
which.accus

vytvářı́
creates

Luboš
Luboš.nom

Kressa,
Kressa.nom

na
to

sebe
itself

váže
binds

i
also

dalšı́
further

umělecké
artistic

a
and

kulturnı́
cultural

aktivity.
activities.

‘The valuable and fascinating cultural event doc-
uments that the long-term high-quality strategy of
the Painted House exhibitions, established by L. K.,
attracts further activities in the domains of art and
culture.’



(a)

#38
AuxS

Michálková
Sb

upozornila
Pred

,
AuxX

že
AuxC

zatím
Adv

je
Obj

zbytečné
Pnom

podávat
Sb_Co

na
AuxP

správu
Adv

žádosti
Obj

či
Coord

žádat
Sb_Co

ji
Obj

o
AuxP

podrobnější
Atr

informace
Obj

.
AuxK

(b)

SENT
#38

ADDR
&Gen;

ACT
Michálková

PRED
upozornit

TWHEN
zatím

PAT
být

BEN
&Gen;

PAT
zbytečný

ACT
&Cor;

ACT
podávat

DIR3
správa

PAT
žádost

DISJ
či

ACT
žádat

ADDR
on

RSTR
podrobný

PAT
informace

Figure 1: The analytical tree structure (a) of sentence (1)
and the associated tectogrammatical tree structure (b). In
the analytical tree, the nodes are labeled with their word
forms and analytical functions, in the tectogrammatical tree
the nodes are labeled with their lemmas and functors. Note
that nodes are added (marked by the sign &) for (i) General
Addressee with upozornit ’point out sth. to so.’ and Gen-
eral Benefactive with zbytečný ’superfluous for so.’, and (ii)
the zero Actor of the infinitives podávat ’to submit’ and
žádat ’to ask for’, which is controlled by (i.e. referentially
identical with) the Benefactive of být zbytečný ’to be su-
perfluous’. The position of the node with the label či ’or’
illustrates the handling of coordinated constructions.

1.2. Related Work

The first realization of AFAS (Automatic Functor As-
signment System, (Žabokrtský,2000 )) was based on a com-
bination of different families of “assigners”, in particular of
handcrafted rules and dictionary-based methods. The sys-
tem was later (Džeroski,Žabokrtský,2001) enriched with

#50
SENT

hodnotný
RSTR_CO

a
CONJ

okouzlující
RSTR_CO

kulturní
RSTR

událost
ACT

být
PRED

důkaz
PAT

dlouhodobě
THL

kvalitní
RSTR

dramaturgie
ACT

výstava
APP

malovaný
RSTR

dům
ACT

který
PAT

vytvářet.PROC
RSTR

Luboš
RSTR

Kressa
ACT

se
ADDR

vázat
PAT

i
RHEM

další
RSTR

umělecký
RSTR_CO

a
CONJ

kulturní
RSTR_CO

aktivita
PAT

Figure 2: Example of the tectogrammatical tree structure.
The nodes are labeled with their lemmas and functors. Note
the position of a focus sensitive operator (rhematizer) i
’also’.

a method based on Machine Learning (ML), namely on
the decision trees generated by C4.5 (Quinlan,1993). The
AFAS described in this paper differs from the previous at-
tempts in the fact that it is exclusively based on ML, thus
forming a monolithical, easy-to-retrain system.

2. Learning from the Tectogrammatical
Tree Data

2.1. Reformulation of the Task of AFAS from the ML
Perspective

The task for an automatic functor assignment system
(AFAS) can be formulated as follows: given (i) the topol-
ogy of a TGTS and (ii) the values of the morphological and
analytical attributes of each node, assign a functor to each
node.

Since treating the tree as a whole would make the learn-
ing task very difficult, we approximate it with the following
reformulation. For each node N of the tree, the task is to as-
sign a functor to node N (a coordination node may appear
between M and N, but it does not influence the functor of
N), taking into account only the values of its attributes and
the values of attributes of the nearest autosemantic node
M that governs node N. In other words, we are to classify
the edges of the tree (or short vertical paths in the tree in
case there is an intermediate coordination node, like be-
tween words kulturnı́ and aktivita in Figure 2). Each class
corresponds to one functor.

2.2. Available Material
When the experiments described in this paper were per-

formed, the manual annotation of 43 files had been fin-
ished on the tectogrammatical level. Each file contains up
to 50 sentences, there were altogether 1536 sentences in



these files. The total number of autosemantic and coordi-
nation nodes in the sentences were 28216. We excluded
the nodes with unambiguously assigned functors, and the
nodes which were manually added. The added nodes have
no surface counterpart word, although they must be present
in the underlying structure (for instance, ellipses of actor
etc.). 27463 nodes remained for the training and testing
purposes.

2.3. Data Preprocessing
2.3.1. Vectorizing the Tree

All the information about a node is contained in its
attributes from the morphological level (lemma, morpho-
logical tag), analytical level (analytical function), and tec-
togrammatical level (functor). As we said above, for the
decision about the functor of a node, we take into account
only the information about the node itself and the informa-
tion about its nearest governing autosemantic node. There-
fore we approximate the functor assignment with a map-
ping the domain of which is formed by a Cartesian product
of values of the morphological and analytical attributes of
both nodes, and the range of which is equal to the set of all
functors. Since the number of node attributes is limited, we
can put the attributes into a vector. Currently we create for
each node the vectors consisting of the following attributes:

1. lexical attributes - lemmas of both nodes, and possi-
bly also the lemma of a preposition or a subordinating
conjunction that binds both nodes,

2. morphological attributes - for both nodes, we extract
the following attributes from their morphological tags:
part of speech, so called subpart of speech, morpho-
logical voice, morphologic case,

3. analytical attributes - the analytical functions of both
nodes,

4. topological attributes - number of children (directly
depending nodes) of both nodes in the TGTS,

5. ontological attributes - semantic position of the node
lemma within the EuroWordNet Top Ontology.

Wherever we use attribute names in the following text,
the names of the attributes extracted from the governing
node start with prefix g , while the names of the attributes
extracted from the dependent node starts with d .

2.3.2. Ontological Attributes from EuroWordNet
The Top Ontology used in EuroWordNet (EWN) con-

tains the (structured) set of 63 basic semantic concepts like
Place, Time, Human, Group, Living, etc. For the major-
ity of English synsets (set of synonyms, the basic unit of
EWN), the appropriate subset of these concepts are listed.
Using the Inter Lingual Index that links the synsets of dif-
ferent languages, the set of relevant concepts can be found
also for Czech lemmas. The set of ontological attributes
then comprises 63 binary attributes determining the posi-
tive or negative relation between the (Czech) lemma and
the semantic concepts.

2.4. C5 Learning
2.4.1. Learning Decision Trees

Decision tree induction is one of the most popular ma-
chine learning approaches. It takes as input a set of ex-
amples (represented as vectors of feature values and their
classifications) and produces a tree-like structure called
decision tree that can be used for classifying new exam-
ples. Internal nodes in the tree correspond to features (also
called attributes), branches correspond to feature values,
and leaves of the tree correspond to classifications (predict-
ing specific class values).

C5.0 is a successor of C4.5 (Quinlan, 1993), which is
probably the most widely used program for inducing de-
cision trees. It implements the TDIDT (Top Down Induc-
tion of Decision Trees) approach, where a feature is first se-
lected that discriminates best among the class values of the
given training examples. Once this feature is selected, it is
assigned to the root of the tree; the examples are partitioned
according to the values of this feature and tree construction
is repeated recursively; the resulting subtrees are attached
to the branches of the root node. If the set of examples
contains examples of only one class or if no good attribute
can be found to split on, a leaf is created which predicts a
specific class value. This is the criterion for terminating the
recursion. C5.0 also performs pruning (simplification) of
the induced decision trees. The subtrees that are built on
a too small number of examples to be statistically reliable
are removed and replaced by leaves (in other words, they
are pruned). Several parameters control the construction
of a decision tree with C5.0 (e.g., by setting the degree of
pruning): we used the default setting of their values.

2.4.2. Rulesets
An important feature of C5.0 is its mechanism to con-

vert trees into collections of rules called rulesets. Rulesets
are generally easier to understand than trees since each rule
describes a specific context associated with a class. Fur-
thermore, a ruleset generated from a tree usually has fewer
rules than the tree has leaves. However, generating rule-
sets requires considerably more computer time. Therefore
the evaluations in the following section will be made us-
ing decision trees, although we will use selected rules from
rulesets as an illustration of the knowledge of regularities
acquired by machine learning. A description of a C5 rule
can be found in Figure 3.

3. Evaluations
3.1. Error-rate Measuring

In the former version of AFAS, we were searching for
a compromise between high precision (the ratio between
correctly assigned functors and all automatically assigned
functors) and recall (the ratio between the number of cor-
rectly assigned functors and the number of all functors to be
assigned). Having more than half a year of experience with
the previous version of AFAS, the annotators were asked
whether they prefer maximizing the number of correctly as-
signed functors (i.e., to maximize recall) or minimizing the
number of errors (i.e., to maximize precision). All of them
prefer to assign automatically as many functors as possi-
ble. In this paper, we express the performance evaluation



Rule 665: (137/14, lift 5.9)
g_voice = P
d_afun = Sb
-> class PAT [0.892]

(1) (2) (3) (4)

(5) (6) (7)

Figure 3: An example rule from the ruleset produced by C5:
(1) a rule number (this is quite arbitrary and serves only for
identification), (2) number of training cases covered by the
rule, (3) number of cases wrongly classified by this rule,
(4) the rule’s estimated accuracy divided by the relative fre-
quency of the predicted class in the training set, (5) one or
more conditions that must all be satisfied if the rule is to be
applicable; the conditions are of the form attribute =
value or attribute in � set of values � , (6) a class
(functor in our case) predicted by the rule, (7) the statisti-
cally estimated confidence of the prediction.

using only error-rate (number of incorrectly assigned or
unassigned functors divided by the number of all functors
to be assigned) instead of differentiating between precision
and recall.

One way to get a reliable estimate of predictive accuracy
is the f-fold cross validation. The data are divided into �
subsets of roughly the same size and class distribution. For
each subset in turn, a classifier is trained on the data in the
remaining subsets and tested on the cases in the hold-out
subset. The resulting error-rate is computed as an average
value from the � trials. Wherever we refer to error-rate or
to decision tree size in the rest of this paper (besides Table
2), we mean the average value obtained from 10-fold cross
validation.

3.2. Sequence of Experiments

In order to find the importance of individual attributes
for the overall performance, the system was trained repeat-
edly using different sets of input attributes. The experi-
ments can be ordered into a lattice according to the sub-
sumption of their attribute sets (Figure 4). In the follow-
ing paragraphs, the experiments will be evaluated one by
one and associated with an illustrative example of a rule
acquired by C5. You can also see Table 1 for the evaluation
summary.

Not only the sequence of experiments shows the contri-
bution of different attributes to the performance, but it can
also demonstrate the process of acquiring more “clever”
rules.

E-0) No input attributes
The first experiment functions only as a baseline, because
no attributes were used for decision and no decision tree
was generated. Every node in the testing set was simply
assigned with the most frequent functor from the training
set. The resulting error rate is 88.3 %.

Figure 4: The lattice depicts the subsumption of attribute
sets within the sequence of experiments, and the impact of
enlarging the attribute set on the resulting error-rate.

E-1) Input attributes: part of speech of node N
Error rate: 54.2%
Decision tree size: 13 leaves
Sample from the ruleset:
Rule 7: (3584/461, lift 4.0)

d pos = A
-> class RSTR [0.871]

Possible interpretation of the rule: An adjective usually is
the restrictive adjunct.

E-2) Input attributes: analytical function of given node.
Error rate: 39.7%
Decision tree size: 45 leaves
Sample from the ruleset:

Rule 21: (2244/323, lift 5.5)
d_afun = Sb
-> class ACT [0.856]

Interpretation: The subject of a sentence usually be-
comes its actor.
E-3) Input attributes: morphological attributes and an-
alytical function of given node.
Error rate: 31.1%
Decision tree size: 416 leaves
Sample from the ruleset:

Rule 213: (251/130, lift 29.2)
d_case = 3
d_afun = Obj
-> class ADDR [0.482]

Interpretation: An object in dative becomes addressee.
E-4) Input attributes: morphological attributes and an-
alytical function of given node and of its autosemantic
governor G
Error rate: 28.3%
Decision tree size: 1785 leaves
Sample from the ruleset:



Rule 388: (16/4, lift 4.7)
g_voice = P
d_case = 7
d_afun = Obj
-> class ACT [0.722]

Rule 665: (137/14, lift 5.9)
g_voice = P
d_afun = Sb
-> class PAT [0.892]

Interpretation: The subject in a clause in passive voice
becomes patient, the actor is expressed by instrumental
(Compare with the rule in E-2).

E-5) Input attributes: Same attributes as in E-4, but
lemmas of functional word (prepositions, conjunctions)
were added.
Error rate: 23.3%
Decision tree size: 1716 leaves
Sample from the ruleset:
Rule 11: (63/16, lift 108.0)

d afun = Adv
preposition = s
-> class ACMP [0.738]

Rule 174: (16, lift 231.1)
d afun = Adv
subord conj = protože
-> class CAUS [0.944]

Rule 412: (34/6, lift 368.7)
coord conj = nebo
-> class DISJ [0.806]

Interpretations: (i) A node connected via preposition s
(‘with’) represents accompaniment. (ii) A clause connected
via subordinating conjunction protože (‘because’) relates to
causality. (iii) A coordination node with lemma nebo (‘or’)
expresses disjunction.

E-6) Input attributes: same attributes as in E-5, but
lemmas of both nodes were added.
Error rate: 19,0%
Decision tree size: 5037 leaves
Sample from the ruleset:
Rule 511: (40, lift 28.6)

d lemma = rok
preposition = v
-> class TWHEN [0.976]

Rule 1031: (6/3, lift 3.2)
g lemma = činnost
d pos = N
preposition = empty
-> class ACT [0.500]

Rule 617: (11, lift 736.0)
d lemma = dosud
-> class TTILL [0.923]

Rule 1397: (6, lift 71.6)
g lemma = patřit
preposition = mezi
-> class DIR3 [0.875]

Interpretation: (i) v roce (‘in year’) is temporal modifier.
(ii) A noun directly depending on noun činnost (‘activity’)
is probably actor of the activity. (iii) dosud (‘still’, ‘untill
now’) is a temporal modifier (TTILL - ‘time till . . . ’). (iv)
patřit mezi . . . (‘belong between . . . ’) binds a directional

modifier.
Note: Rules like 1031 and 1397 can be understood as a pro-
jection of the behavior of nouns and verbs on the treebank
data.

E-7) Input attributes: morphological attributes and an-
alytical function of node N
Error rate: 23.0%
Decision tree size: 1873 leaves
Sample from the ruleset:

Rule 237: (115, lift 29.0)
d_afun = Adv
preposition = v
d_ewn_time = yes
-> class TWHEN [0.991]

Interpretation: An adverbial formed by a noun that has
(according to EuroWordNet) something to do with time and
that is connected via preposition v (‘in’), is a temporal mod-
ifier of type TWHEN.

E-8) Input attributes: union of attributes from E-6 and
E7
Error rate: 17.7%
Decision tree size: 4445 leaves
Sample from the ruleset:
Rule 70: (4, lift 132.9)

g lemma = množstvı́
d ewn origin = yes
-> class MAT [0.833]

Interpretation: If an item depends on noun množstvı́
(‘amount’) and it is related to concept Origin in EuroWord-
Net, then it has the functor MAT (material, e.g. amount of
wood).

3.3. Further Observations

Experiment Decision tree size Error rate
(number of leaves)

E-0 0 88.3 %
E-1 13 54.2 %
E-2 45 39.7 %
E-3 416 31.1 %
E-4 1785 28.3 %
E-5 1716 23.3 %
E-6 5037 19.0 %
E-7 1873 23.0 %
E-8 4445 17.7 %

Table 1: Evaluation of the sequence of experiments.

3.3.1. Robustness
As it was said above, each experiment was evaluated

using 10-fold cross-validation. The question arises, how
the resulting error-rate varies for the individual folds. Too
large variation would imply insufficient plausibility of the
acquired results and low robustness of the whole system, or
in other words, high sensitivity to the choice of the testing
and training set.



Table 2 shows the evaluation of experiment E-8 for each
fold separately. The error-rate varies only in a narrow in-
terval from 16.4 % to 18.1 %. This observation guarantees
satisfactory robustness of the system.

Fold Decision tree size Error rate
(number of leaves)

1 4396 16.4 %
2 4509 17.0 %
3 4509 17.7 %
4 4496 18.5 %
5 4371 17.7 %
6 4398 17.9 %
7 4381 18.9 %
8 4438 17.3 %
9 4449 17.5 %

10 4551 18.1 %
Average 4445 17.7

Std. error 18 0.2

Table 2: Evaluation of experiment E-8 on the individual
folds of 10-fold cross-validation.

3.4. Error-rate versus training data size
In order to examine the dependence of the error-rate on

the data set size, the experiment E-8 was repeatedly per-
formed for data sets containing 1 %, 3 %, 6 %, 10 %,
30 %, and 60 % of all available data. The resulting values
of error-rate, as well as the curve interpolated from them,
are depicted in Figure 5. The curve tends to go down even
in its last segment, which is promising. If we extrapolate
the curve, a decrease of the error-rate by several percent-
age points can be expected when the size of the data set
reaches 100 000 nodes. On the other hand, the “speed of
the improvement” of the presented system decreases too
fast, therefore it is not likely that its error-rate can ever drop
under 10 % using the same attribute set and the same ML
technique.

Although this observation perhaps seems to be pes-
simistic, it perfectly matches the fact that if two human
annotators are asked to annotate (independently on each
other) the same sentences, roughly 10 % of the functors
differ (Hajičová et al.,2002). A part of the disagreements
is naturally caused by human errors. However, there are
probably also certain classes of problems, which are caused
by the fact that the present annotation scheme cannot fully
capture the vagueness of the language. In any case, the per-
centage of functors on which two people differ, makes a
natural limit for what is called error rate in this paper.

4. Accelerating the Annotation Process
4.1. Annotation Environment

For the tectogrammatical annotation of the PDT, the an-
notators use a special Tree Editor (TrEd for short). It en-
ables a comfortable and fast handling of the topology of
the trees (correction of “wrongly-aimed” dependencies) as
well as node re-labeling (changing node attributes, espe-
cially functors). More details can be found in (Hajič et

Figure 5: The improvement of the error-rate when increas-
ing the size of the training data (the attribute set is identical
with that of E-8). The data size is expressed as the number
of vectors (edges). The dashed line represents the average
degree of “disagreement” between two human annotators. .

Figure 6: An illustration of the Tree Editor - the soft-
ware tool for the manual annotation on the tectogrammati-
cal level.

al.,2001). The user interface of TrEd is depicted in Fig-
ure 6.

4.2. Incorporation of the Decision Trees into the
Annotation Process

In order to make the presented system for functor as-
signment practically usable, it has to be incorporated into
the annotation process. This is done as follows: the deci-
sion tree generated by C5 is (automatically) translated into
a module in Perl (the programming language TrEd is writ-
ten in). In TrEd, a keyboard shortcut is defined which ex-
ecutes the evaluation of the decision tree subsequently for
each node of the tectogrammatical tree, and it assigns func-
tors to these nodes.

As we have seen in Figure 3, C5 estimates the confi-
dence for every generated rule and for each leaf of the deci-



Figure 7: Data flow diagram. An the beginning, there is a
set of manually annotated tectogrammatical tree structures.
At the end, a Perl module for automatic functor assignment
is created and can be “plugged” into the tree editor.

sion tree. We color the automatically assigned functors ac-
cording to the confidence of the applied leaf of the decision
tree, with the intent to make it easier for annotators to focus
their concentration on the most “suspicious” nodes. Red
is used for functors with estimated confidence lower than
60 %, black for confidence higher than 90 %, and blue for
the rest. If an annotator corrects the automatically assigned
functor, its color changes to green (the annotator can then
easily perceive which functors have already been manually
corrected).

4.3. Response of the Human Annotators
Currently, there are six people who have been manually

annotating the tectogrammatical tree structures for at least
one year. All of them have more than half a year of expe-
rience with using AFAS. They were given a questionnaire,
the goal of which is to determine the real usefulness of the
AFAS. Here we present selected results of this inquiry.

	 All of the annotators share the opinion that the AFAS
significantly increases the speed of their work. Ac-
cording to their subjective estimate, the manual as-
signment of functors would take at least twice as long
without the AFAS.

	 As it was already mentioned in this paper, they were
asked whether they prefer to automatically assign only
functors with high confidence, or to assign as many
functors as possible, even though more errors would
occur (precision versus recall question). All of them
chose the latter possibility.

	 They were also asked whether they find the coloring
(expressing the confidence of functors) useful. Ac-
cording to their answers, it unfortunately seems that
they are not using this information at all, even though

on unseen data at least 75 % of errors are among “red”
functors. They check the whole tree node by node for
each sentence and cannot simply skip over some parts.

	 They were asked whether they are aware of any sys-
tematical error made by the AFAS. One of their sug-
gestions actually resulted in a change of the input at-
tribute set used by the AFAS (topological attributes
have been added).

4.4. Error Analysis
Having in hand the files during the annotation of which

the previous version of the AFAS was used, we can eval-
uate how often the automatically assigned functors were
manually corrected. The resulting number of corrections
(roughly 23 %) nearly exactly matches the predicted error-
rate, which again confirms the robustness of this approach.

For one file (53 sentences), the errors were analyzed in
detail. In this way, we try to localize the bottlenecks of the
system: the most frequent types of misclassification, and
(if possible) the most frequent reasons for such misclassifi-
cation. Such observation are leading us to furher improve-
ments.

5. Conclusion
We have shown that the machine learning approach can

be very helpful during the tectogrammatical annotation of
the Prague Dependency Treebank, even though such anno-
tation is very close to the semantics of natural language.
Only roughly one out of five automatically assigned func-
tors has to be manually corrected, which makes the remain-
ing annotation significantly faster in comparison with an-
notation from scratch. It is also interesting that the number
of differences between manually assigned functors and au-
tomatically assigned functors is less than twice as big as the
number of differences between two humans.

We hope that further improvements of the presented
systems will be reached via (i) larger training data, (ii) er-
ror analysis of misclassifications of the existing system, (iii)
newly available lexical resources (especially a valency lex-
icon of Czech verbs (Lopatková,Žabokrtský,2002)).

Acknowledgements
The research reported on in this paper has been car-

ried out mainly under the projects GAČR 405/96/K214 and
MŠMT LN00A063. The authors also gratefully acknowl-
edge the support from ILPNet2.

6. References
S. Džeroski, Z. Žabokrtský. 2001. A Machine Learning Ap-

proach to Automatic Functor Assignment in the Prague
Dependency Treebank. Prague Bulletin of Mathematical
Linguistics, 76: 35–43. Charles University, Prague.

J. Hajič. 1998. Building a syntactically annotated corpus:
The Prague Dependency Treebank. In: Issues of Valency
and Meaning. Studies in Honour of Jarmila Panevová,
ed. by E. Hajičová, 106-132. Karolinum, Prague.

J. Hajič, P. Pajas, B. Hladká. 2001. The Prague Dependency
Treebank: Annotation Structure and Support, In: Pro-
ceedings of the IRCS Workshop on Linguistic Databases,
105–114. University of Pennsylvania, Pittsburgh, PA.



E. Hajičová. 2002. Dependency based underlying-structure
tagging of a very large Czech corpus. In: Les grammaires
de dpendance. Traitement Automatique des Langues 41,
ed. by Sylvain Kahane, 57-78.

E. Hajičová, P. Pajas, E. Veselá. 2002. Consistency in Deep
Syntactic Annotations of Corpora: The Case of PDT.
Submitted at The 19th International Conference on Com-
putational Linguistics.

Hajičová, E., Panevovová, J., Sgall, P., 1999. Manual for
tectogrammatical annotation. Technical Report UFAL-
TR-7. Charles University, Prague

E. Hajičová, B. H. Partee, P. Sgall. 1998. Topic-focus,
tripartite structures and cognitive content. Dordrecht:
Kluwer.

M. Lopatková, Z. Žabokrtský. 2002. Valency Dictionary of
Czech Verbs: Complex Tectogrammatical Annotation.
In: Proceedings of Third International Conference on
Language Resources and Evaluation. Las Palmas, Spain.

J.R. Quinlan. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA.

Z. Žabokrtský. 2000. Automatic Functor Assignment in
the Prague Dependency Treebank. In Proceedings of the
Third International Workshop on Text, Speech and Dia-
logue. Springer, Berlin.

Appendix
Alphabetically Ordered List of 40 Most Frequent
Functors
ACMP (accompaniement): mothers with children
ACT (actor): Peter read a letter.
ADDR (addressee): Peter gave Mary a book.
ADVS (adversative): He came there, but didn’t stay long.
AIM (aim): He came there to look for Jane.
APP (appuerenance, i.e., possesion in a broader sense):
John’s desk
APPS (apposition): Charles the Fourth, (i.e.) the Emperor
ATT (attitude): They were here willingly.
BEN (benefactive): She made this for her children.
CAUS (cause): She did so since they wanted it.
COMPL (complement): They painted the wall blue.
COND (condition):If they come here, we’ll be glad.
CONJ (conjunction): Jim and Jack
CPR (comparison): taller than Jack
CRIT (criterion): According to Jim, it was rainng there.
DENOM (denomination): Chapter 5 (e.g. as a title)
DIFF (difference): taller by two inches
DIR1 (direction-from): He went from the forest to the
village.
DIR2 (direction-through): He went through the forest to
the village
DIR3 (direction-to): He went from the forest to the village.
DISJ (disjunction): here or there
DPHR (dependent part of a phraseme): in no way, gram-
mar school
EFF (effect): We made him the secretary.
EXT (extent): highly efficient
FPHR (foreign phrase): dolcissimo, as they say
ID (entity): the river Thames
LOC (locative): in Italy
MANN (manner): They did it quickly.
MAT (material): a bottle of milk
MEANS (means): He wrote it by hand.
MOD (mod): He certainly has done it.
PAR (parentheses): He has, as we know, done it yesterday.
PAT (patient): I saw him.
PHR (phraseme): in no way, grammar school
PREC (preceding, particle referring to context): therefore,
however
PRED (predicate): I saw him.
REG (regard): with regard to George
RHEM (rhematizer, focus sensitive particle): only, even,
also
RSTR (restrictive adjunct): a rich family
THL (temporal-how-long ): We were there for three
weeks.
THO (temporal-how-often) We were there very often.
TWHEN (temporal-when): We were there at noon.


