
Faculty of Mathematics and Physics

Charles University

AUTOMATIC BUILDING

O F A D E P E N D E N C Y T R E E
—THE RULE-BASED APPROACH AND BEYOND

Kiril Ribarov

PhD Thesis

Prague - 2004

2

3

To Monia, Tereza and Luca

4

5

Contents

Foreword 7

1. Introductory Notes and Past Work 11
 1.1. The origins of this work 11
 1.2. First modifications of RBA 13
 1.3. On the word parser 18
 1.4. The theoretical framework and automatic learning 19
 1.5. On analytical and tectogrammatical level 22
 1.6. Early parsers and processing of Czech 25
 1.7. Current trials on parsing of Czech 28
 1.8. Breaking the problem 29

2. Some Aspects of PDT 33
 2.1. Using PDT 33
 2.1.1. Node values of interest 34
 2.2. Basic facts 34
 2.3. Saturation of PDT 37

3. Further Modifications of the Rule-Based Approach for Czech 39
 3.1. The input 39
 3.2. Using modified tagsets 40
 3.3. Linguistic recommendations for morphemic tagset modifications
 for syntactic parsing 44
 3.4. On rule modifications 45
 3.5. The error function 49
 3.6. Learning discipline 51
 3.7. Success and conclusion on the RBA modifications 51
 3.8. Tagging with analytical functions 54
 3.8.1. Conclusion 55
 3.9. Summary on the RBA modifications 56
 3.9.1. The percentages of RBA 57

4. The Directed Minimum Spanning Tree 59

5. Naive Parsing 63
 5.1. The grammar and sentence graphs 63
 5.2. MST as a dependency tree finder using frequencies 64
 5.3. The frequency MST parser 65
 5.4. MST as a dependency tree finder using dependency pictures 69
 5.5. The percentages of naive parsing 73

6

6. À la RBA 77
 6.1. Learning improvement 77
 6.2. The rules 78
 6.2.1. The Simple rule 78
 6.2.2. The Concord rule 79
 6.2.3. The Distance rule 79
 6.2.4. The Between rule 79
 6.2.5. The Not-Between rule 79
 6.2.6. Other rules 79
 6.3. Examples of several rule instances 80
 6.4. Observations, characteristics and results 81
 6.5. Definition of a second phase - tree modifications 82
 6.5.1. Preceding dependency 83
 6.5.2. Brother dependency 83
 6.6. A comment 84
 6.7. The percentages of à la RBA 84

7. The Perceptron-Based Approach for Building of a Dependency Tree 87
 7.1. The perceptron algorithm for tagging 87
 7.2. Formalizing the features 89
 7.2.1. Tagging 89
 7.2.2. Dependency parsing 89
 7.2.3. Global representations 89
 7.3. Score 90
 7.4. Perceptron-based dependency parsing algorithm 90
 7.4.1. Learning 90
 7.4.2. Application 91
 7.5. Feature types 92
 7.5.1. Tests with additional feature types 93
 7.6. Results 94
 7.7. Considerations for better features and algorithm performance 96
 7.8. The percentages of the perceptron-based approach 97

8. Get Almost Two For the Price of One 99

9. Final Notes 103

References 107

Appendix 111

7

Foreword

As many works during the past decades, also this study wants to
contribute towards a more successful automatic parsing of a natural language.
My aim is to present new frameworks, which I support by program tools and,
where of interest, I present result evaluations. All approaches discussed are
based on a dependency syntax framework, but not necessarily limited only to it.
It is my aim neither to present a final product, nor to present a manual to a
ready-to-use best parser.

As it has resulted from many discussions during the past years between
linguists and computer scientists (all of them computational linguists) I feel the
need for stressing the following: the approaches studied in this work are only
those with which an automatic acquisition of the surface syntactic structure of
the natural language (in a form of a list of rules, features, parameters) is possible.
Such, automatically obtained schemes are applied and tested. This contribution
does not study formal humanly crafted grammars (being successful but not
excellent in parsing, e.g. grammars coded in a form of rewriting rules or similar).

The automatically obtained results presented here, if not being stated
otherwise, are not filtered, neither manually purified nor modified in any other
way, since the main topic of interest is to find out how these methods
intrinsically perform.

The theoretical field of formal studies of the language system mainly for
Czech has a long (esp. Praguian) tradition, being an example of a deep and vast
and more improving than changing theory. Although, natural language
processing algorithms presented here are so-called language independent, one
cannot isolate completely the language from its analysis. The primary language
of interest is Czech and the theory to fit is the dependency syntax as described in
(Sgall, Hajièová, Panevová 1986).

There are more past works discussing problems of generation of a Czech
sentence than of its analysis. Nevertheless, one will not remain barefoot even
within the analysis of Czech mainly thanks to the last eight years (the creation of
the Prague Dependency Treebank, a period of exhaustive syntactic analyses)
including also significant results of the last decades. Projects like TIBAQ or
RUSLAN did incorporate parsing modules using hand crafted rules and a

8

restricted dictionary. Unfortunately, it is still not possible to combine effectively
the past manual work with the current automatic one.

The Prague Dependency Treebank constitutes a clear interface line between
a needed algorithm and the linguistic knowledge coded in an appropriate
theoretical framework: it is the linguist who guarantees the correctness of the
manual annotation i.e. linguistic information added to the text in the language
corpus and it is the linguist who 'meta' defines the behavior of the language; it is
the computer scientist who extracts the linguistic information from the corpus
and is able to design algorithms which represent it, generalize it, use it to all its
extends, play with it; it is the treebank, the annotated corpus, which is the
interface/communication channel to the outer non-linguistic world. Adding the
character of the language to process, this is the technical core of deriving function
from form.

None of the methods presented here, use other than treebank information.
As always, the extra, proper linguistic, knowledge is implicitly included in any
automatic model by the design of the model itself, e.g. creation of rule templates
within the rule-based approach, which is the central approach in this study, or in
the postulation of how n-gram is defined within statistical language modeling.

This work presents the following algorithms for automatic acquisition of
analytical trees (not only) for Czech:

- the modified rule-based approach (Chapters 1, 3 and 6),
- the modified perceptron-based approach (Chapter 7),
- a naive, frequency-based approach (Chapter 5),
- a naive, so-called picture-based approach (Chapter 5),
- a definition of the parsing-by-tagging approach (Chapter 8).

For each of the mentioned approaches there are programs created in C (the
older experiments) and in Perl (the more recent experiments) and those are
available for the purpose of academic research upon request to the author. The
terms success rate or precision are used in this work as synonyms and if not
otherwise stated they mean dependency accuracy, i.e. number of correct
dependencies over all tree dependencies.

I hope that the mentioned algorithms will be understood as steps forward
in the possibilities for natural language processing - the currently most successful
algorithms for automatic assignment of an analytical tree structures for Czech
remain to be the Michael Collin's parser followed by the Eugene Charniak's one
achieving 84% success rate. The presented algorithms propose original and
innovative solutions to the parsing problem. Due to the new elements they
present it was not always possible to approach to a detailed evaluation or their
further extensions or further modifications. It seemed obvious therefore to
concentrate more on the algorithms themselves and their basic application.
Except for the first three chapters, this work is presented here for the first time. If
while reading, it has provoked some ideas you believe are interesting and even
such that are not explicitly stated here, I will assume that this thesis has fulfilled
its aim.

9

I owe the chance to perform the studies presented in this work to Eva
Hajièová and Jan Hajiè for the working conditions they have created by the
LPZJD grant and currently by the Center for Computational Linguistics. I would
also like to thank Jan Hajiè for presenting me the work of Eric Brill and Michael
Collins. I would like to thank Petr Pajas for creating such a wonderful tool for
traversing treebank trees as the TrEd is, specially its batch variant bTrEd.

Thank would be a weak word to express my gratitude to Alena and Bára
who have always been close to me and have shared all my moments with
difficulties and moments of happiness.

As the time passes I realize that I am more and more grateful and, in fact,
truly happy, to have been and still be close to such extraordinary people as Petr
Sgall, Jarmila Panevová and Eva Hajièová are, who have given me a professional
background, encouragement and light.

Kiril Ribarov
 Prague - July, 2004

10

11

1. Introductory Notes and Past Work

1.1. The origins of this work

In my master thesis (Ribarov 1996) and as later published in (Hajiè, Ribarov 1997)
for a first time an attempt at an application of a rule-based approach originally
proposed by Eric Brill (Brill 1992, 1993a,b,c), for an automatic grammar
generation of Czech was demonstrated. The mentioned work grew in a time
when no treebank of Czech was available. A small data bank had to be created to
allow for testing the algorithm and building and analyzing its modifications in
order to be able to apply it for a dependency syntactic framework of Czech. Since
these results are important for the later development and improvements, I
summarize here what has been done in the above mentioned contributions. At
the same time I use this occasion to introduce the foundations of the rule-based
approach and the used terminology.

Belonging to the group of algorithms for automatic natural language
learning the rule-based approach (RBA) applied to parsing can be summarized in
the following diagrams, one for the process of application used to parse an input
text when a set of rules exists (Figure 1.1), and the other one for the process of
learning during which the set of rules is created (Figure 1.2).

Figure 1.1: RBA - Application

The rules are obtained automatically, although one may imagine also a set
of manually written rules being a part of such a process1. The real power of the
rule-based approach is in the ability to generate rules from a syntactically
preprocessed input and a rule template list. The (supervised) learning is
performed on a relatively small set2 of manually syntactically processed
sentences. Manually in this sense means correctly syntactically analyzed

1 It is possible to add manually designed rules to the set of automatically obtained ones.
2 Opposed to the statistical techniques, the rule-based learning procedure requires less
data. Notes on the success rate and training set size are included in Chapter 3.

Take
rule i

i++

More rules?yes no

morphologically
annotated
sentences

sentences
with assigned
dependency
structures

Initialize
sentence
structure;
i=1

Rule 1
Rule 2
...
Rule N

Apply rule i
to the whole
input

Set of rules

12

sentences. The set of manually analyzed sentences used for the process of
learning is usually referred to as the truth.

Before one starts with applying the rule-based approach, templates of the
rules must be postulated (given externally to the system) and a procedure, a
function that will decide how well a specific instance of a rule instance (rule)
performs, i.e. comparison function between the truth and the actually modified
input, known as the error function must be known. The learning can be
schematized as in Figure 1.2.

Figure 1.2: RBA - Learning

There are the following connections that have to be preserved between RBA
during application (Figure 1.1) and RBA during learning (Figure 1.2):

§ The initial syntactic structure while learning should be the same as the one
while application.

§ The error function used while learning is usually, but not necessarily, the
function used during evaluation.

The Truth

Eliminate the
existing syntactic
structure and
assign the initiating
structure

Current structure

All possible rule
instances (data
driven) following
certain rule
templates.

Test each rule from the list of all
possible rules: each rule instance is
applied on the whole input and
its success using the error function
is recorded; before a next rule
instance is applied the previously
tested rule does not modify the
current structure.

Select the rule
instance with the
lowest error
rate. This rule
instance becomes
the best rule.

Error
function

Apply the best rule to
the current structure

Put the best
rule at the end
of the list of
best rules

Success rate
is bigger
than a pre
stated threshold
value

The end of the learning
process: the list of best
rules is the list of
automatically generated
rules

No

Yes

13

§ If, as stated in Figure 1.1, the input is enriched with additional information
e.g. morphemic, than the same enriched input needs to be present also during
learning.

§ The list of best rules obtained in the process of learning is the same list of
rules used during the process of application, preserving the very same order
in which the best rules have been obtained.

Formally, each rule has the following structure:

<action> <what> <where>

where,
<action> is the action to be performed, usually addition, change or deletion of

certain elements;
<what> determines the element on which the action is performed (for the

parsing it is either a constituency boundary or a dependency), and
<where> defines of the triggering environment, a condition which has to be true in

order to perform the action.
For a rule to be performed the data as conditioned in <where> (together

with the element specified in <what>) must be identified and the action specified
in <action> has to be possible with respect to <what> within <where>. E.g.

DELETE LEFT_PAREN BETWEEN NOUN NOUN

would mean: delete a left constituency boundary between two neighboring
nouns. In order to perform this rule two neighboring nouns must exist (selection
of the environment) and a LEFT_PAREN between the two nouns must exist (the
first NOUN is a father of the second NOUN); otherwise the rule will not cause any
change to the syntactic tree.

After a rule is applied, technical adjustments of the modified structure need
to be performed, the aim of which is to maintain a connected, coherent tree
syntactic structure: in a linearized dependency tree description using brackets,
deleting a left constituency boundary (left bracket) cannot be left alone without
deleting the matching right constituency boundary (right bracket); further, the
bracketed string after such modification would not necessarily represent a tree
structure anymore, therefore additional maintaining steps need to be performed
in order to guarantee that the bracketed string will always represent a tree
syntactic structure. The modification steps can be of various type and depend on
the specific implementation.

For specific information on basic ideas how RBA is applied to syntactic
parsing of English within a constituency based framework, or how the rule-based
paradigm is applied to PP attachment, or to POS tagging or to other areas of
NLP, one is advised to consider (Brill 1993c).

1.2. First modifications of RBA

Originally introduced and explained only for the constituency grammatical
framework, in order to be applied for a dependency framework, as mentioned
earlier, the rule-based approach needed to undergo deep changes, which are

14

mostly visible principally in two of its components: the rule templates and the
error function. A closer and more detailed elaboration of the changes will be
given for the more valuable second modification of RBA presented in Chapter 3.
Here I would elaborate the very first modifications being made, the logic of
which is present also in the sequential work.

The following rule templates which operate on the linear description of the
sentence and assign only the bare tree syntactic structure (not the syntactic
functions) have been proposed:

Rules Explanation

SWAP LPAREN BETWEEN A B Swap A and B
if there is a left bracket between them

SWAP COMMA BETWEEN A B Swap A and B
if there is a comma between them

ADD LPAREN BETWEEN A B Add left bracket between A and B
if there is no left bracket between them

DEL LPAREN BETWEEN A B Delete left bracket between A and B
if there is any

Table 1.1: Dependency rules3

For clarification and for better understanding of Table 1 and of the
bracketing system, the following linear description accompanied with its
unambiguous dependency tree structure is shown:

A (B , C (D , E) , F (G))

A

 B C F

D E G

Figure 1.3: An abstract dependency tree

Each left bracket has its "nominated" governor: as A for the left bracket
between A and B, or as C for the left bracket between C and D, or as F for G.

Compared to the rules used for obtaining immediate constituents (Brill
1993a), the rules in Table 1 imply the following major differences:

3 Four other rules were also considered dealing with apposition and coordination:
ADD/DEL APOS/COORD BETWEEN A B. These rules added a new node to the tree
such that joined two coordinated subtrees or made a relation between two subtrees in
apposition. Due to the agreement present in PDT that no extra nodes can be added,
coordination and apposition became syntactic attributes, analytical function values,
assigned to a certain lexical item representing the relation of coordination or apposition
in the tree structure as the conj. "and" can be a coordinating node for Peter and Mary in
e.g. "Peter and Mary bought a present".

15

• They delete brackets, without adding new ones.

• They add new brackets, without deleting some previous ones.

• They change the word order in a sentence.

The following table presents the conditions under which the rule templates
are defined.

Rule Defined if:

SWAP LPAREN BETWEEN A B
DEL LPAREN BETWEEN A B

There is only one left bracket between A and B
(that is: B is the leftmost son of A)

SWAP COMMA BETWEEN A B
ADD LPAREN BETWEEN A B

There is no left bracket between A and B
(that is: A and B have the same governor
and B is next to A)

Table 1.2. Rule conditions

If one manipulates with a tree node, then this has an influence on its
subtree. The rules containing SWAP change the order of words in a sentence. This
has a direct influence on the possible triggering environments, which change
after each selection of the best rule within the RBA learning process, due to the
fact that the surface word order is not preserved4. This significantly slows down
the learning speed.

An application of each of the rules specified above results in the following
modifications presented in Figure 1.5 to Figure 1.8 which exemplify the rule
changes on the abstract subtree structure A (B (C , D) , E) from Figure 1.4.

•

• A •

B E

 C D

Figure 1.4: Subtree A(B(C,D),E)

 •

 • B •

 A C D E

Figure 1.5: Result from SWAP LPAREN BETWEEN A B

4 Within the approach based on constituency structure the word order is stable. With our
framework, possible changes between the surface word order and the order of items in
our linear tree representations significantly increase the complexity of the learning
process.

16

 •

 • A •

E B

C D

Figure 1.6: Result from SWAP COMMA BETWEEN B E

 •

 • A •

B

 C D E

Figure 1.7: Result from ADD LPAREN BETWEEN B E

•

 • •

B A

 C D E
Figure 1.8: Result from DEL LPAREN BETWEEN A B

The error function is completely different from the one used for obtaining
the phrase structure that counts the crossing constituents, therefore direct
comparisons of the success rates between immediate constituent structure and
dependency structure is not possible. A function sensitive to differences of the
syntactic structure considered as important was created. It is not advisable to
have an error function that would be too sensitive for certain types of changes
and unequally insensitive for other types of differences in the tree structure. The
error function counts the dependency relations present in the tree with respect to
the total number of correct dependencies.

For the tree structure A (B, C(D (E)), F), where the capital Latin letters
stand for a tag or a word; there are 5 dependencies as follows:

A(B, A(C, A(F, C(D, D(E.

17

Let us compare the above analysis to another tree structure of the same
sentence:

A (B (C (D, E)), F),
which has the following five dependencies:

A(B, A(F, B(C, C(D, C(E.
The two structures have the following three common dependencies:

A(B, A(F, C(D,
therefore, if one of the structures is 'correct' the success rate is 3/5. If not stated
otherwise, this is the way the success rate is calculated as an alternative term for
dependency accuracy.

In order to initiate the process of learning and/or the process of parsing an
initial tree structure needs to be assigned to the input sentence to be processed.
The right chain structure has been chosen, as demonstrated on the following
examples, to be the initial tree structure:

(A), for a sentence of length 1, or

A(B), for a sentence of length 2, or

A (B , C), for a sentence of length 3, or

A (B (C), D), for a sentence of length 4, or

A (B (C (D)) , E), for a sentence of length 5, and so on.

RBA is sensitive on different parameters present in the data (as, e.g., length
of sentences) or settings of the learning process (as, e.g., initial condition) which
indirectly influence the results. The tag set size and its structure is one of the
major factors (for Czech, the full tagset size is approx. 3500 tags) that influences
the success rate. However, for syntactic tree assignment, the tag set does not need
to include all morphemic features (Ribarov 1996). Therefore, after the tag set had
been restricted (while still being larger than the tag set of the Penn Treebank),
some small size experiments were carried out.

At the beginning (when there was no treebank and there was a need of
testing the pure method as such) different very small training sets were created,
which contained approx. 25 sentences (the rule-based approach, without further
improvements, does not perform significantly better if trained on more than 100
sentences). The average success rate of initial bracketing was estimated to be
42%. Various sets of rules for each training set were obtained consisting of
approx. 27 learned rules. The rules were tested on a set of 20 sentences. Each of
the set of rules increased the success of bracketing by approx. 8.5%. Those were
the very first steps: far from impressing results and astonishing percentages, but
still not demotivating ones. The rules were rather simple, and the success rate for
the dependency structure is always more pessimistic than the e.g. that
concerning crossing constituents one in the immediate constituents structure, and
the improvement of 8.5% percent was judged to be relatively not a bad
improvement. It was clear that it could be amended in various aspects. Many
changes were made in-between, both in the data and in the modifications of the

18

stated approach. These changes, e.g. caused that the initial bracketing success
became approx. 27%. Everything has been done with a primary aim to state the
strength and the potential of the automatically generated rules, guided by
(secondary but more important) aim of constructing a suitable parser for Czech.

Before I proceed with the analysis oriented mainly to the rule-based
approach I would like to devote few lines to the problem specification, the way
parsing is understood here, and to make links to the previously works done at
the department from where also this work emerges.

1.3. On the word parser

What is a parser? This question can have a very trivial but at the same
time rather complex answer. To start with, I will use the "trivial" one stating that
a parser is a process of assigning a (labeled or unlabeled) syntactic tree structure
to a sentence at the input; the input originally does not exhibit any kind of
syntactic information. By a syntactic tree structure (being assigned during the
parsing) I denote such syntactic structures as those being present in the treebank
in use.

Let IN be an input sentence and SYN_OUT be the same sentence enriched
with its syntactic information. Parsing can be defined, e.g. as an algorithm
transforming IN into SYN_OUT. Therefore, parsing can be viewed as a mapping
between sets of INs (S) and SYN_OUTs (S):

parsing: S à S.
The desired mapping to be performed is a very sparse one. To support this

claim the number of combinatorially possible structures is given in the second
column of Table 1.3 (if, as in the case of binary constituents as used in (Brill
1993b)) opposed to linguistically located structures in the Penn Treebank in the
third column (the combinatorial space of a dependency tree is even larger). Their
ratio is presented in the fourth column. Assuming that a sentence of 20 tokens
(including punctuation) is very likely, the ratio of found structures over all
possible structures is of a value of 2.4 x 10-8. An algorithm using no linguistic
knowledge will have to test all of those possibilities before selecting the correct
parsing. The situation is even worse for a dependency parser (2.6 x 1023). From
this perspective, the algorithm of automatic grammar generation could be
specified as an algorithm of effective linguistic knowledge search within an
extremely sparse combinatorial space.

i: sentence
length

T(i) = (i-1)T(i-2) + T(i-1)
possible binary

constituent bracketings

Found constituent
bracketings in

Penn TreeBank

Ratio: the
previous 2
columns

Number of
trees with i

vertices
6 48 25 0.52083333 1296
7 156 24 0.15384615 16807
8 492 40 0.08130081 262144
9 1740 65 0.03735632 4782969
10 6168 70 0.0113489 100000000
20 15566830368 379 2.4347�10-8 2.62144�1023

Table 1.3: Possible trees

19

The most traditional understanding of the parsing would be if parsing is
such mapping which assigns all possible syntactic structures to the input. This is
inherent mainly to hand crafted systems (e.g. manually designed formal
grammar parsers). As for the automatic procedures parsing is not a mapping but
a function, a single structure is assigned to an input sentence. Although statistical
parsing algorithms can be programmed to output not only the most probable
output but also the less probable ones, thus giving more than a single output
(within the rule-based approach it is more difficult to make such modifications),
generally speaking statistical and rule-based techniques (and other of similar
nature) are not capable of a complete parsing of the input sentence.

I have in mind that parsing primarily denotes an analysis according to the
traditional understanding, nevertheless, I will use the term parsing (and parser)
for the automatic procedures for syntactic analysis at any level of the syntactic
description. These automatic procedures, as noted above, give mainly a single
syntactic analysis of the input stream, although the input might be syntactically
ambiguous. In certain parts of this work instead the term parser or parsing, I will
also use, e.g. dependency tree finder, building of a dependency tree, and similar.

As implicitly mentioned the structure of the output 'mimics' the structure
present in the treebank. The assignment of a parse to a sentence may be viewed
in two steps:

(a) assignment of a tree structure to the sentence, and
(b) assigning syntactic attributes to the sentence (dependency) elements.

Three scenarios are possible: first (a) than (b), first (b) than (a), or (a) and (b)
together.

I would like to have more freedom for the discrete representation of the
syntactic structures being the output of the parser: assigning a syntactic structure
to the input does not have to necessarily mean assigning only a tree structure. If a
non-tree structure is assigned, it should be transformable to a syntactic tree
structure without loss of information with respect to the application such module
is a part of.

The syntactic structure to obtain from its informative aspect is a surface
syntactic structure (analytical structure)5 as defined and used in PDT. A parser
will be the algorithm that does the parsing , i.e. assigning an analytical tree (parse)
to a sentence. The word parser is used only as a matter of naming convenience.

1.4. The theoretical framework and automatic learning

Which information is legitimate to be used for automatic acquisition of
the syntactic patterns?

In order to answer this question let us have a look on which is the
background one may rely on for handling Czech:

5 Procedures from automatic transformation of analytical trees to tectogrammatical ones
is under development as, e.g., in (Böhmová 2001).

20

- Linguistic formal description of the language system in the framework
of Functional Generative Description (FGD).

- Prague Dependency Treebank with two types of structures: surface -
analytical trees and deep - tectogrammatical trees.

The Functional Generative Description (FGP) has its first firm outlines
postulated by Petr Sgall at the beginning of the 60's and later published (Sgall,
Hajièová, Panevová 1986). FGP is a central theoretical framework for any formal
processing of Czech, which has as its main form a system able to generate
structural descriptions of all correct Czech sentences.

Immediately after the ideas of FGP were postulated two main streams of
research followed: a formulation of the generative component (tectogrammatical
description6) being the first stream, and an elaboration of the translational
(elements between the layers of the theoretical description of the language; in
Czech, "pøekladové složky"). The practical realizations were done on a
grammatically simplified but theoretically exhaustive core subset7 of Czech.

Clearly, this and the work done after, belong to the efforts for mainly
formal synthesis of Czech. The analysis of Czech as such is actively done in the
90s and nowadays.

From the point of view of the Prague School the first main step concerns
the level(s) of sentence structure, which within the dependency framework
display the disambiguated structure of a sentence belonging to a context,
marking the dependency relations and positioning the main weight to the verb
and its modifications. The mentioned layers of the sentence structure according
to the latest considerations are:

1. phonemic,
2. morphonological,
3. morphemic,
4. tectogrammatical.

Between the 3rd and the 4th level an intermediate 'analytical' level has been
inserted as a technical device, which has no theoretical status and differs from
what in the past theoretical frameworks was assumed to constitute a level of
surface syntax. The tectogrammatical level is the deep syntactic level, sometimes
referred to the knowledge representation of the sentence.

6 It has still been not clear at that time how dependency based syntax should be treated
and whether the description could be fully based on a dependency. Therefore, the
description was a combination of constituency and dependency.
7 (Hajièová, Sgall 1980), (Plátek, J.Sgall, P.Sgall 1984) and (Sgall, Hajièová, Panevová 1986)
redesigned the generative component so that it became fully dependency based while
V. Petkevi è in his PhD thesis has added the missing elements of the description such as,
besides others, coordination and apposition (also known as the third dimension in the

formal description). Except for (Petkeviè 1995) Petkeviè's contributions have not been
published. Petkeviè's description is the most profound formal description of the
generative component.

21

The modern applicational approaches currently under research experiment
with the possibility to obtain directly the tectogrammatical structure of the
sentence from the morphemic layer at least as successfully as the surface
syntactic structure is obtained. The present contribution is not a part of these
trends but it neither denies that such direction is possible.

Starting from theory and going towards application, the Prague
Dependency Treebank (PDT) was created (and is continuously under
refinement). The PDT follows the theoretical framework, which is reflected in its
annotation having a three level structure:

1. Morphemic level - morphemic annotation
2. Analytical level - assigning of syntactic structures with their surface

dependency (analytical) functions
3. Tectogrammatical level - obtained from the analytical level when the

analytical tree structure is transformed into a tectogrammatical one
(assuming additions of new nodes and/or deletion of existing nodes) and
tectogrammatical functions are assigned.

The analytical level is declared to be a working intermediate level, also
known as transition level between the morphemic and towards the
tectogrammatical one. The aim of the analytical level is to ease the process of
obtaining the tectogrammatical structure.

If not mentioned otherwise, by a syntactic dependency structure of a
sentence I refer to its analytical structure, although strictly theoretically the
dependency structure of the sentence is constituted by its tectogrammatical
structure.

Although the analytical level is well defined (Bémová et al. 1997) the fact
that the real aim is to obtain the tectogrammatical level gives one a right not to
follow literally the definitions valid for the analytical level, if such could serve
the aim in a better way. E.g. the auxiliary nodes (see analytical function's
descriptions, e.g. in (Hajiè 1998)) which are omitted on the tectogrammatical level
need to be recognized but not necessarily included in the syntactic
representation.

The information of the morphemic level serves to reach the analytical level,
which helps to reach the tectogrammatical level. Let us assume that there are
algorithms the outputs of which correspond to the levels as described in the
linguistic theory. In this single direction from the surface form towards the
meaning of the sentence of the processed language, the input of the 'analytical
algorithm' is the output of the morphemic one, the input of the 'tectogrammatical
algorithm' would be the output of the analytical one. All of them constitute a
chained process, the phonemic (or graphemic) form being at the input of the first
of the algorithms in the chain.

The process of chaining can be very strict
(i) the input must be only the output of the (intermediate) level

situated immediately lower in the hierarchy,
or the same can be more loosely stated as

22

(ii) the input can be anything being lower in the formal description.

These views are commonly shared among computational linguists trying to
invent the needed algorithms. More often (ii) has the following interpretation:

(iii) the input can be anything that one can find in the treebank at
hand.

There is a need of considering these aspects since in the automatic learning
procedures the knowledge while learning could differ from the knowledge the
procedure should produce, although such approach was not yet taken in
consideration but neither excluded. For the process of learning of grammatical
relations one may use as a supervisor during the learning procedure the
analytical trees and/or even the tectogrammatical trees. Nevertheless, the
structure to be assigned during main present-day applications is the analytical
tree structure.

(i), (ii) and (iii) are taken to be the legitimate approaches for the process of
learning, including (iv) in whichever phase of the analysis;

(iv) The intrinsic knowledge of the language as a whole, the
knowledge of the language as a system.

The present algorithms for automatic linguistic knowledge extraction have
no effective mechanisms of how to acquire (iv). The knowledge of the language is
implemented within the structure of the learning process (the templates of the
rules for the rule-based approach, the design of the neural network, the language
model within the statistical procedures) and as such needs to be given by
humans and results from linguistic studies of the language.

1.5. On analytical and tectogrammatical level

Having fresh the ideas from the previous section, I want to contribute here
briefly to a better understanding of the 'technicalities' of the analytical level and
in a similar vein its differences from the tectogrammatical one. I will devote
myself only to the aspects relevant for the automatic approaches, the minimum
one should have in mind before approaching them. Detailed discussion and
descriptions are in (Bémová et al. 1997), (Panevová et al. 2000) and other relevant
papers as (Hajiè et al. 2003)8.

"Technical" facts relevant for the analytical level:
- Each sentence is represented by a single analytical tree.
- Each word form is a single node in the tree. Punctuation is a separate

form, therefore each punctuation mark has its node representative.
- There are no other extra nodes in the tree representation except for

one technical node representing and governing the whole sentence.
This technical node follows a regular pattern and can be
assigned/identified with 100% success rate.

- The dependency relation is coded by the edges, which constitute a
governor-dependant relation.

8 For other works see PDT documentation.

23

- The analytical functions are assigned not to the edges but to the
dependant nodes, thus each word form is a bearer of a certain (its
own) analytical function.

- Each node has an analytical function.
- The analytical functions mark: predicate, subject, object, adverbial,

complement, attribute, auxiliary verbs, coordination, apposition,
reflexive particles, preposition, conjunction, particles, punctuation and
other graphical symbols, specific ellipsis handling. Where unclear
predefined combinations of pairs of the analytical functions is
possible.

Besides the analytical function, each node contains the information inherent
to it from the surface form of the sentence and other types of information as e.g.
the lemma and the morphemic tag. Since the dependency tree does not preserve
the surface word order each node contains its position (order) in the sentence,
such that the sentence can always be reconstructed to its original surface form.
The order of the words influences the way the dependency structure is
represented - it is claimed that the order introduces a second dimension (left to
right) ordering to the tree structure (top to bottom).

To illustrate this let us take the following linearized trees (1) A(B,C), and
(2) A(B(C)). Those can be graphically represented as follows:

(1) A A A

or or
 B C B C B C

(a) (b) (c)
Figure 1.9 (1): A(B,C)

(2) A A A

B or B or B

C C C
(a) (b) (c)9

Figure 1.9 (2): A(B(C))

It is the surface word order that makes them distinct. If ord(X) is a function
returning the surface order of the form (node) X, here is what is valid for the
above trees:

(1)(a) ord(B) < ord(A) < ord (C)
(1)(b) ord(B) < ord(C) < ord (A)
(1)(c) ord(A) < ord(B) < ord (C)
(2)(a) ord(C) < ord(B) < ord (A)

9 This is known as a non-projective dependency tree, while all of the others are projective:
a virtual vertical line below A crosses the B-C dependency.

24

(2)(b) ord(B) < ord(C) < ord (A)
(2)(c) ord(B) < ord(A) < ord (C)

The linearized form of the tree accompanied by the ord(.) function
unambiguously determines the dependency tree.

"Technical" facts relevant for the tectogrammatical level:
- The representation structure is a dependency tree.
- It is obtained by transforming automatically the analytical tree and

consequent manual processing.
- Nodes present on the analytical level can be deleted. This concerns

especially function words.
- Only an autosemantic word is a node.
- Extra nodes not corresponding to a lexical item from the surface can

be added.
- The consideration of the second dimension (left to right) is present

and is of special importance.
- New, tectogrammatical, functions are assigned to each node. These

functions are of the following type as actor, bearer, patient, and
others.

Figure 1.10 presents an example of an analytical tree, and Figure 1.11
presents the tectogrammatical tree of the same sentence "Èeské radiokomunikace
musí v tomto roce rychle splatit dluh televizním divákùm." (The Czech
radiocommunications have_to in this year fastly repay debt to_television viewers.).

Figure 1.10: An example of an analytical tree

25

Figure 1.11: An example of a tectogrammatical tree

Currently, the sentences from PDT can be searched using:

• the NetGraph tool (Mírovský NetGraph), and

• the TrEd tool (Pajas TrEd).

1.6. Early parsers and processing of Czech

Although not directly related to automatic syntactic knowledge extraction, there
has been a significant piece of work already done on the field of formal
processing of Czech. It is my intention to give here a brief glimpse of the past
works starting from the late 50's. Unfortunately these past works cannot be
directly used or re-used, but the experience and the theory verifications they
provided constructs a chord to respect between the obtained linguistic results
and new tendencies for automatic learning as this work is. The work presented in
the following chapters does not have any direct predecessors for Czech.

Most visible of all, RUSLAN (containing in its name, besides others,
RUSsian LANguage) and TIBAQ, (Theory and Inference Based Answering of
Questions) are predecessors of any more complex automatic processing of Czech
including proper syntactic analysis. They share a common structure as presented
in Figure 1.12.

Both TIBAQ and RUSLAN, as described in (Hajièová 1995), (Oliva 1989),
have the inflected words split to stems and endings, the dictionary of endings,
the information from stems and endings conjoined and the syntactic-semantic
analysis in common, while the other modules have the same name but have
different content. The syntactic-semantic analysis has been constructed with the
help of a dictionary (as in Figure 1.12) The dictionary consists of relevant
syntactic and needed semantic features such that the grammar basically can
consist only of two types of rules: most general rules for Czech and Russian
syntax like rules concerning subject-verb agreement, and highly schematized
rules processing the relevant lexical information taken from the dictionaries like

26

rules for filling the slots of case frames or rules carrying out certain changes of
word order if such changes are required etc.

Figure 1.12: Early structure for processing (parsing) of Czech

The implementation of the mentioned systems was done by Q systems.
Designed by A. Colmerauer, Canada, the Q systems were a very attractive tool
besides others, for their possibility to implement dependency-like structures (any
description for an implementation of a language formalism at that time were
based on constituencies). They were also easy enough, opposed to the then
present low level languages and Fortran, such that a trained linguist could
program them himself. However, those who have had direct experience with
programming the Q systems also mention the lack of transparency in the design
of a complete system: there were so many Q-systems to maintain simultaneously
that their control had been almost not possible. More detailed description can be
found in (Oliva 1989) with their application for the process of parsing.

Undoubtedly, the analysis and synthesis present in TIBAQ and RUSLAN10,
are of a high value and importance. On the part of the analysis (which used a
very limited lexicon and syntax), the input sentence (one may assume that the
input sentence has been morphologically analyzed and tagged) is processed
using the mentioned Q-systems producing a tectogrammatical-like11 structure at
the output. A file of tectogrammatical representations of sentences formed the
knowledge base of the system (TIBAQ is an answering system: the user poses a
question, and the system searches for a relevant answer from the knowledge
base). The question at the input was also processed and its tectogrammatical-like

10 Summarization of RUSLAN can be found in (Kuboò 2001).
11 Not tectogrammatical but tectogrammatical-like, because of the implementary
modifications done to ease the processing and at the same time because of the differences
with what is now-a-days assumed to be tectogrammatical after modifications were
implemented in the past decades.

Input

Dictionary of
uninflected words

Inflected word split to
stem and ending

Dictionary of endings

Dictionary of stems

Information from stem
and ending conjoined

Syntactic-semantic
analysis

Representation restructuring for TIBAQ or
synthesis of Russian for RUSLAN

Output

27

structure was obtained, after which comparisons with inference based
procedures were invoked in order to construct the answer. Thus, searching for
facts not directly/explicitly contained in the knowledge base was made possible,
e.g. "everybody can" implies "A can", where A is an instance (a member of
everybody), or "the device A can do" implies "A does".

The beginnings of syntactic processing and analysis of Czech does not start
with the mentioned products, although they are its first more known and
complex instances. Before that, in 1959 Sgall with his colleagues comes with the
first attempt for an experiment with translation from English into Czech. Few
years after that another attempt for the English to Czech translation was carried
over by Kirschner (Kirschner 1987, 1988). After that a synthesis of the Czech
sentence was done.

All of those algorithms were implemented, as the time permitted, on small
sets of data just enough to show/test the ability of the machine to verify the
formal description.

Although it would be very difficult to imagine, from a perspective of the
present much higher computational power, how an analysis could have been
efficiently performed, the analysis of Czech has not been totally absent in the
past. Mainly in the beginning of the 60's algorithms (theoretically described)
were done for morphological analysis (and synthesis), various algorithms for
syntactic analysis of Czech were designed, such that partial syntactic phenomena
of Czech were exhaustively studied and those partial algorithms were postulated
(unfortunately they were not joined into a single analysis).

Algorithms for searching and information retrieval were done and also
implemented, known under the names of MOZAIKA (na MOrfologii Založené
Automatické Indexování Koherentními Agregáty) and AZIMUT (Automatické
Zpracování Informací Metodou Úplného Textu). Without a use of a dictionary
but based on ending segments of the word forms MOZAIKA was able to search
successfully for relevant keywords in the Czech.

AZIMUT has been a full text searching engine for the highly inflective
Czech language (Králíková, Panevová 1990). Its main power is in the module
"Generator" a substitution of a lemmatizer, a module that was able to generate
(for a given input) possible relevant word forms under which the input form
could occur in the text. The user had also the possibility to search for more than
one term joining them with basic logical operators, and controlling the presence
of their occurrences within a sentence, paragraph, text.

For all of the mentioned works, a qualitative analysis of the results is
presented but without evaluation of the type one is used to receive nowadays.
Therefore it is not possible to say to which extent (in terms of percentages) does
this knowledge and previously done work help our current analysis. Neither it is
possible to retest the algorithms since that would require reprogramming them.
Reprogramming would not mean only recording them, but also redesigning the
algorithms (they very often include conditions based on e.g. valency, which is a
value that we should obtain and not a value we have).

28

Nevertheless the past work is extremely motivating and valuable for an
analysis one performs now-a-days. In fact, analysis on the morphemic level
(morphological analysis and lemmatizing) algorithmized and completed by Hajiè
(Hajiè 1999), benefits from the past descriptions of the morphemic phenomena of
Czech (Weisheitelová, Králíková, Sgall 1982), the meta rules used for Kuboò's
grammar checker (Kuboò 2001) benefit from the syntactic descriptions of Czech
also done in the past. The significant contribution of Lopatková (Straòáková 2001)
for prepositional group attachment resolution in Czech is a continuation of the
theoretical research trends including as well significant analytical value.

Besides manually coding the linguistic information the richness of
language data and the development of the computational power allow for
methods of automatic learning, mainly statistical or rule-based; naturally this
was not possible in the past. Questions arise how to join former and present
efforts.

1.7. Current trials on parsing of Czech

I will mention here only several representatives of two main trends of parsing of
Czech:

- the trend closer to the traditional parsing, i.e. generation of a set of
syntactic structures relevant to a given input sentence

- the trend of automatic, mainly statistical, assignment of a single,
contextually correct syntactic structure for an input sentence.

The first one would like to obtain the highest (possibly 100%) recall and
maintain a high recall level while restricting the set of thousands of syntactic
structures for each sentence to a small core of true ones. As new representatives
of such trend I would select (Horák 2000) and (Žáèková 2002). (Horák 2000)
presents an impressive syntactic analysis tool, a chart parsing based tool with
additional contextual elements and grammatical agreement tests. It operates with
a grammar of the Czech language with a 90% coverage on the Prague
Dependency Treebank. A later work of (Žáèková 2002) deals with partial analysis
of Czech sentences in a Prolog environment within which she implements rules
of grammatical constraints.

The second trend is the one where the authors' aim is to find the best
syntactic structure for an input sentence. The aim is to have such best structure
that will have the highest possible precision measured on the Prague
Dependency Treebank. These approaches are not originally designed to output
more than a single sentence structure. The most famous of all is the work of M.
Collins (Collins 2002) based on stochastic grammars and later on followed by the
successful experiment of E. Charniak (Charniak 2001). In the Czech environment
it is the work of D. Zeman who works with dependency probabilistic model
(Zeman 1998) and his later work on the same model, which is not published yet
and includes significant improvements compared to the state in 1998. The work
presented in this thesis belongs as well to this trend.

29

I would not like to omit also the work (Kuboò 2001) on a grammar checker
of Czech which is closer to the syntactic analysis tools, but based on text mistakes
by which in its analysis 'phase' grammar rules are triggered.

As a part of a future research it would be interesting to try to combine the
two trends, a combination where the automatic parsing (the second trend) would
try to help the syntactic analysis for a more successful restriction of the generated
syntactic trees (the first phase).

1.8. Breaking the problem

Revealing the analytical structure of a sentence is a complex process. With
current algorithms for analytical structure determination, the success rate rises if
the process is viewed as a system with various subparts as in Figure 1.13. In this
section I would like to describe a situation which was in my mind while creating
the parser presented in this work and at the same time a situation in which the
parsers can be placed. The parser would be the main module of such a system.
The system has the following input and output:

The input: A sentence or a word group acting as a sentence. The sentence can
be associated with its morphemic information (see later on modifications
of this information and selection of morphologic information relevant
for syntactic parsing).

The output: analytical syntactic structure of the input sentence, or the input
sentence accompanied by syntactic information such that it can be easily
transformed into an analytical tree structure of the input sentence, or
into a partial analytical tree that provides at least as much information
as needed for the next step of processing.

input sentence
preprocessing

sentence non-sentence

structure assignment of non-sentences

 1. parsing of very short sentences

2. Main module: parsing of common sentences

3. parsing of long sentences ---> breaking the long constructions into pieces each of
which can be parsed by module 2.

Figure 1.13: A model outline

syntactic universals

30

As stated earlier, a proper output should give all possible parses of the
input sentence. Unfortunately, this aim is not possible to fulfill with the methods
here in use, although different parses of the sentence are not a priori excluded.

The process of preprocessing could identify any kind of regular and fixed
information. Its aim is to localize the regular parts of the text and the regular
parts of the sentences, as:

- identification of tables, lists, sport event results (taken to be non-
sentences)

- localization of very short and very long sentences (sentences with a
large number of verbs or rich punctuation)

- identification of compound verbs (verbal analytical forms)
- identification of prepositions and prepositional groups
- certain coordinations
- certain parenthetical parts
- certain idioms and phrases.

This list can be modified and depends on the language being processed, in
this case, the Czech language. The criterion of what rule can be a part of the
preprocessing module could be given by the ability of designing a rule such that
it will not reduce the recall of the system. The need to separate the long sentences
from the shorter ones is a result of unambiguous experiments, which show that
the longer the sentence is the less successful is the parser. Breaking the long
sentences into smaller sentential segments reduces the combinatorial space of
possible structures to be searched. For its possible positive effect, besides the
significant influence of distance as described in Chapter 4 see also (Holan 2003),
(Ribarov 2000b).

Having in mind, that PDT consists of various texts most of which are
newspaper texts included in PDT without any editorial work or selections, one
must expect a variety of non-sentences in the input. These non-sentences, to
mention some of them tables, lists, sport or chess results, are not our main objects
of interest. Although being assigned an analytical structure, such a segment is
dependent on the spelling norms of the language and exhibits firm regularities.
Therefore, it is believed that if they are recognized correctly, specialized modules
based on regular expressions could process them.

During the whole process, verification of certain invariant elements could
be performed. As for Czech these elements are to be searched in:

- analytical forms (usually verbal; it is also a part of the preprocessing),
- check on morphological agreement,
- list of atypical syntactic constructions based on the manual for

analytical annotation, where such structures are exemplified, taken as
a list of structured exceptions,

- results of a study of the discrete nature of the tree structures present in
the treebank; non linguistic information that refers to the tree
structures and their structural characteristics.

31

These and possibly other 'syntactic universals' could be applied
continuously throughout the parsing process or as a post processing (correction)
unit. The syntactic universals can always be also a part of the preprocessing unit.
The way how the syntactic universals are applied influences the success rate of
the system. An interesting and useful work on combination of regular
expressions and statistical parsing is done as in (Zeman 2001).

Speaking of parsing very short sentences I have in mind parsing sentences
without verbs. In such sentences one may expect incomplete grammatical
constructions having originally other than basic narrative, exclamatory or
interrogative character in the text. Usually headers or other titles have these
characteristics. It is justifiable to assume that such sentences can be successfully
localized, which would allow, if needed (e.g. the rule-based method specially
trained on such sentences could parse them in a satisfactory manner) to process
them separately.

The main (parsing) module is independent on the type of the parser being
used, but an automatically trained parser being either a rule-based one or a
statistical one is expected. Any combinations of the both are not excluded.

32

33

2. Some Aspects of PDT
The aim of this chapter is to present some characteristics of the object of study,
the Prague Dependency Treebank (PDT). The presented characteristics are with
respect to the performed experiments in the later chapters and with respect to
automatic parsing algorithms in general. The characteristics are presented as
frequency counts on PDT, such that help us sharpen our intuition and
judgements towards algorithm performance.

2.1. Using PDT

PDT is the largest collection of syntactically annotated Czech data and, in
general, one of the largest such collections in the world. PDT has a unique depth
of analysis at three levels: morphemic, surface syntactic (analytical), and deep
syntactic (tectogrammatical). A fourth level is also envisioned - a logical
propositional one. For more detailed information on PDT, see (PDT 1.0).

The level of our interest will be the analytical one. It consists of almost
100,000 sentences divided in three groups: train set sentences, development set
sentences and evaluation set sentences. The files can be accessed in two different
formats: an internal feature structure format *fs, and a SGML based format with
its own DTD. Using ready tools as NetGraph (Mírovský NetGraph) or TrEd
(Pajas TrEd) one may easily access any kind of information from the annotated
material independently on the input format. Moreover, there is a conversion tool
between the two mentioned formats available (see PDT 1.0). For doing any kind
of a heavier operation on the treebank data, the bTrEd (batch variant of TrEd)
and nTrEd (network variant) are irreplaceable tools. TrEd allows a direct access
to the trees and the node info using a Perl code and macro sequences parsed and
processed by TrEd. Traversing a tree in PDT is as simple as including something
as the following code, which is passed as an argument to btred.

sub autostart {
code before
do {

 while ($this) {
code in

In this part we may access any kind of
information of the node, e.g.

$tag = $this->{tag}
$lemma = $this->{lemma}
$form = $this->{form}
$order = $this->{ord}, etc.,
or access, e.g.,its parent by
$this->{parent}

 $this=$this->following;
 }

} while NextTree();
code after

}

34

2.1.1. Node values of interest

Tags of special interest for this work are the following: ID1 for sentence
identification, form for a word form and lemma for its lemma, ord for identification
of the surface word order, tag for the correct (manual) morphemic tag, afun for
the analytical function assigned to the word form.

The morphemic tag is a positional one with 15 positions in the following
order: (1) Part of Speech, (2) Detailed Part of Speech, (3) Gender, (4) Number, (5)
Case, (6) Possessor's Gender, (7) Possessor's Number, (8) Person, (9) Tense, (10)
Degree of comparison, (11) Negation, (12) Voice, (13) unused, (14) unused, (15)
special usage.

The PDT tree nodes contain also tags which are the output of: a
morphological analysis of Czech, output of two different best taggers for Czech.
Specially the latter are used when chaining the, e.g. syntactic module, to previous
morphemic ones.

There is one artificially added node, the root of the sentence, which is
assigned an ord of 0 and tag of Z#-------------.

The presented statistics are calculated over the whole set of 1583 files of
analytical for general training subset of PDT.

2.2. Basic facts

Major part of automatic learning procedures are directly dependent on
sentence length, usually respecting a law that the longer the sentence is the less
successful the automatic procedure is. The sentence length with respect to the
number of nodes is presented in Figure 2.1.

Figure 2.1: Sentences and their length

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

0 1 5 3 0 4 5 6 0 7 5 9 0 1 0 5 1 2 0 1 3 5 1 5 0 1 6 5 1 8 0 1 9 5

N o d e s

S
en

te
nc

es

35

With respect to the sentence frequencies, the average sentence length is 16
nodes, i.e., 15 words (the last, 16th, node is punctuation). If the one node
sentences are excluded the average length is 18 nodes. Even further, if we
exclude also two node sentences (which are parsed by simply connecting the two
nodes, one of which is the artificially added root node) the average sentence
length remains 18.

It is not generally true that one-verb sentences are short sentences. It is
surprising to see that even a one-verb sentence can have a length of even 60 or
more nodes. Nevertheless, although very rich on syntactic elements, one-verb
sentences are 'simpler' than those with more verbs. On other hand, sentences
without verbs exhibit other characteristics. A parser could be trained separately
on these sentence groups. Performance on one-verb sentences is more successful,
but within more sophisticated approaches this difference is usually not a big one.
Table 2.1 presents number of sentences with the corresponding number of verbs.

Verbs # Sentences
0 19307
1 20722
2 17218
3 11059
4 6543
5 3418
6 1714
7 842
8 406
9 181
10 101
11 52
12 23
13 13
14 8
15 3
16 1
20 1
21 1
23 1

Table 2.1: Number of verbs per sentence

The success of the automatic procedures varies also with the cardinality of
the tagging set (Hladká, Ribarov 1998). With respect to the past experiments and
with respect with those presented later in the text two most common reductions
of the tagging set is either by taking only the first two positions of the morphemic
tag or its first five positions. Evidence on different dependencies present in PDT
for two variants of tagset reductions (the top 30 dependencies) is given in Table
2.2. The reductions are straightforward: (m5) the first five positions of the
morphemic tag, (m2) the first two positions of the morphemic tag.

36

Father Son Frequency Father Son Frequency
Z#--- Z:--- 73616 NN AA 118969
Z#--- VB-S- 18710 NN NN 95806
J,--- Z:--- 17347 RR NN 92695
J^--- Z:--- 17327 Z# Z: 73616
RR--6 NNFS6 12185 VB NN 49527
VB-S- Z:--- 11627 Vp NN 38418
Z#--- J^--- 11474 J^ NN 36209
NNFS2 AAFS2 10680 NN RR 33560
RR--6 NNIS6 10520 VB RR 26319
J^--- VB-S- 9632 Z# VB 25321
Z:--- Z:--- 9533 Vp RR 24167
VB-S- Db--- 9188 J, Z: 18081
NNMS1 NNMS1 8942 Z# Vp 17809
VB-S- NNFS1 8843 Z: NN 17744
NNFS1 AAFS1 8611 J^ Z: 17327
Z#--- VpYS- 7893 NN Z: 17297
NNIS2 AAIS2 7348 VB Z: 17081
RR--6 NNNS6 6952 J^ VB 13889
VB-S- RR--6 6931 VB Db 13418
C=--- Z:--- 6658 NN J^ 12978
Z#--- VB-P- 6611 Vf NN 11662
VB-S- Vf--- 6400 Z# J^ 11474
NNFS4 AAFS4 6394 Vp Z: 11419
VB-S- NNIS1 6305 Vp Db 10355
J,--- VB-S- 6162 J^ Vp 10044
NNIS1 AAIS1 6107 NN C= 9972
VpYS- NNMS1 5759 Z: Z: 9533
VB-S- P7-X4 5607 Z# NN 9163
NNIS4 AAIS4 5589 VB P7 9114
RR--4 NNFS4 5548 VB Vf 8682

Table 2.2: Dependency frequencies

When only the first five tag positions are considered there are 15,820
different dependencies, or 1,212 for the case when the first two position of the tag
are considered. For the first case, almost 2/3 of them have a frequency lower than
6.

Neither bigrams nor trigrams are sufficient to capture the dependencies.
Although the longer the dependency is the less probable it is, 76% of all
dependencies are longer than 3. A length (distance) of a dependency is the
absolute difference of surface order (function ord) of the dependency nodes. The
dependency lengths are presented in the figure of Table 2.3, the 15 most frequent
of which are presented in Table 2.3. The longest dependency in PDT is 195.

The average dependency length is 11 calculated over the total number of
22,142,414 dependencies found in 81,614 sentences.

Dependency

F
re

q
u

en
cy

37

Dependency Length Frequency
1 1992077
2 1713466
3 1562417
4 1449851
5 1347864
6 1251858
7 1162216
8 1074850
9 991961
10 914112
11 839241
12 768198
13 700602
14 639001
15 580709

Table 2.3: Dependency length frequency

Unfortunately for initiating studies on automatic training procedures, PDT
contains a large number of 'inadequate' sentences, to mention two of them: non-
neglectable amount of empty sentences (one node sentences), i.e. sentences with
only one node (therefore the success of parsing is always 100%), or opposite to
that a significant amount of 'non-sentences', as various enumeration lists or lists
of other kind, various table-like data coded as a tree, where the parsing rules are
more technical agreements on their tree description than linguistic/syntactic
relevant rules. It should be noted that the latter introduces noise that influences a
learning process.

There are also many linguistic cases in syntactic analysis (assignment of
analytical trees), e.g. those for which the two tree dimensions are not sufficient,
as in the case, e.g., with coordination. Hence, the necessity to represent all
emerging cases requires employment of various compromises between linguistic
justification and technical tree representation.

Besides the difficulties of the language itself, such characteristics do not
make our life easier. Therefore, whenever possible, technicalities should be
identified and localized.

For additional experiments on dependency frequencies see (Holan 2003).

2.3. Saturation of PDT

Figure 2.2 and Figure 2.3 present the cumulative frequency of newly occurring
dependencies over PDT, which exhibits, or should exhibit, a saturation effect.
The saturation effect is visible for the cumulative frequencies of tags taken as the
first two (m2) morphemic tag positions (Figure 2.3) and it also starts occurring
for the cumulative frequencies of tags taken as the first five (m5) morphemic tag
positions (Figure 2.2). The more saturated the treebank is, the better it represents
the statistical aspects of the diversity and completeness of syntactic information.
PDT could be placed (with respect to the full morphemic tag) in a region between

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 50 100 150 200

Dependency Length

F
re

q
u

en
cy

38

non-saturated and saturated phase. After approx. 80,000 processed sentences for
(m2) a new dependency occurs in every approx. 300th sentence, while for (m5) a
new dependency occurs in every approx. 10th sentence, which is an onset of a
more stable saturation region. On one hand one could always wish a bigger PDT,
on the other hand PDT is almost big enough. Following such trend, saturating it
would require additional approx. 30,000 sentences or a lower set with a selection
of such sentences that will cover missing grammatical constructions.

Figure 2.2: Cumulative frequency of (m5) dependencies

Figure 2.3: Cumulative frequency of (m2) dependencies

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

1 6 0 0 0

0 1 5 0 0 0 3 0 0 0 0 4 5 0 0 0 6 0 0 0 0 7 5 0 0 0 9 0 0 0 0

S e n t e n c e s

C
um

ul
at

iv
e

Fr
eq

ue
nc

y
of

D
ep

en
de

nc
ie

s

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

0 1 5 0 0 0 3 0 0 0 0 4 5 0 0 0 6 0 0 0 0 7 5 0 0 0 9 0 0 0 0

S e n t e n c e s

C
um

ul
at

iv
e

Fr
eq

ue
nc

y
of

D
ep

en
de

nc
ie

s

39

3. Further Modifications of the Rule-Based Approach for
Czech

After the first attempt to apply the rule-based approach for a dependency based
syntactic analysis of Czech (Chapter 1, Sections 1.1 and 1.2) several other steps
and modifications were made (Ribarov 2002). Most important of all, the modified
RBA was tested on real corpus data, as soon as those were available. Increase of
the success rate was observed, higher than the one in the early experiments
described in Chapter 1. Although higher, the success rate has not been high
enough for any sensible automatic application. To reach the higher
(unfortunately still relatively low) success rate, several other modifications were
made: the set of rules was redone and enriched with new rules, other error rate
function during the phase of learning was considered, various morphemic tag
sets were tested. This chapter summarizes those efforts and its content has more
an academical value than an applicational one. This chapter contains relevant
information for applying the rule-based approach for parsing of Czech. Since the
tagset size is relevant for the success rate of RBA, as also demonstrated here,
experiments with different tagset sizes (Hladká, Ribarov 1998) are included. At
the end of this chapter experiment for tagging a surface sentence form by
analytical functions is introduced.

3.1. The input

In all of the experiments, the input text is from PDT, and the rules operate on the
morphemic representation of the input text. Thus, the sentence (PDT file c110.fs,
sentence number 29):

Tìm bude umožnìna krátkodobá stáž v zahranièí nebo
studium v ÈR.

(Them will_be allowed short-term stay in abroad or
a_study in CZ.)

which has the following morphemic categories

Tìm/PDXP3 bude/VB-S---3F-AA
umožnìna/VsQW---XX-AP krátkodobá/AAFS1----1A
stáž/NNFS1-----A v/RR--6
zahranièí/NNNS6-----A nebo/J^
studium/NNNS1-----A v/RR--6
ÈR/NNFXX-----A---8 ./Z:

becomes the following input string (the rules do not include the lexical items
and take the sentence to parse to be the input stream of morph. tags)

PDXP3 VB-S---3F-AA VsQW---XX-AP AAFS1----1A NNFS1-----A RR--6
NNNS6-----A J^ NNNS1-----A RR--6 NNFXX-----A---8 Z:

The dependency tree is represented in its linear form.

In the earlier stages when no disambiguated morphemic data large enough
were available, but one had only the output of a complete morphological analysis

40

of the input words, there was a need of accustoming the algorithms to that
situation. It needed to be stated where it was possible to apply the
readings/interpretation of the rules such that the non-disambiguated morphemic
tags could be used.

Rules Explanation
SWAP LPAREN BETWEEN A B
SWAP COMMA BETWEEN A B
ADD LPAREN BETWEEN A B
DEL LPAREN BETWEEN A B

All of the rules are read in the same way
as before (Table 1.1) assuming that A and
B are not disambiguated tags but
members of a set of possible morphemic
tags.

Table 3.1: First set of modified rules

The present computational power and the combinatorial character of the
learning process does not allow a practical use of a big tag sets and does not
allow more than one tag per word. Therefore the requirement is to have a
disambiguated morphology and to operate on the disambiguated tags12, at least
for the process of learning (while during application one could assume an input
with multiple tags and interpret the rules as in Table 3.1).

The initial tree structure is the so-called right chain tree structure, which linear
description is defined as follows.

Let A1, A2, ..., An , AZ be the sentence surface form and # represent the
artificially added sentence root, as in PDT;
do: T(0) = # (T(1), AZ); T (i) = Ai (T(i+1)), for i=1...n-1; T(n) = An.

Hence, the result would be

(A1 (A2 (... An-1 (An)...)) , AZ)

which graphically corresponds to the tree in Figure 3.1.

#

AZ

 A1

A2

An

Figure 3.1: A right chain initial structure

3.2. Using modified tagsets

Assuming that the input sentence to parse consists only of morphemic tags, the
type and the size of the tagset has a direct influence on the success rate of the
parsing procedure. The motivation for this study can be found in the following:

12 The first results of the learning process were obtained by selecting the first morphemic
tag from the list of tags to be the "correct" tag.

41

§ The success of tagging of Czech is influenced by the cardinality of the tagset.
As discussed in (Hladká, Ribarov 1998) and also supported by former study
by (Elworthy 1995) (where experiments concerning changing tagsets are
presented for three different languages (English, French, Swedish) are
presented) the tagset should be chosen according to the requirements of a
given application. The aim is to join a morphemic tagger and a parser in
order to obtain a fully automatic procedure. Therefore the output of the
tagger should, in our case, suit best the needs of the parser.

§ In order to join a tagger and a parser one also needs to have a tagger with the
highest possible success rate (the parser should then be trained on the output
of the tagger).

Practically this is realized by examining the performance of the parser on
tagsets of different sizes. At the same time the success rate of the tagger itself for
the various tagsets should be observed, such that the most successful one is
selected.

Three different POS tagsets (POS TAG1171, POS TAG206, POS TAG34),
statistical approach to tag text and the tagging accuracy of each statistical tagging
with three different tagsets have been developed and tested. Cases of incorrect
tag assignment to the words in the input sentence (Zkrocení zlé ženy mìlo úspech
[lit. Taming of the shrew had success]) are in boldface in the tagged input sentence:

- for POS TAG1171: Zkrocení/ANS11A zlé/AFS21A ženy/NFS2

mì lo/V3SAMONA úspech/NIS1
- for POS TAG206: Zkrocení/NS zlé/AFS21A ženy/NP mìlo/V3SAMA

úspech/NS
- for POS TAG34: Zkrocení/NOUN zlé/ADJ ženy/NOUN

mì lo/VERB_PAP úspech/NOUN

The results are presented in Table 3.2, where method BMM is Bi-gram
Markov Model, RB is Rule-Base tagger, MMFS - Markov Model realized by finite-
state automata.

Method BMM RB BMM RB MMFS MMFS MMFS

POS
tagset size

1 171 1 171 206 206 47 43 34

Training
data size

600K 38K 600K 38K 15K 15K 15K

Tagger
accuracy

81.5% 79.8% 90.1% 87.2% 91.7% 93.0% 96.2%

Table 3.2: Tagset size and success rates for tagging13

For a user, let us say a linguist, whose aim is to specify morphemic categories,
we need to perform tagging with a full tagset, more specifically, with carefully
selected and detailed morphemic classification according to the traditional
grammar. The result could be viewed as a process which „added“ information to
the text, or as a way of classification (clustering) of the word mass. Different

13 Table 3.2 is taken from (Hladká, Ribarov 1998).

42

tagset sizes result in different classification of the word forms. The members of
each cluster are thus given the same tag.

Previous tagset reductions have been connected with specific mutual
dependence between each two of the tagsets. The tagsets mappings have to
preserve the patterns, the (ir)regularities of the language.

If the training corpus is annotated with the POS TAG1171 we can observe
results of the rule-based approach given in Table 3.3. The rules presented in
Tables 3.3 and 3.4 are from the second RBA modification to be presented in
Section 3.4 of this chapter.

Id Description of the Rule Success (%)
1 Swap the dependency between ZIP and NFS4A 33.67
2 Swap the dependency between ANS51A and NFP5A 34.53
3 Swap the dependency between PDFS2 and NFS6A 35.14
4 Swap the dependency between PQFIP1 and VPS3A 35.74
5 Swap the dependency between RV7 and VPS3A 36.27
6 Swap the dependency between ANS51A and NIS4A 36.81

....
7 Swap the dependency between ANP71A and NFP7A 44.56
8 Swap the dependency between PQFMP1 and VPP3N 44.76
9 Swap the dependency between ANS53A and NFS6A 44.96

10 Swap the dependency between ANS61A and NNS6A 45.16
....
11 Swap the dependency between AFS71A and NMS6A 47.18
12 Swap the dependency between ANS61A and NOMORPH 47.38

Table 3.3: Learned rules on a large tagset

The situation changes rather dramatically if we train on the reduced tagset
POS TAG34 as shown in Table 3.4.

Id Description of the Rule Success (%)
1 Swap the dependency between ADJ and NOUN 44.38
2 Swap the dependency between CM and CONJ 46.00
3 Swap the dependency between PSE and VERB_PRI 47.48
4 Swap the dependency between ADV and VERB_PRI 48.74
5 Swap the dependency between PROP and VERB_PRI 49.58
6 Swap the dependency between ADJ and NOUN 50.42
7 Swap the dependency between CM ADJ 51.29
8 Delete the dependency between ADJ and CM 52.22
....
9 Add a dependency between PUNCT and PROP 64.84
10 Delete the dependency between PRON_INS and PREP 65.02

Table 3.414: Learned rules on a small tagset

14 The rules in Table 3.3 and Table 3.4 are not the complete sets of rules.

43

Not all of the rules result in a sentence structure with precise grammatical
explanation. The „strange“ ones are there to combine with the others in order to
correct the structures of the previously applied rules. Although some of the rules
are obvious and we believe that a human would derive the same rules, still the
grammatical meaning of the rules can be evaluated only when analyzing the
result of the application of the whole list of rules. Let us try and examine the
relation and dependence of the reduced and non-reduced tagset on the selected
rules as given in the above tables. One of the obvious rules in Table 3.4 is rule 1
(and rule 6; the rules might repeat; during their repetition their influence has a
different scope depending on their position in the list). To cope with a more
distinct situation in a more specific POS TAG1171, the algorithm produces more
rules in order to capture the relation between an adjective and a noun: rules 2, 6,
7, 9, 10 and 11 in Table 3.3.

Undoubtedly, the reduced tagset brings better absolute values. We would
like to note that the nodes within the syntactic structure could be returned to the
corresponding values from the full tagset. Thus, no information has been lost.

As for the rule-based application for syntactic structure extraction, the
reduced tagset leads to a much better start on the learning curve (Figure 3.2).
After the saturation of the process of learning, which comes after several tens of
rules have been learnt, the learning might continue after one switches to the more
expanded tagset, namely the full tagset.

Figure 3.2: RBA learning curves

Being sensitive to the tagset size, the rule-based approach operates better
on smaller tagsets. A reduction of a tagset should not distort the syntactic
characteristics of the input. The type of the reduction is dependent on the tagset
characteristics.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 10 20 30 40 50 60

Rule Number

Su
cce
ss
Rat
e

44

3.3. Linguistic recommendations for morphemic tagset modification for
syntactic parsing

The following are some linguistic recommendations for morphemic tagset
modification (mainly reduction) of Czech for syntactic parsing.

For all POS, the 1st and the 2nd positions (the POS and the sub POS) are
preserved.

For nouns, adjectives, pronouns, numerals: the gender, number and case
categories (3rd, 4th and 5th position) are preserved.

In case of adjectives in nominative, two different syntactic relations are
possible: attributive (as in "That beautiful girl is my daughter.") and predicative
(as in "That girl is beautiful."). These two cases are to be distinguished by the
parser; the Czech morphology does not distinguish them.

Numerals and pronouns may be selectively merged with nouns and
adjectives (in the case of numerals also with adverbs).

For pronouns one may, for the purpose of syntactic analysis, make the
following merging (the "(!)" sign marks that the distinction is not a part of the
morphemic tag):

a) the following pronouns can be treated as nouns (NN): personal pronouns,
pronoun dem., pronoun rel. (as nìhož, nìmuž, ...) marked as PJ, pronoun
rel. genderless, pronoun quest. or rel. (!), indef. pronoun (!), negative
pronoun genderless (!).

b) the following pronouns can be treated as adjectives (AA): possessive
pronouns, rel. pronoun marked as P1, reflexive possessive pronoun,
pronoun self, quest. or rel. pronoun (!), indef. pronoun (!), neg. pronoun (!)

c) reflexive pronouns should not be merged, and will remain as pronouns.

For numerals one may, for the purpose of syntactic analysis, make the
following merging:

a) adjective numerals can be treated as adjectives (AA).
b) multiplicative numerals can be treated as adverbs (DB)
c) all other numerals can be treated as nouns (NN)

For the case of verbs and the purpose of syntactic analysis, due to the
relevance of the verb frame information (which is not explicitly a part of this
approach), we suggest to preserve verb's POS and sub POS and the following
categories of person, number, mode, tense and mood.

If the tagset permits, it is advisable to pay a special attention to the verbs
"mít" (to have) and "být" (to be). As for the verb "být" in the sentences where
more than one verb occurs, more detailed distinctions should be made, for:

- "být" as an auxiliary verb in future tense
- "být" as an auxiliary verb in past tense
- "být" as an auxiliary verb in a conditional clause
- if no other verb form occurs, then "být" as a copule or verb of

existence.

45

Therefore, the 'tag' for these two verbs will be constructed as their lemma
and 'full morphological tag'. If the system architecture is able to handle a larger
tagset, it is advisable to extend (instead of reduce) the tagset with verb lexemes,
e.g. the first 100 most frequent verbs.

Within sentences with more than one verb a distinction between
coordinating and subordinating conjunctions should be made. We preserve all
distinctions for conjunctions, as originally in the tagset.

As verbs, also prepositions deserve special attention. We preserve their
case category. We would also like to extend the tagset with preposition lemmas
in the similar way as we stated above for verbs. A prior analysis of relations
between preposition lemmas and possible case bounds should be made (e.g., the
preposition "na" may be followed only by Accusative or Locative case; the
preposition "za" may be followed by the Genitive, Accusative or Instrumental
case; etc.) and this knowledge should take part of the tree transformation process.

All adverbs will be represented by a single tag DB. Interjections and
particles tags are preserved is in the original tagset, i.e., without any further
distinctions using tags T and I respectively.

3.4. On rule modifications

There are no directions according to which a rule is designed. Nevertheless,
there are several guidelines the rules follow:

- The form of the rule is limited from the needs of the operations to be
performed, thus from the aim to be achieved.

- The rule should be computationally achievable within the time and
space determined by the application needs.

- The rule is suited to the formal framework of the language theory. It is
the design of the templates of the rules which are language dependent
although the RBA as such is language independent.

The first set of rules applied for Czech (Chapter 1) followed the logic of the
rules for English (Brill 1993a,b). The latter, performed (conditioned under various
triggering environments) only two simple actions: addition or deletion of
constituency boundaries resulting in their left or right shift, as summarized in
Figure 3.3.

X (A (B) C) Y

Figure 3.3: RBA for constituents

As showed in the previous sections, such rules do not guarantee successful
training. A new exhaustive set of rules was designed. Those were designed such
that they cover the basic operations that can be performed on a dependency tree.
The interpretation of the rules was modified so that they operate on the tree

shift

46

representation of the sentence: searching for a left paren between A and B, such is
located also in the linear representation A (C, B), since the left paren is
understood as a dependency. Thus, the changes the rule performs are always
within a distance of one tree level15.

In the following, a list of new rule templates is presented, the rules are
explained and their performance is exemplified. For the rules which add a
dependency it is necessary to check first that the dependency one wants to add
does not already exist; for the rules which delete a dependency it is necessary to
check first whether the dependency to delete exists; analogously, similar checks
are done on the triggering environment for each rule before its application.

Rule Explanation
ADD (LEFT A Make A to be the governing node of the brother nodes

of A
ADD (RIGHT A Push A one level lower in the dependency path

ADD (BETWEEN A B Add a dependency between A and B if both of them
are brother nodes.

ADD) LEFT A Locate a first possible corresponding "(" and apply to
it the "ADD (" rule.

ADD) RIGHT A Locate a first possible corresponding "(" and apply to
it the "ADD (" rule.

ADD) BETWEEN A B Locate a first possible corresponding "(" and apply to
it the "ADD (" rule.

DEL (LEFT A Move the subtree represented by A up in the tree
structure by attaching it to the governor of A.

DEL (RIGHT A Move all subtrees of A on the same level (attached to
the governor of A) of A.

DEL (BETWEEN A B If A is a governor of B, perform "DEL (RIGHT A".

DEL) LEFT A Locate a first possible corresponding "(" and apply to
it the "DEL (" rule.

DEL) RIGHT A Locate a first possible corresponding "(" and apply to
it the "DEL (" rule.

DEL) BETWEEN A B Locate a first possible corresponding "(" and apply to
it the "DEL (" rule.

SWAP (RIGHT A For all such X, where A is a governor of X, perform
"SWAP (BETWEEN A X".

SWAP (LEFT A For all such X, where X is a governor of A, perform
"SWAP (BETWEEN X A".

SWAP) RIGHT A Move A to the subtree to the right at the same tree
level (if any) as A is.

SWAP) LEFT A Move A to the subtree to the left at the same tree level
(if any) as A is.

SWAP (BETWEEN A B If there is a dependency relation between A and B
change its direction from AB to BA.

15 The complexity of the process of learning would significantly increase if rules operating
on nodes not being directly dependent are used.

47

SWAP) BETWEEN A B If there no dependency relation between A and B and
B is one level higher than A, swap A and B.

SWAP COMMA
BETWEEN A B

If A and B are on the same tree level exchange
between them the subtrees they govern.

MAKE ROOT LEFT A Make node A to be the root of the tree.

MAKE ROOTFIRST
BETWEEN A B

If A and B are brother nodes, A becomes a root node.

MAKE ROOTSECOND
BETWEEN A B

If A and B are brother nodes, B becomes a root node.

MAKE GROUP LEFT A All nodes governed by A becomes immediate brother
nodes of that node (the structure collapses such that
everything is governed by A).

MAKE GROUPFIRST
BETWEEN A B

If A and B are brother nodes, all nodes governed by A
becomes immediate brother nodes of A.

MAKE GROUPSECOND
BETWEEN A B

If A and B are brother nodes, all nodes governed by B
becomes immediate brothers of B.

MAKE DEPENDENCE
BETWEEN A B

If there is no dependency relation between A and B,
establish it. A and B can be anywhere in the tree
(exception to the 1 level distance application of the
rules).

Table 3.5: Second set of modified rules

The last seven rules were later excluded since they were never selected as
best rules.

Some general remarks on the rules from Table 3.5:
- all of the rules follow the form as presented earlier (Chapter 1, Section

1.2): <action> <what> <where>
- LEFT means 'to the first suitable position to the left' in the linear form

of the tree
- RIGHT means 'to the first suitable position to the right' in the linear

form of the tree
- Each sentence is represented in its linear form. The rules operate on

the linear form but their interpretation is as if they would operate on a
tree.

- As for the transformation A and B represent the whole subtrees they
govern.

- There are no limitations whether the rules can or cannot create non-
projective syntactic trees, nevertheless the rules are not designed to
identify them and treat them in a separate manner.

In order to illustrate the application of the main types of the rules, let us
take the following linearized tree structure from Figure 3.4.

A (B(C, D), E(F, G), H, I, J(K (L, M))).

48

 A

 B E H I J

C D F G K

L M

Figure 3.4: Abstract dependency tree structure

If the rule ADD) LEFT D is applied to the tree from Figure 3.4 the
resulting structure will be

A (B(C), D, E(F, G), H, I, J(K (L, M)))

as in Figure 3.5.
 A

 B D E H I J

 C F G K

L M

Figure 3.5: Application of ADD) LEFT D

SWAP COMMA BETWEEN G K changing the original tree from Figure 3.4
into

A (B(C, D), E(F, K (L, M)), H, I, J(G))

as in Figure 3.6.
 A

 B E H I J

 C D F K G

 L M

Figure 3.6: Application of SWAP COMMA BETWEEN G K

The rule SWAP (BETWEEN J K makes the following changes to the tree
from Figure 3.4

49

A (B(C, D), E(F, G), H, I, K(J, L, M))

as presented in Figure 3.7.
 A

 B E H I K

 C D F G J L M

Figure 3.7: Application of SWAP (BETWEEN J K

Finally, ADD) LEFT I adds the right bracket which means moving all of
the brother nodes to the left from node I one level deeper within the dependency
structure in Figure 3.4, which results into

A (B(C, D), E(F, G, H) I, J(K (L, M)))

as presented in Figure 3.8.
 A

 B E I J

 C D F G H K

L M

Figure 3.8: Application of ADD) LEFT I

The rest of the rules can be directly deduced from the above mentioned
transformations.

As mentioned earlier, the last seven rules from Table 3.5 did not improve
the success rate while parsing and therefore, they are not exemplified here.
Nevertheless, one could easily imagine the tree transformations they perform.

3.5. The error function

The error function is the key determiner of how good certain structure is
when compared to another one. The error function used in all of the experiments
with syntactic dependency structures of Czech (not only for RBA) in all of the
works presented so far is a ratio between the correct and the total number of
dependencies. If not enough attention is paid, such an error function will reflect
no difference between tree structures from Figure 3.9 in terms of the values in
their nodes (if only the node values as morphemic tags or lexical items are
included) .

50

A A

B B and B B

D E F D E F

Figure 3.9: Different evaluations

There are other situations where such error function would be the bad
guide for the process of learning. If a dependency relation A - B (Figure 3.10(a))
has to be compared to the dependencies A - C and C - B of a tree path A - C - B on
one hand (Figure 3.10(b)), and on the other hand to the dependencies C - A and C
- B of the subtree C (A, B) (Figure 3.10(c)), obviously the counting of the success
rate (as introduced before) will yield 0% in both of the cases. But, it seems that
there is a dependency (non-direct) relation between A and B in the first case, and
that one should be able to make a difference between the first and the second
case.

A A C

B C A B

 B

(a) (b) (c)

Figure 3.10: Path evaluation

For an automatic transformation to be performed by the stated rules it is
"easier to make" B directly dependent on A at Figure 3.10(b) since B is in the
subtree of A, while it is more difficult to achieve the required dependency in the
case of Figure 3.10(c) since B and A are two different subtrees which are not
necessarily next to each other. Also at Figure 3.10(b) it can be considered that B is
not directly dependent but remains to be at least distantly dependent on A.

If the success of the algorithms used for dependencies is to be compared to
the one used for constituency, using the mentioned error function would make it
neither directly nor approximately possible. Assuming that a constituency can be
determined by its head the non terminal nodes can be lexicalized. Each terminal
node is determined by the path it follows from the root of the tree. Far from
linguistically similar, paths can be listed also from the dependency tree. Thus,
comparing paths instead of dependencies can make the absolute success rates
more comparable.

Therefore, this 'path evaluation' approach would consist of including the
length of the dependency (the direct dependency could have the value of 1, while
the non-direct dependency could be given a success rate as a decreasing function
of the path length). Two functions are directly offering themselves to fulfill this

51

aim: reciprocal distance
n

nf
1

)(= and negative exponential distance
1

1
)(−=

ne
ng .

The latter "punishes" the non-direct dependency distance more than f(n) does.

For the previous comparison example, A - B to A- C - B, the direct
dependency A - B exists as a non-direct dependency in A - C - B a "weight" or

"success" of 37.0
1

)2(≅==
e

ng , opposed to 1 if A-B had to be compared to A-B.

In order to be able to calculate the success rate a V(T, F), the value of a tree T
should be defined, which would allow for the calculation of the ratio of existing
over possible values (precision). Let ∑

∀

=
Tofpath

pathFFTV)(),(, where F(n) is

either f(n) or g(n).

If T is a tree describing a correct syntactic structure then its value is V(T, F),
which will always be greater than any incorrect variant.

Let us compare the structure T1: A (B(C(D))) to the structure T2: A(B(D),C).
Let the latter be the true structure. Its value is V(T2, g) = 3 + 0.37 = 3.37. If T1 is to
be compared to T2 one may compare any of the possible paths in T1 (A - B, B - C,
C - D, A - B - C, B - C - D, A - B - C - D) to all of the paths of T2 (A - B, B - D, A - C,
A - B - D). The set of comparable paths is T1,2(A - B, A - B - C, B - C - D) with its
value V(T1,2, g) = 1 + 0.37 + 0.37 = 1.74.

The success rate is then V(T1,2, g)/ V(T2, g) = 1.74/3.37 = 51.63 %.

The use of the path evaluation function instead of the classical one helped
the learning process of the RBA approach, where both f(n) and g(n) supported the
learning process relatively better than the classical evaluation function.

All over this work, this is the only place where different than dependency
accuracy measure is implemented (also used for finding the best rules presented
in Table 3.7).

3.6. Learning discipline

A rule is applied to a sentence as many times as possible. If once selected, there is
no limitation according to which the rule could not be selected next time.

The search remains the greedy one.

3.7. Success and conclusion on the RBA modifications

The changes stated above result in following best average success rates:
- of 65 % while learning
- of 43 % while parsing (using the 'classical error function')

The list of the best rules learned from 100 sentences is presented in Table 3.6.
The tagset has been reduced and only the first two characters (positions, POS and
sub POS) are taken into consideration. The success rate presented in Table 3.6 is the
cumulative success rate of the rule during the process of learning. Experiments

52

with more than 100 sentences (200 and 300 sentences) were also carried out. None
of those experiments resulted in a list of more successful best rules than the one
presented here.

Rule Success ADD (BETWEEN VP NM 0.594766
SWAP (RIGHT AF 0.415543 DEL) LEFT NM 0.595559
SWAP (LEFT JE 0.436162 SWAP (BETWEEN JE RV 0.596352
SWAP (BETWEEN ZI JS 0.448850 SWAP (BETWEEN JS PD 0.597145
SWAP (RIGHT PS 0.458366 ADD (BETWEEN ZI NO 0.597938
SWAP (RIGHT PQ 0.467883 DEL (RIGHT PA 0.598731
SWAP (RIGHT DB 0.477399 ADD (BETWEEN NO ZI 0.599524
SWAP (RIGHT PD 0.486122 ADD (BETWEEN VM NF 0.600317
SWAP (RIGHT DG 0.493259 ADD (BETWEEN ZN AB 0.601110
SWAP (BETWEEN ZI VP 0.500396 SWAP (BETWEEN DB AV 0.601903
DEL (RIGHT AF 0.505155 SWAP (BETWEEN VP VS 0.602696
SWAP (RIGHT PR 0.509913 SWAP (BETWEEN AF NO 0.603489
SWAP (RIGHT VC 0.515464 ADD (BETWEEN NO AF 0.605075
ADD (BETWEEN R4 NF 0.519429 SWAP) BETWEEN AF NF 0.606661
SWAP (BETWEEN ZI JE 0.523394 SWAP COMMA BETWEEN ZI PI 0.607454
SWAP (BETWEEN ZN JS 0.527359 DEL (RIGHT PL 0.608247
SWAP (BETWEEN PP VP 0.530531 SWAP (BETWEEN NF VR 0.610626
SWAP (RIGHT NO 0.533703 SWAP COMMA BETWEEN NI NI 0.611419
ADD (RIGHT R2 0.536875 ADD (BETWEEN NI DB 0.612213
SWAP (RIGHT AM 0.540048 ADD (BETWEEN NI R4 0.613006
DEL (RIGHT RV 0.542427 ADD (BETWEEN NM AB 0.613799
DEL (BETWEEN ZI NF 0.544806 SWAP (BETWEEN NI RV 0.614592
SWAP (BETWEEN NI DB 0.547978 SWAP (BETWEEN R2 RV 0.616178
DEL (RIGHT T| 0.550357 DEL (BETWEEN RV R3 0.616971
DEL (BETWEEN DB DB 0.552736 ADD (BETWEEN R4 NN 0.617764
SWAP (BETWEEN JE VV 0.555115 SWAP (BETWEEN R4 R4 0.618557
SWAP (RIGHT AI 0.557494 ADD (BETWEEN DG PD 0.619350
SWAP (BETWEEN VF VR 0.559873 SWAP (BETWEEN CG NF 0.620143
ADD (BETWEEN PD DB 0.561459 DEL (BETWEEN JE PD 0.620936
SWAP (BETWEEN JS NM 0.563045 ADD (BETWEEN JE AF 0.622522
DEL) RIGHT ZI 0.564631 ADD) BETWEEN PQ NF 0.623315
ADD (BETWEEN RV NI 0.566217 SWAP (RIGHT VU 0.624108
DEL (BETWEEN JE R7 0.567803 DEL (RIGHT PN 0.624901
SWAP COMMA BETWEEN VP NF 0.569389 ADD) BETWEEN VP NF 0.625694
SWAP (RIGHT PE 0.570975 SWAP (BETWEEN PQ JS 0.626487
SWAP (BETWEEN NF VR 0.572562 ADD) BETWEEN AV NM 0.627280
SWAP (BETWEEN VM NO 0.574147 DEL (RIGHT AC 0.628073
SWAP (BETWEEN VM VR 0.575734 ADD (BETWEEN R3 NF 0.628866
ADD (BETWEEN JS VP 0.577320 ADD (BETWEEN VF R4 0.629659
DEL) BETWEEN VR ZI 0.578906 DEL (BETWEEN VF AF 0.630452
DEL (RIGHT DG 0.580492 ADD (BETWEEN VF JE 0.631245
SWAP (BETWEEN JE JS 0.582078 DEL (BETWEEN NI R3 0.632038
ADD (BETWEEN VP NI 0.583664 DEL (BETWEEN NM NM 0.632831
DEL (BETWEEN ZI NM 0.585250 SWAP (BETWEEN R2 ZI 0.636003
SWAP (BETWEEN JE ZS 0.586836 ADD (BETWEEN VP NM 0.636796
SWAP (BETWEEN T VP 0.588422 SWAP (BETWEEN ZI CX 0.637589
ADD (BETWEEN JE AF 0.589215 SWAP (BETWEEN JE VS 0.638382
ADD) BETWEEN DB R4 0.590008 SWAP (BETWEEN DB JE 0.639968
SWAP (BETWEEN ZI VG 0.590801 SWAP (BETWEEN VF VS 0.641554
ADD (BETWEEN JE NF 0.591594 ADD (BETWEEN R2 NN 0.642347
ADD) BETWEEN AF DB 0.592387 DEL (BETWEEN ZI RV 0.643140
SWAP (BETWEEN PD DG 0.593180 SWAP (BETWEEN VP VR 0.643933
SWAP (BETWEEN DG VP 0.593973 DEL (BETWEEN NI AB 0.644726

Table 3.6: List of best rules learned on 100 sentences

53

If the rule-based error driven learning includes this error function, the rules
presented in Table 3.7 can be achieved (as in the previous case the learning process
was on 100 sentences; the same set of sentences as for the best rules of Table 3.6).

Rule Success
SWAP (RIGHT AF 0.590218
SWAP (RIGHT ZI 0.613243
SWAP (LEFT JE 0.630062
SWAP (BETWEEN PQ VP 0.648547
SWAP (LEFT VR 0.658814
SWAP (RIGHT DB 0.668000
SWAP (RIGHT DG 0.676885
SWAP (RIGHT PS 0.684720
SWAP (RIGHT PD 0.691009
SWAP (RIGHT PR 0.697009
SWAP (BETWEEN ZI DB 0.701609
DEL (RIGHT PP 0.705621
DEL (BETWEEN NI ZI 0.709475
SWAP (BETWEEN NI JE 0.713570
DEL (BETWEEN RV JS 0.716804
DEL (BETWEEN RV R2 0.719927
SWAP (BETWEEN RV VP 0.722952
DEL (RIGHT PQ 0.725858
SWAP (BETWEEN NI ZI 0.728761

Table 3.7: A fragment of the list of best rules obtained from the learning process
on 100 sentences with negative exponential error function

The success rate of the learning process is higher since the way it has been
calculated results in higher percentage rates. This higher success rate does not
necessarily mean a less erroneous output.

'Playing' with the rules has been a long and tedious process, which results
in the following observations:
1. Once the rule templates are postulated, it is advisable to test them on various

sentences, one sentence (or a small set) at a time. Good set of rules should be
able (up to justifiable exceptions) to learn the complete parsing structure of
the single sentence. This could be a-which-rules-to-take 'criterion'.

2. Parsing should be done with the smallest possible tag set, but such that will
reflect the syntactic relations of the language.

3. Saturation of the learning process happens rather fast. Therefore, it is
important that the initiating tree structure has a higher success rate. E.g. the
right chain structure would not be the most suitable one.

4. The best rule to select in the next iteration would be most probably a rule
which performed similarly well as the best rule had performed in the current
iteration. This is a useful heuristics that could significantly speed up the
learning process. On other rule characteristics and tracing of rule dependence
see the contribution of L.A. Ramshaw and M.P. Marcus in (Klavans, Resnik
1996).

5. The answer why did not the modified RBA perform better can be formulated
as a hypothesis that a similar learning processes should distinguish two
phases:
a. Diminishing the influence of the surface word order, and afterwards

54

b. Learning the syntactic structure.
Ad 5., while the learning of the syntactic structure could be done within the

same approach as presented in this chapter, diminishing the influence of the
surface word order is a motivating element for the studies in the following
chapters, where the so-called sentence graphs are employed.

3.8. Tagging with analytical functions

In the previous sections a parsing structure without the syntactic analytical
functions (afuns) was assigned to the input morphologically parsed sentence. If a
syntactic tree without afuns is achieved then experience from the manual and
semi-automatic annotation of the treebank structures and functions shows that it
is possible to assign the afuns to the tree nodes automatically with a high success
rate.

On the other hand, as described in Section 3.2, the tag set size influences the
success rate of a tagging procedure: the smaller the tagset size the higher is the
chance to learn the regularities of the language with a higher success rate. As we
will see here, the tag set size is not the only 'parameter' that influences the
success rate. In fact, it is the 'logic of application' of the tags that is of primer
importance.

Assuming that each lexical item has its own analytical functions (afun), as it
has a morphemic tag, it is possible to try to tag an input text using the language
independent tagging procedures (used for morphemic tagging) for tagging with
afuns. Hopefully, having the input structure tagged correctly by afuns, obtaining
the syntactic tree structure would be an easier problem since afuns already
contain syntactic information.

In this section I will describe the experiment of tagging an input text by
afuns. For matter of convenience, the tagger used is a Rule-based tagger (Brill
1993c).

The following are the input facts:
- Tagging with tags from a tagset of 1171 morphemic tags yields a

success rate of approx. 80%, while tagging with tags from a tagset of
206 morphemic tags yields a success rate of approx. 87%. (as in Section
3.2). The state of the art for morphemic tagging of Czech on its full
tagset is currently approx. 95%.

- The tagset of afuns consists of 70 tags.
- Rule-based tagger claims no dependence on a tagset.

If applied as such and tested, without using any additional information, the
rule-based tagger (trained on the pair: lexical token, afun) yields a success rate of
approx. 66% on the test set for the analytical functions. The rule-based tagger was
selected for matter of convenience and relatively fast and easy training process.
The aim is to get relative observations not absolute best numbers. The presented
results were not further improved.

Since the syntactic level is superordinate to the morphemic one, and in
order to trace the reason for such a low success rate (when compared to the

55

success rate when the rule-based tagger is used in order to tag the tokens by their
morphemic tags), in the next experiment, information of the morphemic level, i.e.
the morphemic tags, was included. At this step, the lexical token has been
substituted by its morphemic tag. Thus, the rule-based tagger was trained on the
pair (disambiguated morphemic tag, analytical function).

In this case a success rate of 72% was recorded, which is 6% improvement
compared to the 66% when the morphemic information was not taken into
consideration.

Both of the experiments were provided on the same training sets, and
tested on the same test sets, hence the results are directly comparable.

Lexical items

 87%

 66%

 Morphemic tags

 72%

 Analytical functions

Figure 3.11: The afun triangle

The success of tagging by afuns is very low in order to use it as input for a
tree structure determination. Although low, the results of tagging by afuns are
significant for the parsing-by-tagging experiment setting in Chapter 8.

3.8.1. Conclusion

Without performing the experiments it would be difficult to expect such results,
since it would be expected that the usage of the morphemic information would
contribute more significantly to the success rate of tagging of the analytical
functions.

One may conclude that:
- The success rate of the rule-based tagger depends not only on the

cardinality of the tag set but also on its structure. Hence, the claim that
a higher success rate is due to low cardinality of the tagset, when
success rates of the same task but over different languages are being
compared, is not sufficient.

- The rule-based tagger, as originally proposed in (Brill 1993c), cannot
be successfully directly applied for a successful tagging of analytical
functions.

- One of the basic reasons, as shown by analysis of PDT, is in the
different nature of ambiguity present within analytical functions.
Other reasons include, as Czech is a free word order language, that it
is frequently not the case that the immediate neighboring tokens
determine the value of the token to be tagged.

56

- Since the rules operate on close neighboring environments, those
environments are not big enough to capture the afuns. This supports
the hypothesis stated in Section 3.7 that the word order, i.e. sentence
structure, plays an important role in NLP of Czech and is one of the
main reasons that influences the success of the automatic procedures.
In fact, all of the procedures were originally designed for English and
modified for Czech.

3.9. Summary on the RBA modifications

I would like to summarize here all modifications of RBA stated in the precious
chapters in order to support a claim that almost all possible modifications of RBA
have been exhausted.

The RBA performance depends on the following elements: the tree initial
structure, the way of obtaining the best rules, the error function, the rule
templates, the cardinality of the tagset, the size of the train set, the sentence
length. One by one, I will stress the main considerations with respect to the RBA
performance.

1. The tree initial structure: (Brill 1993c) demonstrates that RBA is sensitive to
initial structures and experiments with random initial structures or binary
tree initial structures perform worse than the right chain one. The initial
structure can also be an output of another algorithm. This approach was
tested (although not documented here), but did not yield any significant
improvement. In the latter case, such non-trivial input structure would
require different and more sensitive set of rules. Therefore, the right chain
initial tree structure was selected to be the best one for study of the RBA
adequacy of parsing of Czech.

2. The way of obtaining the best rule: As stated in (Klavans, Resnik 1996) and
supported by a variety of studies on the performance of RBA, employment of
other than the greedy search method does not yield any significant
improvement. The article in the mentioned book edited by Klavans and
Resnik, has tested backtracking search to certain depth, and N-best search. It
was not demonstrated that those could perform better than the greedy search.
While observing the best rule selection, it could have been noticed that the
next best rule to greedy-select (in iteration t+1) in the majority of the cases
(specially before the saturation of the learning process) would be the one
from the set of closest (in terms of success) rules to the best rule in iteration t.
This observation is also in accordance with the claims from (Klavans, Resnik
1996).

3. The error function: A different, more indicative, error function type was used
for the process of learning (Section 3.5). The RBA performed slightly better. It
was shown that the error function while learning should not necessarily be
the error function used for evaluation.

4. The rule templates: In Chapter 1 and in this one there is a variety of rule
templates tested. Rules dealing with brackets and commas dependent of the

57

linear tree description were tested in Chapter 1, while rules operating on the
linear tree structure but with tree structure semantics on +/- 1level of the
syntactic tree were demonstrated in Section 3.4. The set of rules, as in all
published experiments of RBA, cover a complete set of elementary operations
of the tree structure. The performed modifications apply a complete set of
elementary tree changes.

5. The cardinality of the tagset: All basic experiments with tagset modifications
were performed, which main part is summarized in Section 3.2. It was shown
that the robustness of RBA is big and that RBA performs better on smaller
tagsets. Recommendations on linguistically relevant tagset reductions is
presented in Section 3.3.

6. The size of the train set: Experiments were performed with train sets of 100, 200
and 400 sentences. It was shown that the best set of rules was obtained not
from the larger sets but from the 100 sentences train set. Based on such results
there was no need of testing on larger train sets.

7. The sentence length: The shorter the sentence is, the more successful the
parsing is - is a common claim for the RBA approaches and valid also for our
case. Experiments were done with train sets of short sentences (less than the
average length) and as well, experiments were performed on sentences with
one, two or different number of verbs. There was improvement of learning
but not such to be presented as a direction to follow for these cases.

With respect to the above truths and we respect to the success rates as
presented in Section 3.7 and summarized in Subsection 3.9.1 it can be concluded
that the rule templates and the RBA strategy of changing the dependency tree
structure is not a direction to follow. The statistics, e.g. for dependency length
distribution (Chapter 2, Table 2.3) indicate that the surface ordering is not of a
local character, which is contrary to the local character of changes done on the
tree structure: a challenge to overcome.

Hence, the answer should be searched somewhere else, and studies
performed in the following chapters demonstrate that. Chapter 5 is motivated by
the aim to get closer to the effect of syntactic vicinity of words.

3.9.1. The percentages of RBA

Table 3.8 presents a summary of the success rates presented in this chapter and it
also includes the first RBA results presented in Chapter 1. If not otherwise stated,
the sentences in the test or train data sets have been selected randomly.

58

Algorithm Size and
identification of

train data

Size and
identification of

test data

Dependency
accuracy

Note

25 sentences 20 sentences 42%RBA, Chapter 1 ,
With no treebank
available all
sentences were hand
crafted only for the
purpose of
development of the
algorithm.

100 sentences the same as above at most 42%

100 sentences on the train data 47% On PosTag1171 as
in Table 3.3.

the same as above on the train data 65% On PosTag34 as in
Table 3.4. The
same accuracy
was observed on
modified
positional tagset,
taking only the
first two positions,
i.e. POS and
subPOS..

100 sentences
[1]

400 sentences 43% On POS and
subPOS only.

200 sentences the same as above slightly less
than 43%

On POS and
subPOS only.

300 sentence the same as above slightly less
than 43%

On POS and
subPOS only.

100 sentence,
the same as [1]

above

on the train data 73% On POS and
subPOS only,
using error
function as in
Section 3.5.

100 sentences
with 1 verb

200 sentences
with one verb

47% On POS and
subPOS only.

RBA, Chapter 3 ,

PDT was under
development; the
used sentences at
that time consisted
of many linguistic
inconsistencies
(cleaned several
years afterwards)16.
During that period
the morphemic
tagset has also been
changed several
times before it
settled to the
positional one.

100 sentences 200 sentences 56% No morphemic
but analytical
function tags were
used17.

Table 3.8: The percentages of RBA

16 Notes on the development of the algorithm with respect to time in years of
development are in Chapter 9.
17 This experiment was performed only for the purpose of verification of the abilities of
the rules to capture syntactic information. Due to the low level of accuracy of tagging by
analytical functions as in Section 3.8, there was no reason to continue with these type of
experiments.

59

4. The Directed Minimum Spanning Tree
This chapter is devoted to a description of an algorithm for rooted directed
minimum (as well maximum) spanning tree. To my best knowledge, this is the
first time such algorithm is applied for parsing, as demonstrated in the following
chapters.

Consider a weighted directed graph G(V,E), where V is the set of vertices, E
is the set of edges, w(i,j) is a weight of the edge (i, j), i, j ∈ V directed from i to j,
n=|V| and m = |E|. Let T(V,ET) be a rooted directed tree, where ET is a subset of
E. Let

TES represent the sum of weights of all edges of ET. T(V,ET) is a rooted

directed minimum spanning tree (MST) of the graph G(MST(G, R), V∋ R is the root)
if there no other T'(V,ET'), where

TT
EE SS <

'
. The rooted directed spanning tree

is a graph, which connects without any cycle all n vertices with n-1 edges, i.e.,
each vertex except for the root has one and only one incoming edge.

Obtaining MST(G,R) is not a straightforward problem. On the other hand
obtaining a MST of an undirected graph is well known one with several
algorithms for it: the Prim's (in the Czech literature sometimes called Jarník's
algorithm), the Kuskal's, and the Borùvka's one (Matoušek, Nešetøil 2000). While
the Prim's and very often also the Kruskal's algorithm can be found in almost any
even introductory text of the theory of graphs, the 'similar' problem for directed
graphs is included neither in more advanced texts of graph theory. And, it is not
the case that the undirected versions can be applied for directed graphs, which
can be demonstrated for the Prim's algorithm on the graph from Figure 4.1.

Figure 4.1: Prim's algorithm for oriented MST

Trying to find the directed rooted MST of the graph from Figure 4.1 using
the greedy Prim's algorithm would result in selecting (R, A), (A, C) and (R, B)
with a total weight of 7, while it is obvious that there is another directed rooted
MST with a lower weight: (R, A), (R, B) and (B, C) has a total weight of 6.

A solution to the directed rooted MST was given independently by Chu
and Liu (Chu, Liu 1965), Edmonds (Edmonds 1967) and Bock (Bock 1971). All of
them efficient and mutually similar, Block presents the solution on matrices,
while the other two present the solution on graphs. In the sequel, I will present

A

C

B

R

2 2

3
1

60

the Chu-Liu/Edmonds algorithm18 for directed rooted MST and explain it on an
example as in (Lawler 1976).

Chi-Liu/Edmonds Algorithm

1. Let r is the root vertex. Discard all arcs entering r.

2. Form the following set
S = { (i, j) | (i, j) is the entering edge with the smallest cost for all i � r}

3. If no cycle is formed G(V, S) is MST(G, R), otherwise continue.

4. For each cycle formed, contract the cycle into a pseudo-vertex k and modify
the weight of each edge which enters vertex j in the cycle from some
vertex i outside the cycle according to the following formula

 { }

−−=)),((min)),((),(),(jjxwjjxwjiwkiw

j
,

where)),((jjxw is the weight of the edge in the cycle which enters j.

5. For each pseudo-vertex, select the entering edge, which has the smallest
modified weight from step 4. Replace the edge, which enters the same
real vertex in S by the new selected edge.

6. Go to step 3.

In order to eliminate cycles, the algorithm tries to find a 'replacing' edge,
which has the minimum extra weight. The formula from step 4 defines this extra
weight.

Figure 4.2 and Figure 4.3 illustrate the contracting (pseudo-vertex)
technique. The root node is node 1.

Figure 4.2: MST graph example

18 For an efficient implementation (O(mlogn) and O(n2) for dense graphs) see (Tarjan
1977) and (Camerini, Fratta, Maffioli 1979).

1

2

3

4

5

6

1

2

8

7 4

6

3

10

9

11

5

61

The set S in Figure 4.2 is S = {(1,2), (1,6), (4,3), (3,5), (5,4)}

After an application of steps 3 and 5, the set S becomes S = {(1,2), (1,6), (2,3),
(3,5), (5,4)}. It can be noted that there is a new edge (2,3) with its minimum extra
weight. This edge replaces the edge (4,3) in S.

With respect to the used mathematical operations in the algorithm and
since there is no assumption for the sign of the weight, the same approach can be
also used for finding the maximum directed spanning tree problem by altering
the weight sign. In the following text MST will refer to a rooted maximum directed
spanning tree.

Figure 4.3: MST pseudo-vertex

This MST algorithm will be the core best-tree searching technique to be
applied in the techniques and learning paradigms in Chapter 5, Chapter 6 and
Chapter 7.

1

2

6

1

2

7

7

9

9

8

5

62

63

5. Naive Parsing

5.1. The grammar and sentence graphs

Definition: A grammar graph GramL(N, D) is an oriented graph, where N is a set
of sets N of units of a natural language L (vertices), while D is a set of oriented
edges (f, s), where f ∈ N and s ∈ N, such that f and s form a syntactic dependency
as defined within a given consistent linguistic theory on L. The orientation of the
edge is determined by the linguistic theory.

Definition: A complete grammar graph GrammarL(N, D) is a grammar graph
GramL(N, D), such that D≠∅ and ∀(f, s) ∈ complement(D) it is not true that (f, s)
is allowed within a consistent linguistic theory on L.

The benefit from a complete grammar graph would be significant, mainly
because it could represent a "grammatical" space inside of which linguistic
problems could be embedded.

A treebank, well-saturated in terms of the linguistic elements of interest,
could give an approximation of such aim-specific complete grammar graph. For
an analytical dependency tree building based on a morphemic input such graph
can be approximated as a collection of all dependencies found in the treebank,
which vertices are morphemic units. In such case N would consist of one-
member sets N, each of which representing a single morphemic tag. (f, s) is an
edge if f = gov(s), where gov(.) is a governor function as defined by the treebank
at hand and both {f} and {s} are members of N.

Definition: An (approximate) treebank graph GrammarTB(N, D, g) is an oriented
graph, which members of N are obtained by the function g on treebank nodes,
and which edges are (n, m) ∈ D, where n, m ∈ N such that n = gov(m).

It is not excluded that an approximate treebank graph can be manually
enriched by linguistically relevant edges. The PDT treebank graph on morphemic
tag vertices has a density19 of approx. 27% and a most likely coverage with a
mean of 99.7%. An expected lower limit of the coverage in PDT with morphemic
tag vertices is 99.5% (assuming that there is 1 new dependence for every 10th

sentence as observed in the saturation curve Figure 2.2).

Let ordSnt(n) be a function which output is a surface order of the input
element n of sentence Snt.

Definition: A sentence graph Snt(N', D', f) is a sentence subgraph of
GrammarTB(N, D, f) of the sentence Snt obtained as follows: n' = <n,i> ∈ N', if
n ∈ N for i = ordSnt(n), and (f', s') ∈ D' if (f, s) ∈ D.

Any of the above stated graphs can also be weighted.

19 By a density I understand, as it is usually the case, the ratio between |D| (the number
of edges of the graph) and |N|2-|N| (i.e., the number of edges of a complete graph on
the same vertices).

64

5.2. MST20 as a dependency tree finder using frequencies

When applied on a weighted sentence graph, MST can be used as a dependency
tree finder. Here is one example.

The sentence

cmpr9406:001-p8s3 /Z#--- 0 <sentence id>
Telefonicky /Dg--- 1 Over phone
jej /PPZS4 2 to him
požádal /VpYS- 3 asked
, /Z,--- 4 ,
aby /J,--- 5 that
by /Vc-X- 6 would
mu /PHZS3 7 him
dokument /NNIS4 8 document
poslal /VpYS- 9 send
. /Z.--- 10 .

has the following sentence graph

Sntgraph "cmpr9406:001-p8s3" {
"Z#---.0" -> "Dg---.1" [weight=2];
"Z#---.0" -> "VpYS-.3" [weight=24];
"Z#---.0" -> "Z,---.4" [weight=11];
"Z#---.0" -> "J,---.5" [weight=3];
"Z#---.0" -> "NNIS4.8" [weight=5];
"Z#---.0" -> "VpYS-.9" [weight=24];
"Z#---.0" -> "ZT---.10" [weight=368];
"Dg---.1" -> "Z,---.4" [weight=4];
"Dg---.1" -> "J,---.5" [weight=13];
"VpYS-.3" -> "Dg---.1" [weight=5];
"VpYS-.3" -> "PPZS4.2" [weight=1];
"VpYS-.3" -> "Z,---.4" [weight=11];
"VpYS-.3" -> "J,---.5" [weight=15];
"VpYS-.3" -> "Vc-X-.6" [weight=5];
"VpYS-.3" -> "PHZS3.7" [weight=2];
"VpYS-.3" -> "NNIS4.8" [weight=2];
"Z,---.4" -> "Dg---.1" [weight=2];
"Z,---.4" -> "VpYS-.3" [weight=1];
"Z,---.4" -> "J,---.5" [weight=2];
"Z,---.4" -> "VpYS-.9" [weight=1];
"J,---.5" -> "VpYS-.3" [weight=17];
"J,---.5" -> "Z,---.4" [weight=151];
"J,---.5" -> "VpYS-.9" [weight=17];
"NNIS4.8" -> "Z,---.4" [weight=1];
"NNIS4.8" -> "J,---.5" [weight=3];
"VpYS-.9" -> "Dg---.1" [weight=5];
"VpYS-.9" -> "PPZS4.2" [weight=1];
"VpYS-.9" -> "Z,---.4" [weight=11];
"VpYS-.9" -> "J,---.5" [weight=15];
"VpYS-.9" -> "Vc-X-.6" [weight=5];
"VpYS-.9" -> "PHZS3.7" [weight=2];
"VpYS-.9" -> "NNIS4.8" [weight=2];
}

20 As written in Chapter 4, MST stands for rooted maximum directed spanning tree.

65

obtained from the PDT treebank graph, the vertices of which are the first 5
positions of a morphemic tag. The only modification is done for the Z tags (Z is a
punctuation tag and Czech morphemic tags group almost all punctuation signs
into a single tag "Z:---"), where the second tag position is replaced by the first
letter of the corresponding word form. This change allows one to distinguish
between various punctuation signs that was observed to be of benefit for parsing.

Figure 5.1 represents graphically the above sentence graph with the MST
tree edges bolded. The weights are frequencies of the dependency as in PDT.

Figure 5.1: An example of a sentence graph

This reveals the first naive parser to be described in the next section.

5.3. The frequency MST parser

The frequency MST parser is obtained as follows:
1. For the input sentence find its weighted sentence graph as a subgraph of the

weighted PDT treebank graph. The weights are simple frequency records as
number of occurrences of the dependencies on the whole PDT, inherited from
the (PDT) treebank graph.

2. Modify the weights taken from the PDT treebank graph.
3. Find MST and present it as the parser's output.

66

Table 5.1 presents the results of this approach: each row represents a
different weight modification (step 2), while each column represents a different
node value of the PDT treebank graph.

Let freq be a frequency of an edge od PDT treebank graph, while let w be
the corresponding weight of the sentence graph as a result of step 2.

For the weight modifications:

Freq: w = freq, means that no modification was done

Freq/m: w = freq/m means that the weight was made inversely proportional
to the dependency length21 m.

log(Freq): w = log(freq) means that the weight was transformed using a
logarithm of base 10.

step(Freq): w = step(freq) =

>
≤<

≤<
≤

1000,...3

1000100,...2

10010,...1

10,...0

freq

freq

freq

freq

For the node definition of the PDT treebank graph:

m2: The first two positions of the morphemic tag with Z tag modified as
stated earlier.

m5: The first five positions of the morphemic tag with Z tag modified as
stated earlier.

lemma: Lemma values except for the sentence root, which is Z#.

m5l: A combination of m5 and lemma; m5 is taken except for the Z tag
modified as stated earlier, for the cases of a verb, conjunction and
preposition nodes the node is a concatenation of its m5 and lemma.

Success rate m2 m5 lemma m5l
Freq 32.15% 52.40% 46.90% 46.20%
Freq/m 51.50% 63.27% 58.65% 54.87%
log(Freq) 31.87% 52.40% 46.90% 46.22%
step(Freq) 18.10% 34.93% 44.28% 37.78%

Table 5.1: Success rates of a frequency-based parser

The results presented in Table 5.1 are obtained on the whole evaluation set
of PDT. The percentages are very stable, i.e. when tested on the training data, the
most successful frequency MST parser (m5, Freq/m) achieves almost the same
result as on the evaluation data, that is 63.96%. The lemma and m5l variants
demonstrate lower values because of non-saturated treebank with respect to

21 As in Chapter 2, by a dependency length I denote the difference of surface order
position; neighboring words have a dependency length (or distance) 1, words with a
single word between them have a dependency length of 2, etc.

67

these node values. Opposite to that, m2, although a part of a saturated treebank,
oversimplifies the reality - there is a low number of distinct features found in
average within a single sentence (often repetition of mutually equal vertex
values).

It is of big importance to notice that the effect of distance expressed via the
inverse of a distance of the connected vertices causes more than 10% increase of
the success rate (almost 20% for m2). The combination of the sentence graph,
which is not limited to any distance of the vertices, combined with a inverse
distant constraint becomes therefore a significant observation for the future
development.

Although for greater distances the inverse of the distance becomes a very
small value it is still important, as shown in Table 5.2 calculated for the (Freq/m,
m5, cases from Table 5.1); m is a distance value, which, in this case, if exceeded
causes that the weight are set to 0. From Table 5.1 and Table 5.2 it can be noticed
that distances even longer than 15 have non-neglecting influence of 2% on the
success rate.

m Success rate (%)

5 58.46
7 59.07

10 59.94
11 (average distance) 60.23

15 61.25

Table 5.2: Success rate based on sentence length

 The almost underlying linear dependence of dependency accuracy on
graph density from Figure 5.2 denies a possible claim that the more dense the
graphs is the less successful the selection of the correct tree is. Figure 5.3 presents
an underlying linear trend with a positive slope between a sentence graph
density and a total number of sentence graph edges.

Figure 5.2: Dependency accuracy vs. sentence graph density

0 , 0 0 0 0

0 , 1 0 0 0

0 , 2 0 0 0

0 , 3 0 0 0

0 , 4 0 0 0

0 , 5 0 0 0

0 , 6 0 0 0

0 , 7 0 0 0

0 , 8 0 0 0

0 , 9 0 0 0

1 , 0 0 0 0

0 , 0 0 0 0 0 , 2 0 0 0 0 , 4 0 0 0 0 , 6 0 0 0 0 , 8 0 0 0 1 , 0 0 0 0

D e n s i t y

Su
cc

es
s

68

Figure 5.3: Distribution of edges in sentence graphs

The inverse distance was empirically determined as the best one - besides
to the above stated weight modifications, square distance inverse and negative
exponential distance modifications were also tested but did not show to be as
successful as the simple inverse distance.

It is also pleasant to notice that 100% well-parsed sentences were not rare.
The following are several such examples:

(a) Free of errors:
(nd91301:040-p2s1B : l109.am, #50):

První vánoce oslavili studenti a uèitelé na lužaneckém soukromém
gymnáziu v Brnì.
(First Christmas celebrated students and teachers at the_Lužany's
private gymnasium in Brno)

(lnd91301:038-p2s3 : l109am, #34):
Po pìtadvaceti letech patøila mezi první signatáøe Charty 77.
(For twenty-five years (she) belonged among the_first signers (of)
Charta 77.)

(lnd91301:033-p2s1 : l108am, #24):
Milí pøátelé, ètenáøi a pøíznivci.
(Dear friends, readers and favorers.)

(lnd91301:004-p8s4 : l103am, #4):

Stal se vùèi vìroukám pronikavì myslicím skeptikem.
((He) Became refl.part(became) against religions a_pungently thinking
sceptic.)

(lnd91301:014-p1s1A : l104am, #49):
Ukrajina chce chránit svùj trh
(Ukraine wants to_defend its market)

(lnd91301:030-p2s7 : l108am, #5):

0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

7 0 0

8 0 0

9 0 0

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

0,00000 0,05000 0,10000 0,15000 0,20000 0,25000 0,30000 0,35000 0,40000 0,45000 0,50000

Density

T
o

ta
l n

u
m

b
er

 o
f e

d
g

es
 p

er
 s

en
te

n
ce

69

Tam napadlo lidi vloupat se o vánocich k nìkomu jinému pouze 137
krát.
(There struck people to_housebreak refl.particle(housebreak) at
Christmas at someone else's only 137 times.)

(b) Although very rare, unfortunately, it also happens that there are sentences
parsed with 0% success:

(lnd91301:016-p4s2 : l106am, #3):
Spíš se však údajnì opìt ztratil.
(Rather refl.part.(disappeared) however reputedly again disappeared.)

The results in Table 5.1 obtained without learning determine relatively high
parsing baselines.

Values of these baselines, for the case of Freq/m and m5, calculated on
sentences with distinct number of verbs are presented in Table 5.3. The
dependence on the number of verbs shows that more attention should be paid to
the determination of the root (and upper tree levels - a way to approach to partial
analysis).

Verbs Frequency MST (Freq/m, m5)

0 67.35%
1 70.37%
2 62.02%
3 58.24%
4 56.60%

> 4 55.20%

Table 5.3: Dependency accuracy vs. number of verbs

No increment of success was observed if other local restrictions were made
as:

- do not allow edges which cross an odd number of left or right
brackets (parenthetical sentence parts)

- do not allow edges which connect an element inside quotes with an
element outside of them.

The frequency calculations do not distinguish between left and right
dependencies, i.e. relative surface position between father and son vertices. It is
expected that in this case the success would improve.

It is interesting to note that if the sentence length is at most 8, for the case of
one-verb sentences, the success of the frequency model is the same as the
currently best statistical parser for Czech, i.e. 84%. If not limited by the one-verb
condition this success is 77%.

Other frequency based experiments with respect to parsing can be found in
(Holan 2003, 2004).

5.4. MST as a dependency tree finder using dependency pictures

In the search of suitable rule templates, I wanted to observe the diversity of
possible contexts of a dependency within the sentences they occur. The following

70

experiment has been performed, and that is how our second naive parser was
born.

Let (f, s)Snt be a dependency from the sentence Snt. Let l = |Snt| be its
sentence length. Let n be the pair (v, freq), where v is the node value and freq is its
frequency in a sentence segment. Let i = min{ordSnt(f), ordSnt(s)} and j = max
{ordSnt(f), ordSnt(s)}. The dependency breaks the sentence Snt into three segments:

- segment before: () { }110,, ,,, −= isfSnt nnnB L

- segment in: () { }121,, ,,, −++= jiisfSnt nnnI L

- segment after: () { }ljjsfSnt nnnA ,,, 21,, L++=

For the case when any of these sets within a single sentence is empty a
node value of "NONODE" is assigned.

Let

U
Snt

sf

sfSntsf
BB

∀
∀

+ =
),(

),,(),(
,

U
Snt

sf

sfSntsf
II

∀
∀

+ =
),(

),,(),(
 and

U
Snt

sf

sfSntsf
AA

∀
∀

+ =
),(

),,(),(
.

The general quantifiers are across all PDT sentences from the analytical
general training set of PDT.

The triple ()+++
),(),(),(

,,
sfsfsf

AIB forms a picture of the dependency (f, s). In

this case the picture will be called a positive one, ()sfPic ,+ .

Similarly to the positive picture a negative one ()sfPic ,− is built, i.e. a
picture of all pairs (f, s) for which there is already a positive picture across all
sentences, but in the case of the negative picture the before, in and after segments
are for the cases when f and s exist within a sentence and it is true that f � gov(s).

Examples of picture elements follow. The '+' sign represents a positive picture
element, in this case A+(NNFXX, II---) and A+(NNFS7, AGFS2), '-' is its negative
counterpart. 'r' means that the dependency is a right one, i.e. ord(NNFXX) <
ord(II---), while value 'l' would mean, that ord(NNFXX) > ord(II---). 'A' (other
possible values are 'I' for in and 'B' for before) corresponds to the segment after as
described above. The number attached to the tag values forming the picture
element is a frequency of occurrence of the tag within the segment found across
PDT.

+ NNFXX II--- r A: NNIS2_2 AAFP2_1 Z:---_9 NNFP1_1 NNFP2_2
NNNS4_1 PLNS1_1 NNFXX_1 PDNS1_1 RR--4_2
Vi-P-_1 VB-S-_1 C=---_3 NNNP1_2 TT---_1

71

NNFS4_1 NNIS1_2 PDZS3_1 J^---_1 NNNS1_1
J,---_2

- NNFXX II--- r A: NNIS2_2 NNNS2_1 AAFP2_1 Z:---_11 NNFP1_1
NNFP2_2 NNNS4_1 PLNS1_1 NNFS7_1 Db---_1
PDNS1_1 RR--4_2 RR--3_1 Vi-P-_1 VB-S-_3
C=---_2 NNNP1_2 AAFS3_1 NNFS4_1 NNIS1_2
PDZS3_1 RR--6_1 J^---_4 NNIS4_1 NNMS1_4
NNFS6_1 J,---_3 NNFS3_1

+ NNFS7 AGFS2 r B: RR--2_1 VB-S-_1 Z:---_1 NNFP2_1 Z#---_2
J^---_1 Db---_2 NNMS7_1 PDNS1_1 AAFS2_2
NNFS2_2

- NNFS7 AGFS2 r B: NNFP2_1 VpTP-_1 VsTP-_1 PDYS1_1 NNFXX_1
NNIS7_1 II---_1 NNIP1_1 VsQW-_1 RR--4_2
NNIS6_4 NNIXX_1 RR--3_1 AAFS2_5 NNFS2_7
VB-S-_3 C=---_3 AAFS6_1 NNFS4_1 Z#---_8
NNIS1_4 J^---_2 NNMP2_1 AAIS1_1 AAIS6_1
RR--7_1 NNFS6_2 NNIP4_1 NNMS2_1 NNIS3_1
NNIS2_1 NNNS2_1 Z:---_11 AAXXX_1 P7-X4_3
VpQW-_1 Vf---_1 Db---_3 ClXP2_1 AGIS7_1
NNNS6_3 TT---_2 AAMP2_1 RR--6_9 AUIS6_1
NNMS1_4 NNFS1_1

Once the pictures are formed, it is possible to approach towards a picture-
based dependency weight determination. A simple solution towards the
dependency weight determination is to perform the following frequency-based
intersection of the corresponding segments of a positive and a negative picture.
Assuming that a non existent elements has a frequency of zero, the frequency

based intersection of a segment is defined as ∑
∈∀

−+ −
segmentn

nfreqnfreq))()((,

where freq+(n) is the frequency of node n as found in the positive picture, and
freq-(n) is the frequency of node n as found in the negative picture.

This type of picture evaluations is shown in the following example with
two short sentences, where the second one was deliberately chosen to
demonstrate a situation when the pictures did not add extra knowledge. This is
more likely to happen for short sentences.

Tøikrát/Cv--- rychlejší/AAFS1 než/J,--- slovo/NNNS1
Three-times faster than a word
1 AAFS1 Z#--- r S=-0.167 D=2 B=0 I=0 A=-0.5
1 Cv--- AAFS1 l S=-0.33 D=1 B=0 I=-1 A=0
1 J,--- AAFS1 r S=1 D=1 B=0 I=0 A=0
1 NNNS1 J,--- r S=1 D=1 B=0 I=0 A=0

Pomocí/NNFS7 mùže/VB-S- být/Vf--- systém/NNIS1
ECM/NNIXX

A help can be the system
ECM

1 VB-S- Z#--- r S=0.5 D=2 B=0 I=0 A=0
0 NNFS7 VB-S- l S=1 D=1 B=0 I=0 A=0
1 NNFS7 Vf--- l S=0.5 D=2 B=0 I=0 A=0
0 Vf--- NNFS7 r S=0.5 D=2 B=0 I=0 A=0

72

0 VB-S- Vf--- l S=1 D=1 B=0 I=0 A=0
1 Vf--- VB-S- r S=1 D=1 B=0 I=0 A=0
1 NNIS1 VB-S- r S=0.5 D=2 B=0 I=0 A=0
0 NNIS1 Vf--- r S=1 D=1 B=0 I=0 A=0
0 NNIS1 NNIXX l S=1 D=1 B=0 I=0 A=0
1 NNIXX NNIS1 r S=1 D=1 B=0 I=0 A=0

The first number in each row represents whether the dependency is a PDT
tree dependency or not. The following two elements are the father and the son
node values. 'r' or 'l', as earlier in the text, distinguish between a left and a right
dependency. This time, the values of B, I and A, correspond to the frequency
based intersection of the before, in and after segments divided by the segment
length (number of nodes in the segment in the analyzed sentence; if zero, this
length is set to 1). D is a distance of the dependency elements, expressed in
number of elements. S is a value, which combines everything into a single weight
value.

With respect to the notation from the sentence examples

()AIBAIBS ,,4321 δαααα +++= , where

() ()

===¬≥++

===

=
otherwise

AIBAIB

AIB
D

AIB

m

,...0

0,0,0,0,...1

0,0,0,...
1

),,(321 αααδ , where m�1.

In the following experiments S becomes a dependency weight of a sentence
graph. Afterwards, the dependency tree is found by applying the MST algorithm.
Table 5.4 presents results of this experiment for various values of the á
coefficients.

Parameter values Success rate (%)

1,0,1,0,0 4321 ===== mαααα 52.95

1,1,3
1,3

1,3
1

4321 ===== mαααα 68.34

2,1,3
1,3

1,3
1

4321 ===== mαααα 68.30

0,3
1,3

1,3
1

4321 ==== αααα 52.95

0,0,0,1 4321 ==== αααα 51.41

1,1,0,1,0 4321 ===== mαααα 53.9922

0,0,1,0 4321 ==== αααα 58.06

1,1,3.0,5.0,2.0 4321 ===== mαααα 68.31

Table 5.4: Dependency accuracy of a picture-based parser

22 The achieved 53.99% on the in segment are lower than one would expect.

73

For there is no automatic learning adjustment of the parameters, the results
are flattering. Of course, they are far below the best current parser for Czech
(84%). Nevertheless, they are cheap to obtain and their performance is better
than, e.g. pure probabilistic methods as originally applied on Czech.

With respect to the creation of rule templates needed for automatic rule
generation, this analysis brings the following results:

- Most attention should be paid to features between the dependency
elements.

- Distance between the dependency elements could be employed,
especially for the situations when the parser cannot decide which
dependency to prefer.

- There is non-neglecting information also in the before and after
segments of the sentence, where the after segment is slightly more
contributive than the before one.

- For the first time, it is interesting to note the negative effect on the
distance for the in segment. With a special attention to linguistic
relevance of features, this indicates a possibility that most attention
should be paid to features defined with elements/values located
between the dependency elements.

- It is pleasant to notice that the pictures are almost insensitive to
sentence length. This is an important difference from other
approaches.

The insensitivity to sentence length of the picture parser compared to the
high success rate of frequency-based one for short sentences, is a key how to
combine them. A sensible combination would yield at least 70% success rate.

Undoubtedly, it would be better to have a higher than a 70%-level success.
Nevertheless, the results of this kind are not as bad for, e.g. information
extraction systems, especially for parsing of shorter sentences or questions
and/or sentences of common type where additional 'sharpening' of the parser
can pop up the success rate.

For parser evaluations, the frequency based MST dependency tree finder,
offers, mainly thanks to the MST algorithm, a new and relatively high baseline.

Thanks to the availability of the MST algorithm, in the following chapter,
the logic of RBA will be applied for modification of sentence graph weights in
order to obtain such MST, that will as close as possible to the true, PDT tree.

5.5. The percentages of naive parsing

Table 5.5 joins the results from this chapter into a single table. The
anal_general_train are PDT general train data for the analytical PDT layer;
the anal_general_etest are PDT general evaluation test data for the
analytical PDT layer. anal_general_train consists of 1583 files, while the
anal_general_etest consist of 161 files. Each file consists of approx. 50
sentences.

74

Algorithm Size and
identification
of train data

Size and
identification of

test data

Dependency
accuracy

Note

anal_
general_
train

anal_
general_
etest

63.27% Freq/m and m5, as
in Table 5.1.

the same as above on the train data 63.96% Freq/m and m5, as
in Table 5.1.

the same as above anal_
general_
etest

58.46% Freq/m and m5,
and not considering
dependency length
bigger than 5.

the same as above the same as above 59.07% Freq/m and m5,
and not considering
dependency length
bigger than 7.

the same as above the same as above 60.23% Freq/m and m5,
and not considering
dependency length
bigger than 11,
which is average
dependency length.

the same as above the same as above 61.25% Freq/m and m5,
and not considering
dependency length
bigger than 15.

the same as above All sentences from
anal_general_e
test with no

verbs

67.35% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with 1

verb

70.37% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with 2

verbs

62.02% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with more
than 4 verbs

55.20% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with one
verb and at
most 8 tokens

84% Freq/m and m5.

Frequency-
based
MST parser,
Section 5.3

the same as above All sentences from
anal_general_e
test with at
most 8 tokens

77% Freq/m and m5.

the table continues ...

75

anal_
general_
train

on the train
data23

68.34% All segments and
inverse distance.

the same as above the same as above 52.95% All segments and
without distance.

the same as above the same as above 52.95% Only the after
segment with
inverse distance.

the same as above the same as above 51.41% Only the before
segment without
distance.

the same as above the same as above 53.99% Only the in segment
with distance.

Picture-based
MST parser,
Section 5.4

All pictures
consist of m5 type
of nodes (the first
5 positions of the
morphemic tag),
and no lexical
units.

the same as above the same as above 58.06% Only the in segment
without distance.

Combination of
the above two
naive parsers

the same as above the same as above at least 70% Freq/m and m5,
and all segments
and inverse
distance

Table 5.5: The percentages of naive parsing

23 The aim of the experiments with pictures was to reveal characteristics of the sentence
elements with respect to a syntactic dependency. Therefore, the character of the
experiment did not require testing on test data. The results obtained did not depend on
sentence length (these experiments are not included in the table).

76

77

6. À la RBA
After many trials with traditional type modifications of the originally phrase
grammar rule-based approach for parsing (Chapter 1 and Chapter 3), I was
curious to find out the possibilities of this paradigm when applied on a sentence
graph. The high frequency based success from Chapter 5 benefits from
eliminating direct dependence on surface word ordering. The aim has also been
to check the advantages of such initial tree structure that manages to group
"relevant" sentence nodes. In my previous experiments with RBA the free word
ordering of Czech, the non-projective constructions, the dependencies related to
nodes to the right and other features caused that the learning process has not
been successful enough.

Our aim in this chapter will be to examine whether the RBA paradigm can
be applied for sentence graph weight modifications. Although not purely RBA
paradigm, I will use this naming since the algorithmic scheme as presented in
Figure1.1 and Figure 1.2 remains the same.

The initial structure is a sentence graph with normalized frequencies with
values from the interval [0, M], where M is the maximum allowed dependency
weight. The nodes are morphemic tags (their first five positions). For the success
rate of such initial structure see Table 5.1.

A rule modifies the edge weight by incrementing or decrementing the edge
weight by 1.

The aim is to use MST to find the best dependency tree.

The rules are generated in a greedy way, one by one, finding the best rule
of each iteration.

The learning stops as soon as there is no further improvement, or if the
learning improvement is less than a threshold value å. Using a threshold value is
recommended in order not to over-generalize.

6.1. Learning improvement

The learning improvement of a sentence (sentence graph) is calculated based on
the following two values:

)1(−
=

∑
−

NM

m

A treeMST , and

)1(

)(

+−
=

∑
−

NDM

m

B
treePDTcomplement

, where

m is the dependency weight, M its maximal value, N is the number of vertices in
the sentence graph, D is the number of edges of the sentence graph, and the
complement is found with respect to the sentence graph.

78

Our aim would be to improve the graph condition, i.e. intuitively but not
precisely speaking, to increase A or decrease B. What is meant by improving the
graph condition is stated in the following text.

Let At is the value of A in iteration t; analogously for Bt.

Instead of the classical error function, Ct = At - Bt determines an
improvement for iteration t, under the condition that the following statement is
true:

() ()() () ()()1111 −−−− −>−≤≥ tttttttt BABAandBBorAA

The value At - Bt is usually small and a suitable threshold value å would be
of the order 10-8.

It is also possible to use the classical error function, i.e. a percentage of
correct dependencies (Et). This is not recommended since the modifications of a
single rule are very small and it frequently happens that several rules are needed
before the MST algorithm outputs a different tree. This was observed from the
learning process.

An alternative would be to characterize the learning improvement by the
sum Et + Ct, which is the way the improvement was characterized in the
experiments.

It is time now to discuss the rule templates.

6.2. The rules

The aim of the rules is to take the surface structure of the sentence and transform
it into a simple operation of dependency weight modification, which will
contribute towards a better MST performance over the sentence graph.

There are 5 types of rule templates tested:
1. The Simple rule
2. The Concord rule
3. The Distance rule
4. The Between rule
5. The Not-Between rule

Every instance of a rule can be positive or negative, i.e. add or subtract a
value from a dependency weight.

All rule instances can be extracted automatically from a treebank.

6.2.1. The Simple rule

The Simple rule is of the following form

<father vertex value> <son vertex value> <S type>

The <S type> are two values: 'l' and 'r' for left and right dependency type.
A left dependency is such that ord(<father vertex>) > ord(<son vertex>);
otherwise the dependency is right.

79

6.2.2. The Concord rule

The Concord rule is of the following form

<father vertex value> <son vertex value> <C type>

The <C type> has three possible values: 3 for gender, 4 for number and 5
for case.

This rule tests concord (agreement) in terms of equal tag position values
between the dependency elements.

6.2.3. The Distance rule

This rule was added in order to operate with the distance values. Its form is

<father vertex value> <son vertex value> <D type>

The <D type> is a number representing a distance between the dependency
elements. The rule simply tests the surface distance of the two vertices without
distinction for left and right dependency orientation.

This rule was added on the basis of the observations from Chapter 5.

6.2.4. The Between rule

The Between rule has the following form

<father vertex value> <son vertex value> <B vertex value>

This rule is true if the vertex value from <B vertex value> is
present on the sentence surface between the father and the son vertex values.

Similarly as for the in sector of the positive pictures from Chapter 5 the rule
instances are generated using a treebank.

6.2.5. The Not-Between rule

The Not-Between rule has the following form

<father vertex value> <son vertex value> <N vertex value>

This rule is true if the vertex value from <N vertex value> is not
present between the father and the son vertex values on the sentence surface
form.

Similarly as for the in sector of the negative pictures from Chapter 5 the
rule instances are generated using a treebank.

6.2.6. Other rules

If one is able to create automatically rule instances of a rule template and their
application is not dependent on existence of treebank trees, it would be possible
then to use such template in the learning process. There are no limitations on
whether the rule templates are manually crafted based on a linguistic intuition or
automatically deduced based on a treebank. In this phase, the only limitation is
that the rules have to operate on the surface sentence nodes.

80

6.3. Examples of several rule instances

Some rule instances, taken randomly from the rules file, as used by the
graphrule program, are listed. Each of them can have its positive and negative
variant.

RR--7 AANS7 Sr
RR--7 AANS7 C5
Db--- J,--- Sl
NNFS2 NNFP2 Sr
NNFS2 NNFP2 C5
NNFS2 NNFP2 C3
NNIS4 NNFS2 Sr
NNIS4 NNFS2 C4
TT--- Db--- Sl
RR--7 NNNS7 BAANS7

The first two members in each row are the first five positions of the
morphemic tag, while the third member specifies the type according to its first
character: S for simple, C for concord, B for between, N for not between, D for
distance. The other symbols in the third member are as previously described in
the rule descriptions.

The following is a list of the first 20 best rules found by the graphrule24

program.
1 VB-P- NNIS4 Sr +1
2 NNMS1 NNMS1 Sl +1
3 J,--- VB-S- Sr +1
4 J,--- VB-S- Sr +1
5 J,--- VB-S- Sr +1
6 J,--- VB-S- Sr +1
7 J^--- VB-S- Sr +1
8 VB-S- Z,--- Sr +1
9 Dg--- Db--- Sl +1
10 J,--- VB-P- Sr +1
11 VpMP- VB-P- Sl +1
12 Dg--- Db--- Sl +1
13 J^--- VB-S- Sl +1
14 J,--- VB-P- Sr +1
15 VB-S- J^--- Sr +1
16 J,--- Z,--- Sr +1
17 VpMP- VB-P- Sl +1
18 VpMP- VB-P- Sl +1
19 NNFS2 AAFS2 Sl +1
20 NNFXX C=--- Sr +1

Their description is the same as of the rule instances; the +1 value means that the
weight value is incremented.

24 This and other programs, programmed by the author of this work, are available (for
academic purposes) upon request to the author.

81

6.4. Observations, characteristics and results

The main loop of the graphrule algorithm is given below.
while there is a learning improvement

for each Rule from rule instances list
for each Sentence from all Train Set sentences

success = test Rule on Sentence
end

end
select Best Rule, i.e. the rule which has the best performance

over the TrainSet
apply Best Rule on Train Set

end

For a train set of 1000 sentences which contains approx. 83,000 sentence
graph dependencies, there are in average about 200,000 rule instances generated.

In the first run graphrule indexes the train set with corresponding rule
instance such that for each sentence only links to rule instances which can be
applied are recorded. Such optimization step significantly improves the
algorithm speed. Unfortunately, the time complexity is still high - the training
process selects a single best rule in approx. 12 hours on a 2GHz processor system
with 1GB of internal memory. This fact influences the size and extend of the
experiment testing.

The number of best rules needed is higher than in the classical RBA
approach, which is due to the fact that the rules cause small step improvements.
A bigger number of training sentences this time influence positively the learning
phase.

To be able to draw conclusions on the success of this approach several
small experiments (100 sentences) were performed. Before approaching to a
further optimization of the complexity of the graphrule program, I wanted to
find out its prospects first.

After a relatively high number (hundreds) of best rules is found, the
success of the learning process of the 100 sentences sets climbs up to 82%, in
exceptional cases also 87%.

These results were shown to be non-stable - once the training set size
increases the success rate of the learning process decreases.

With respect to the time complexity, I managed to run an experiment with
400 sentences. The registered improvement achieved on a randomly selected test
set was up to 3% above the frequency-based experiments described in Chapter 5.

Tests were also done using different weight modification values, starting
with a larger value, a multiple of the +1 and -1 of the rules, and decreasing it
during the learning process. Tests with bigger steps (larger than +/-1 weight
modification values) were experimentally verified as safe and such that speed up
the learning process. The weight modification values were similar to addition of
a moment for the process of learning.

82

Although I name this approach with the terminology of RBA, as designed it
does not correspond completely to this paradigm. Namely, in our case, the best
rules list is not sensitive to its order since a modification of a weigh of a sentence
graph dependency is not conditioned by prior such modifications. This is the
reason why:

- the performed experiments are mainly suitable for rule templates
testing, and

- the performed experiments could become an input for a second phase
with a main stress on tree modifications within a 'dependency space'
approximately represented by the sentence graph.

The 3% success increase is a small one. Together it does not outperform the
picture-based approach. Hence, this is another confirmation (along with those in
Chapter 3) that the RBA approach accompanied by simple additives is not
suitable for dependency parsing of Czech. Probably, a last experiment could be
performed, presented in Section 6.5. This is the last trial on RBA-like
modifications and as it can be noticed in Chapter 7, the perceptron-based
approach offers better success rate and a big space for its further improvement.

6.5. Definition of a second phase - tree modifications

Defined using PDT trees, but applied for the learning process on MST trees (trees
produces by the MST algorithm on the sentence graph), I present two rule
templates which can be implemented. Figure 6.1 will be used to explain rule
changes; the bold solid lines mean that the dependency is in both PDT tree and
MST tree, the bold dotted line mean that the dependency is only a MST one,

Figure 6.1: A fragment of a sentence graph

A

B

C1 C2

Bi

C3

XY

83

while the double stroke line means that the dependency is only a PDT one; the
other are the rest of the sentence graph dependencies. Let SW represent the total
weight of the sentence graph, a sum of weights of all edges. A choice was made
that any transformation should keep SW constant25.

6.5.1. Preceding dependency

The rule has the following form

<weight modifier> <current dep.> <prec. dep.>

The rule modifies the weight of a dependency <current dep.> by
<weight modifier> if a preceding MST dependency is <prec. dep.>.

Let us assume the situation from Figure 6.1. An instance of a preceding
dependency rule could be:

+1 B C1 A

where the current dependency is (B, C1) and the preceding dependency is (A, B);
the weight modifier is addition of the value v = 1.

If applied on a situation as in Figure 6.1 such rule would modify the weight
of (B, C1) by adding 1, at the same time modify the weights of all other input
edges of C1 by (-1)v/n, where n = degin(C1) - 1, in this case, the rule will decrease
the weight of (X, C1) and the weight of (Y, C1) by 1/2.

6.5.2. Brother dependency

Similarly to the previous rule, the brother dependency rule templates support an
existence of a dependency based on existence of its brother node.

The rule has the following form

<weight modifier> <current dep.> <brother dep.>

Modify the weight of a dependency <current dep.> by <weight
modifier> if its brother MST dependency is <brother dep.>.

Let us assume the situation from Figure 6.1. An instance of a preceding
dependency rule could be:

+1 B C1 C2

where the current dependency is (B, C1) and the brother dependency is (B, C2) ;
the weight modifier is addition of a value v = 1.

If applied on a situation as in Figure 6.1 such rule would modify the weight
of (B, C1) by adding 1, and at the same time modify the weights of all other
output edges of B by (-1)v/m, where m = degout (B) - degMST-out(B), in this case, the
rules will decrease the weight of (B, C3) and the weight of (B, Bi) by 1/2.

For the MST tree changes, in this second phase it is not possible to index
the train set effectively in advance by the rule instances to test.

25 Applying such criterion in the previous phase (as explained in the previous section)
means that the ordering of the found best rules matter.

84

All rule instances can be created automatically from the treebank.

Addition of such tree dependent rules would not be so straightforward for
the perceptron-based approach presented in Chapter 7. From this point of view,
is to be applied, such types of rules are more suitable for the approach described
in this chapter.

6.6. A comment

The ideas presented in this chapter have been my most strongly motivating ones
during my studies of RBA and its application to a dependency tree parser. These
ideas gave birth to the sentence graphs and to the application of the MST on
them. Unfortunately, the RBA approach did not yield a satisfactory level of
success.

I have tried to verify proposed solutions through a variety of small
experiments. If still one would like to experiment with the RBA type of
approaches, this chapter has offered one of the few possible directions. I have
tried here to present their core; many modifications are possible, and hopefully
some of them, as e.g. the second phase of Section 6.5 could be a subject of study
in the near future.

The following chapter will present a method capable of dealing efficiently
with large number of features (rules).

6.7. The percentages of à la RBA

The long time needed for training did not allow for detailed testing on larger
train sets neither to experiment efficiently with various rule templates. For the
aim has been only to verify possible potentials of this approach the training and
testing were performed on parts of anal_general_train data from PDT.
These parts were obtained from l10*am (total 9 files) and c10*am (total 9 files)
files. Each PDT file consists of approx. 50 sentences. Sets of sentences from
c10*am for training and from l10*am for testing were randomly selected - that
is the way the number of sentences in Table 6.1 was taken; I do not include there
small tests (on less than 50 sentences) or repeated tests. Table 6.1 summarizes the
major tests performed in this chapter. If not stated otherwise the sentence graphs
were on m5 type of nodes.

85

Algorithm Size and
identification
of train data

Size and
identification

of test data

Dependency
accuracy

Note

- - 63% Initial structure
dependency
accuracy.

100 sentences on the train data 82%-87% Interval of
dependency
accuracy on
several cross-
validation
experiments.

400 sentences 100 sentences 66%
the same as above on the train data 69%

À la RBA
parsing,
Chapter 6

c101.am file on the train data lower than
above26

On m5l type of
nodes.

Table 6.1: The percentages of à la RBA

26 The improvement has been better, but in the case of m5l nodes the initial dependency
accuracy is lower, therefore the whole performance is worse.

86

87

7. The Perceptron-Based Approach for Building
of a Dependency Tree

Besides Brill's works on RBA (Brill 1993a,b,c), another paper, this time of Michael
Collins, has strongly influenced my work: "Discriminative Training Methods for
Hidden Markov Models: Theory and Experiments with Perceptron Algorithm"
(Collins 2002). In its abstract M. Collins states: "We describe new algorithms for
training tagging models, as an alternative to maximum-entropy models of
conditional random fields. The algorithms rely on Viterbi decoding of training
examples, combined with simple additive updates."

In this chapter I will explain a modification of the perceptron algorithm in
order to use it for dependency parsing. The algorithm will rely on MST decoding
of the training sentence graphs (training examples), combined with simple
additive updates.

In the sequel, firstly, I will explain the main ideas of the perceptron
algorithm as applied by Collins on the tagging problem, and secondly, I will state
the modifications of the perceptron algorithm for dependency parsing. Thirdly, I
will demonstrate the application of the new perceptron-based dependency tree
parser. To ease reading, I will try to use, where appropriate, the same notation as
in (Collins 2002).

7.1. The perceptron algorithm for tagging

Let []nw :1 be a shorthand for a sequence of words []nwww ,,, 21 L , and

[]nt :1 a shorthand for a sequence of tags []nttt ,,, 21 L . Let the training set consist

of n tagged sentences, the i'th sentence being of length ni. Let the training set

examples are [] []

 i
n

i
n ii

tw
:1:1

, for i=1...n.

Then the training perceptron algorithm (for tagging) is as follows:

• Choose a parameter T defining the number of iterations over the training
set. This parameter is chosen experimentally on the basis of the
development set, or alternatively on the basis of the observed saturation
of the ã parameter values (see below).

• Initially set all
kfα parameters to 0. For each feature type fk there is a

separate
kfα . Let m be the number of all available features.

• for t = 1 to T
for i = 1 to n

Use the Viterbi algorithm to find the best tagged sequence of

[]
i

n i
w

:1
under the current parameter settings. Let this sequence be

called []inz :1 .

for k = 1 to m

88

c1 = sum of all outputs of feature fk in []int :1 , and

c2 = sum of all outputs of feature fk in []inz :1 .

 Modify the corresponding
kfα parameter as follows:

21: cc
kk ff −+=αα

end for k
end for i

end for t

The γ parameters, mentioned before, are averaged αparameters. They can

be obtained easily during the learning process along with the αparameters, as
follows:

∑
=
=

=

ni
Tt

it

f
f

nT
k

k

...1

...1

,α
γ ,

where it

f k

,α is the value of
kfα in the t'th iteration of the i'th training example.

In the Collins' experiments and as well as in the experiments presented in
this chapter, the averaged parameters perform significantly better. The paper
(Collins 2003) also presents a justification of the averaging method. The same
paper gives proofs to theoretically important aspects of the perceptron algorithm
with respect to the upper limit of the number of mistakes for a given training set
(see also (Mitchell 1997)), proving its robustness with respect to the train set.

For tagging Collins uses two types of features:
- tag trigrams,
- lexical unit and its tag.

The following sentence from the training set27

the/D man/N saw/V the/D dog/N

contains the following tag trigram features

DNV NVD VDN

and the following lexical unit and its tag features

the->D, man->N, saw->V, dog->N.

Let the following be the output of the Viterbi algorithm in some of the
stages of the perceptron algorithm (the wrong tag assignment is bolded):

the/D man/N saw/N the/D dog/N.

Then, the parameter modification will:

add 1 to: DNV, NVD, VDN

substract 1 from: DNN, NND, NDN, saw->N.

27 The examples on tagging are taken from (Collins 2003).

89

7.2. Formalizing the features

Different types of problems may have different feature-vector representations.

7.2.1. Tagging

For tagging, a feature-vector representation φ :H × T � Rm is a function φ that
maps a history-tag pair to a m-dimensional feature vector. For the tagging
experiment, e.g. in maximum entropy model a history hi from H is a 4-tuple

[] iwtt n ,,, :121 −− . In general, the history can be any allowable input element.

Each component),(thkφ for k = 1...m could be an arbitrary function of (h,
t). It is common that each feature is an indicator function (Ratnaparkhi 1996) as,
e.g. for tagging:

 ===

otherwise

DTtandthewwordcurrentif
th i

,...0

,...1
),(1000φ , or

=
otherwise

VNDistrigramtagcurrentif
th

,...0

,,,...1
),(1001φ

7.2.2. Dependency parsing

To be able to define similar features for parsing the feature vector
representation needs to be defined on dependencies instead of words. In such
case φ :H × D � Rm , where the history H contains all sentence elements and all
sentence dependencies; D is a set of dependencies. More formally we could write

that H members are of the type [] [] idw sn ,, :1:1 where []sd :1 stands as a

shorthand for all dependencies of a sentence graph Snt(N', D', g) ordered as
father, son, by their surface sentence order. This time, the index i indexes the
dependencies. The governor relation we will need is included in d[1:s]. Without
loss of generality one may assume that g outputs the morphemic tags of the
sentence elements. One may then define features as

=
otherwise

ANisdependencycurrentif
dh

,...0

),(,...1
),(123500φ

or

=
otherwise

surfaceonbetweenisNandRVisdependencycurrentif
dh

,...0

),(,...1
),(58000φ

7.2.3. Global representations

The φ functions are called local function representations. A global
representation is,

90

for tagging

[] []() ()∑
=

=
n

i

iiknnk thtwf
1

:1:1 ,, φ , or

[] []() ()∑
=

=
s

i

iiksnk dhdwf
1

:1:1 ,, φ

for parsing.

Each global feature fk is a simple sum of local features kφ over sentence
elements. If the local features are indicator functions, as it will be in our case,
then the global features will typically be simple counts.

7.3. Score

Given a sequence of words []nw :1 and a sequence of tags []nt :1 a score of a tagged

sequence is

() [] []()∑∑ ∑
== =

=
m

k

nnkk

n

i

m

k

iikk twfth
1

:1:1

1 1

,, αφα .

Given a sequence of words []nw :1 and a sequence of dependencies []sd :1 a

score of a tagged sequence is

() [] []()∑∑ ∑
== =

=
m

k

snkk

s

i

m

k

iikk dwfdh
1

:1:1

1 1

,, αφα .

7.4. Perceptron-based dependency parsing algorithm

The following is the perceptron-based algorithm for dependency parsing.

7.4.1. Learning

Input:

- A training set of sentence graphs with treebank info, Snt(N', D', g) �

[] []()i

s

i

n ii
dw

:1:1
, for i=1...n. Let []

i

n i 1:1 −τ be the dependency tree of the sentence

nodes []
i

n i
w

:1
. Snt(N', D', g) is formed based on a treebank grammar graph

GrammarTB(N, D, g), in our case a PDT grammar graph. g is a user defined
function of sentence nodes, most commonly giving a morphemic tag at its
output.

- A parameter T determines number of iterations over the training set.
- One also needs a set of local features. More on the local features and their

global representation f as applied on Czech analytical tree building is
discussed later in the text.

Initialization:

- Set parameter vector 0=α .

91

Algorithm:
For t = 1 to T

For i =1 to n
Use the MST algorithm to find the output of the i'th training
sentence graph Snti(N', D', g) with the current parameter
settings, i.e.

[] () [] []()

== ∑

=∀
−

m

k

snkk
sf

in dwfweightgMST
i

1

:1:1
),(

1:1 ,:,, αζ D'N'Snt

where the i'th sentence graph is weighted by the sum of the
components of the scalar product of the global feature vector

and the parameter vector α , i.e. the score of the rooted directed
maximal spanning tree of the sentence graph. D'∈),(sf .

Let []
i

n i 1:1 −τ be the true (PDT) tree of the i'th sentence.

If [] []1:11:1 −− ≠
ii

n
i

n
ζτ then update the parameters of the

parameter vector as follows:

[] []() [] []()i

n

i

nk
i

n

i

nkkk
iiii

wfwf
1:11:11:11:1

,,: −−−− −+= ζταα

end for i
end for t

Output:

- Parameter vector α (and/or parameter vector γ).

The score mentioned in the algorithm is defined in the similar way as the
score of the tagged sequence where the sum loop is over the spanning tree.

7.4.2. Application

Once having learned the coefficients, the application is straightforward:

Input:
Sentence and its sentence graph with zero weights and the parameter
vector α (or the parameter vector γ). As mentioned earlier in the text,

selecting the parameter vector γ significantly increases the success rate. In

our experiments aprox. 5% higher success rate was obtained if the γ vector

was used instead of the α one.

Algorithm:
Apply the MST algorithm on the sentence graph where each dependency is
weighted by its score according to γ (or α).

Output:
Dependency tree of the input sentence.

92

7.5. Feature types

The feature types are very similar to those used in the previous chapter. The
similarity can be shown on the following example of some randomly selected
features.

Db--- PLNS1 Sr
Db--- PLNS1 BNOTAG
Db--- PLNS1 L3
Db--- PLNS1 NNOTAG
NNIXX AAMP2 Sl
NNIXX AAMP2 BNOTAG
NNIXX AAMP2 L3
NNIXX AAMP2 NNOTAG
AAIP1 NNMP3 Sr
AAIP1 NNMP3 BNOTAG
AAIP1 NNMP3 L3
AAIP1 NNMP3 NNOTAG
AAIP1 NNMP3 C4
Z:--- NNFS7 BVc-S-
Z:--- NNFS7 BAGFP2
Z:--- NNFS7 BDg---
Z:--- NNFS7 BRV--2
Z:--- NNFS7 BDb---
Z:--- NNFS7 BAAFS7
Z:--- NNFS7 NNOTAG

The first two elements of each row are the vertex values f the dependency
always in the order father, son. The third element determines the condition
under which the indicator function is true:

- S, for simple type, has two values: 'l' or 'r'. It is true if the dependency
is left or right, respectively.

- B, for is between feature, which is true if the vertex value immediately
after the B sign is between the dependency values on the sentence
surface.

- C, for concord feature, with three allowed values, value 3, value 4, and
value 5. C3 is true if the dependency vertex values have their third
position identical, C4 is true if the dependency vertex values have
their fourth position identical, and analogously for C5.

- N, for is not between feature, which is true if the vertex value
immediately after the N sign is not between the dependency values on
the sentence surface.

- L, for distance feature type, which is true if the distance is less or equal
to the number value immediately after the L sign.

It is up to the learning designer whether or not differences will be made28

(therefore different feature instances) if:

- for the S feature, if the dependency values repeat themselves on the
surface within the dependency or not. E.g., the feature

NNIXX AAMP2 Sl

28 The same differences can be encountered for the procedure from Chapter 6.

93

could have four instances. If the following would be the surface situation

AAMP2 X NNIXX

the four different cases occur if:
X does not contain AAMP2 neither NNIXX.
X contains AAMP2 and it does not contain NNIXX.
X does not contain AAMP2 and it contains NNIXX.
X contains both AAMP2 and NNIXX.

In all of these situations it should be decided whether the indicator
function is true (1) or false (0).

- for the B feature, if the between vertex value occurs on the surface
between the dependency vertices once, or more than once

Explained on an example, if the between value is, e.g. B, the following
cases could be distinguished for AAMP2 X B Y NNIXX:

X contains NNIXX and does not contain AAMP2, while Y contains
AAMP2 and does not contain NNIXX

X contains AAMP2 and does not contain NNIXX, while Y contains
NNIXX and does not contain AAMP2

X does not contains AAMP2 neither NNIXX, and Y does not
contain NNIXX neither AAMP2

X contains both NNIXX and AAMP2, and Y contains as well both
NNIXX and AAMP2

in the similar manner, the other feature variants can be easily
deduced

- the N feature is similar to the B feature, with opposite meaning.
Other feature variants can be obtained if, e.g. between feature is tested only

when the dependency distance is less than a pre-set value. While the other
modifications helped the learning process, the distance limitation in this case did
not positively influence the success rate. Therefore, the distance limitation can be
used if we want to reduce the number of features in the feature vector, but it
plays no significant role in including explicitly its (distance) value (the Distance
type of rule).

The perceptron algorithm perceptron_learning is much faster than the
graphrule and the feature vector can contain hundreds of thousands of
features (indicator functions). The feature set can be extended also to features of
various other types, as such containing lexical units (e.g., graph vertices of the
m5l type).

Finding good set of features is currently the most important task for
successful application of the perceptron algorithm and this problem is not solved
yet.

7.5.1. Tests with additional feature types

Additional types of features have also been considered. To explain them better I
will use the following abstract sentence notation, a string of tags:

t1 t2 ti-2 ti-1 ti ti+1 ti+2 ... tj-2 tj-1 tj tj+1 tj+2 ... tn-2 tn-1 tn

94

Let the bolded tags be the dependency tags on which the feature is to be applied.

1. Picture types of features

In the logic of picture segments as presented in Section 5.4 of Chapter 5 and
assuming that ti and tj are the dependency nodes the first of which is the
father (for the cases where the second is the father, their order in the feature
description is swapped), the before, between and after types of features were
tested.

The before type of feature is of the form ti tj tk, where k=1...(i-1).

The after type of feature is of the form ti tj tk, where k=(j+1)...n.

The between type of feature is of the form ti tj tk, where k=(i+1)...(j-1), which is
identical to the "is between" (B) type of feature as described earlier in the text.

2. Bigram and trigram types of features

The bigram type of features is of the following type:

ti tj ti-1 (if any, with respect to ti) and/or ti tj tj-1 (if any, with respect to tj).

The trigram type of features is of the following type:

ti tj ti-1 ti-2 (if any, with respect to ti) and/or ti tj tj-1 tj-2 (if any, with respect to
tj).

7.6. Results

Tenths of experiments were performed on various train data sets with the
features as mentioned above and:

- paying attention to the repetition of nodes for the "simple" type
- without paying attention to repetition of nodes for the "is between"

and "is not between" type.
- including the picture feature types
- including the bigram and trigram feature types.

Just to illustrate the length of the feature vector, such set of feature types
results in approx. 10,000 feature instances automatically created from a set of 50
sentences.

The methodology of testing the significance of certain feature type has been
the following:

1. Take a set of sentences
2. Create automatically all possible features as described above. Let the

resulting set be Features.
3. Test the success of learning.
4. Select a single feature type end exclude it from Features.
5. Test the success of learning.
If the success from point 5 is the same (or only slightly different) compared

to the success from point 3, the excluded feature can be omitted and is declared
as non significant.

95

Features types found as non significant are the following:
- simple distance feature (as in Section 6.2.3),
- bigram features, and
- trigram features.

Those were therefore omitted in the larger experiment of perceptron-based
learning and testing.

The picture types of rules helped in improving the performance.

The PDT graph from which the sentence graphs were derived has been of
two types:

- the m5 type, i.e. a vertex value equals to the first five positions of the
morphemic tag. The only exception has been the Z (punctuation) tag
the second position of which was substituted by the value of the
word-form for that tag.

- the m5l type, i.e. the vertex value equals to the first five positions of
the morphemic tag including the previous modification of the
punctuation tag, except for verbs, prepositions and conjunctions. In
these cases the value was a compound one, equal to the concatenation
of the m5 tag value and the lemma.

The latter was observed to be more successful.

The best results registered for the perceptron algorithm were lower than
expected but still they are the highest results achieved so far:

- maximum of 78% while learning
- maximum of 72% while testing.

There was no need of more than 60 iterations. The main learning steps
occur during the first few, approx. 5 to 15, iterations.

The perceptron algorithm does not significantly benefit from the
dependency frequencies as described in Chapter 5. This is due to the large
number of features, thus the benefits caused by the distance are well captured by
other features as those of the "simple" type sensitive to repetition of nodes.

The zero initial vector of parameters causes that the initial tree is a random
one. A success of such randomly chosen tree is most often between 18% and 30%.
Assuming this, in terms of improvement the perceptron algorithm is the best of
all algorithms mentioned so far (approx. 50% improvement).

The perceptron algorithm can be easily lexicalized - this is an important
characteristic and one of the few possible directions for success rate
improvement.

The fact that the perceptron algorithm uses special weight for every feature
indicates that, the key to a more successful perceptron-based parsing lies in the
feature types themselves and not in other parts of the algorithm.

96

7.7. Considerations for better features and algorithm performance

An important question remains unanswered: Which are the good features?
Many features were presented but the performance did not significantly increase.
A strict look at the data would say that the perceptron-based approach did not
perform significantly better than the picture-based approach. But there is a
significant 'but': compared to the other approaches, the perceptron algorithm
offers big generality and a wide range of possibilities to consider, mainly in
feature type definitions.

There is a certain 'hunger' for good features. What has been done in this
work supports the fact that it will not be trivial to find them. The dependency
length are long (Table 2.3), so trigram do not help. The information is very
diverse as it can be noted from the picture evaluations (large proportion of zeros
after combining negative and positive pictures).

The features as in Section 7.5 are perfectly suitable for single sentences but
they perform worse on a set of sentences. E.g., if almost any sentence is isolated
and we try to learn on it, we would get 100% success of learning (better,
mimicking), as for the randomly selected Czech sentence (PDT file c101.am, #10)
"Navíc souèasnì vznikne písemný doklad, lze pøenášet obrázky, grafy, fotografie,
rukou psané texty apod.", or for the sentence (PDT file c101.am, #12) "Protože
smyslem èlánku je napomoci orientovat se vám pøi výbìru zaøízení pro vaší potøebu,
je nutné ponìkud obšírnìji vysvìtlit, proè je nutné tento parametr uvádìný v
prospektech, brát jen jako orientaèní údaj.", or for many, many others. If both of the
sentences are put together, the learning success is 79%, that is almost the same as
for the larger training set (up to 78%) and much less than the 100% for the single
sentence trainings. Why is that so?

Testing with learning on sets of single verb sentences which length is less
than 15, the learning has been more successful and achieves 89%. The
perceptron-based algorithm is sensitive to the sentence length. With respect to
the above results, the sensitivity on sentence length is not for the reason of
sentence brevity, but for the reason of grammatical diversity: shorter sentences
are probabilistically simpler and the feature vector components 'do not beat each
other'.

This work gives the following contributions towards answering the above
stated questions. From our experiments it follows that the features are not
consistently bound into the sentence context with respect to the language
grammar - the same feature can have a positive contribution for some sentences,
while a negative one for other sentences. The positive and negative 'bouncing' or
'beating' causes that the learning process does not grow beyond the stated 78%.
There are two directions to solve this:

a. creating features with more sophisticated conditions,
b. including mutual effects and bindings on feature vector components.

Ad a., more sophisticated conditions would mean conditions on more input
elements as, e.g. a whole dependency picture (which would yield enormous
number of features that we would not be able to capture efficiently; moreover

97

such set would be very sparse in the sense of its statistical distribution), or
manually created sets of features such that will code the (main) grammatical
characteristics.

Ad b., preserving a simple set of features as in this work, but conditioning
them mutually. This could be represented by a set of alternative feature vectors
(assigned to each dependency) and a set of algebraic rules defined on them.

The current feature types can only operate on the surface sentence structure
and cannot include conditions involving actual tree structure. There is additional
research to be done on modifications of the sentence graphs adding, e.g., dummy
edges, and consequently, accompanied by addition of a post MST phase for best
tree deduction.

7.8. The percentages of the perceptron-based approach

The perceptron-based approach allows testing of various features rather
efficiently. As also stated in the previous section our main topic of interest has
been focused on feature testing. To be able to compare the method to the others I
have restricted myself to m5 type of nodes or m5l type of nodes. For the case of
m5l type of nodes I did not employ features that deal only with the lemmas, but I
have treated the m5l type of nodes as a whole. The meaning of the m5 and m5l
type of nodes is as in Chapter 2 and Chapter 5.

The training and testing were performed on parts of
anal_general_train data from PDT. These parts were obtained from l10*am
(total 9 files) and c10*am (total 9 files) files. Each PDT file consists of approx. 50
sentences. Sets of sentences from c10*am for training and from l10*am for
testing were randomly selected - that is the way the number of sentences in Table
7.1 was taken. Table 7.1 summarizes the major tests performed in this chapter; to
preserve the transparency of results the smaller experiments used for feature
type selections are not included. If not stated otherwise the sentence graphs were
on m5l type of nodes. The testing was performed using the gamma-parameters.
The alpha parameters have also been tested - their success was approx. up to 5%
less than the one using the gamma-parameters. The features used are as
described in Section 7.5 excluding the non-significant ones as stated in Subsection
7.5.1.

98

Algorithm Size and
identification
of train data

Size and
identification

of test data

Dependency
accuracy

Note

- - 18%-30% Initial success on
random trees.

100 sentences on the train data 68%-78% Range on various
cross-validation
experiments.

400 sentences 100 sentences 67%-72% Range on various
cross-validation
experiments.

1 sentence on the train data 100% This is
characteristic only
for this approach
and does not
happen within the
other approaches.
Experiments
confirmed the
result on tenths of
various sentences.

100 sentences on the train data 89% Sentences with 1
verb and shorted
than 15 verbs;
only on m5 type
of nodes.

100 sentences on the train data 64%-71% Cross-validation
on m5 type of
nodes.

The perceptron-
based
approach,
Chapter 7

100 sentences on the train data 56%-64% Cross-validation
on m5 type of
nodes and
without the is not
between feature
and without
picture type of
features.

Table 7.1: The percentages of the perceptron-based approach

99

8. Get Almost Two For the Price of One
In this last chapter I would like to set up an experiment that occurred to me while
finalizing this work, a dependency parsing-by-tagging experiment.

Let there be a tagger and a treebank. Then the following is possible.

Input: Treebank training set of pairs [] []()nn tw :1:1 , and of pairs [] []()nn gw :1:1 , ,

where g = gov(t). [] []()nn gw :1:1 , means that each sentence word form is assigned

the morphemic tag of its governor node.
Example:
Let the following sentence

A brown dog and a white cat played with a ball.
is m-tagged29 as follows
A/D brown/A dog/N and/C a/D white/A cat/N played/V with/R a/D

ball/N ./Z
Let the following be its dependency tree.

#

./Z

played/V

and/C with/R

dog/N cat/N ball/N

A/D brown/A a/D white/A a/D

Based on the treebank tree the tagging by governors train set examples can
be generated. In our case, the example sentence would be g-tagged30 as
follows:
A/N brown/N dog/C and/V a/N white/N cat/C played/# with/V a/N

ball/R ./#
Algorithm:

1. Train the tagger on m-tags.

2. Train the tagger on g-tags; in order to increase the g-tagging success
rate this learning (and later on application) phase can be serialized to
the previous one restricting the set of possible tags to those found
within each sentence in the previous step. In our case, the aim would
be to g-tag the sentence with the {D, A, N, V, C} tags.

29 Tagged by morphemic tags (classical tagging).
30 Tagged by morphemic tags, but such that belong to the governor node morphemic tag
(g-tag).

100

3. Align the two outputs and resolve ambiguities.

Output: Analytical tree of the input sentence.

I will use an example in order to explain the alignment.

According to Figure 8.1, the first row is the row of m-tags (output of step 1),
while the bottom one is the row of g-tags (output of step 2). If a tag does not
repeat in the m-tag row the solution is straightforward. For our example (which
includes also ambiguities) the straightforward nodes (dependencies) are shown
in Figure 8.1.

D A N C D A N V R D N Z

N N C V N N C # V N R #

Figure 8.1: Alignment without a need of disambiguation

Figure 8.2 demonstrates the alignment to resolve the remaining
dependencies.

D A N C D A N V R D N Z

N N C V N N C # V N R #

Figure 8.2: Alignment with a need of disambiguation

The simplest way (and luckily its works out rather well) is to use a shortest
distance criterion, which means that the relatively closest (on the surface)
element is selected, excluding zero distance since a node cannot be dependent to
itself.

Applying a shortest distance criterion we obtain:

D A N C D A N V R D N Z

N N C V N N C # V N R #

Figure 8.3: The shortest distance criterion

The situation in Figure 8.3 contains dependencies, which have not been
resolved by the shortest distance criterion, since both dependency candidates
have the same distance value. In this case one could use other criteria as: decision
according to frequency values of left and right dependencies, or in case of
adjective to noun attachments recognize accumulation of concorded adjectives,
or in general test of grammatical concordance. For resolution of ambiguities of

101

alignment it is possible to employ also more sophisticated methods. The less
successful the tagger is, the more important is the precision of the alignment
algorithm.

For our case a frequency-based choice would prefer the left to the right
dependency between an adjective and a noun, therefore the solution would be

D A N C D A N V R D N Z

N N C V N N C # V N R #

Figure 8.4: The frequency-based choice

The process demonstrated (Figure 8.1 to Figure 8.4) outputs an analytical
tree of the input sentence.

I am deeply aware that a successful implementation would not be so
couleur de rose. But there is enough background to expect that it would be rose
enough to enter proudly in the category of 80% and above parsers. This
expectation is based on past experience as in (Ribarov 2000a) or (Holan 2003) and
as well as on the following facts from alignment tests on PDT and the
assumptions afterwards.

Based only on the shortest distance criterion (if for the case of equal
distance no frequency test is performed, but simply the left dependency is
selected) and assuming that the taggers tag correctly, the following alignment
success rates are found31:

- for the full tag alignment: 95.23%
- for the m5 (the first five positions) tag alignment: 94.88%
- for the m2 (the first two positions) tag alignment: 87%
- for the full tag without case category alignment: 93.38%

Assuming that tagging on analytical functions achieves 72% with a
relatively bad tagger32 we might expect that the 72%33 can be significantly
improved if the best current tagger is used. The structure of the analytical
function tagset is the most similar one to the g-tags, therefore it is expected that
the success rates could be similar. Moreover, in this, parsing-by-tagging

31 The presented percentages represent dependency accuracy, that is a number of
correctly found dependencies of a syntactic tree, which is the result of the alignment
process. The percentages were calculated on 44 files (exactly all c1*am files) from
anal_general_training set of PDT, which is more than 2000 sentences. According to
the way the dependencies are obtained, the percentage rates the lowest possible.
32 The rule-based tagger designed originally for English. The claim 'relatively bad' is for
tagging of Czech when compared to the current best tagger with approx. 95% success
rate on the full tagset.
33 The 72% tagging accuracy on analytical functions (Figure 3.11) has been obtained with
the rule-based tagger that achieves almost 80% on tagging of Czech on its full tagset
(Table 3.2).

102

experiment, the tagset of the sentence to tag in step 2 can be reduced (intersected)
by the tagset formed from the tags from step 1 (as stated earlier). Such reduction
will, as shown in (Hladká, Ribarov 1998), improve the tagging accuracy. The
alignment percentages can also be improved - the presented ones are the lowest
possible. It is to test, whether omitting the case (the source of most tagging
errors) would be positively compensated with the slightly lower alignment
performance.

This approach demonstrates that it is approximately possible to transform
the parsing problem to a tagging one. This would place the tagger as a central
NLP device.

Common ground for the tagger and the parser would be a creation of good
features as a prime direction to follow.

Bearing in mind that the best current taggers are statistical ones, I cannot
conclude differently than, in order to perform better, statistics needs rules (e.g.
having in mind the alignment), and that rules need statistics (having in mind the
best current taggers). Therefore, improvement of the success rates of our taggers,
parsers, aligners has a common denominator.

103

9. Final Notes
From the time perspective, this work presents an eight year passage starting in
1996. At that time various modifications of the rule-based approach for
dependency parsing of Czech were tested. The work done and also published as
in (Hajiè, Ribarov 1997) had rather positive reply, which has been a motivation to
continue and complete the work in the years afterwards (Chapter 3). The second
rule modifications were completed back in 1998 and 1999. At that time, together
with my colleague Barbora Hladká, we decided to understand closer the effect of
tagset size on the learning success rates. Our trials have been summarized in
(Hladká, Ribarov 1998). The 1999 and 2000 have been years when a 'searching'
has started. A rather in-the-dark searching - there was not enough evidence on
how to make the rules perform better. It has been a search for ideas.

In the trials to understand better the structure of the information from the
corpus (later on there were already 'alpha' and 'beta' versions of the Prague
Dependency Treebank available) experiments with non-linear and chaotic
measures were employed. Even without including syntactic information but
studying a morphological context, the measures (some of which are presented in
(Ribarov 2000b)) indicated that the 'relevant things' are most likely within an
environment of 15 words and that information outside of such region would not
improve significantly the learning tools. Nowadays, with the PDT available, we
have, as demonstrated in Chapter 2, verified that the average dependency length
is 11, which, together with the dependency elements themselves and their close
vicinity falls nicely in the 15-word region as predicted by the non-deterministic
measures. Compared to small contexts as those of trigrams, this has indicated
that there is a big problem to overcome, a problem which has still no efficient
algorithmic answer.

In the meanwhile a very successful parsing of Czech has been done as
published in (Collins 1999) - this significant work together with the Charniak's
experiment (Charniak 2001) formed a high standard line to cross. Nevertheless
also these work in terms of their offer of possible improvements lack what we all
lack - new ideas. Almost all current tendencies are streamed as a search for new
(not born until now) features.

It is known that by lexicalizing the features better success rates can be
obtained. That is what Collins and Charniak did, this is what is also obvious from
the more successful training on m5l sentence graph nodes than on m5 sentence
graph nodes (Chapter 7). I was aware that if I had focused more on the
lexicalization I would have got better results in terms of dependency accuracy.
The perceptron-based approach from Chapter 7 would have no problems with
lexicalization. The reasons why I did not lexicalize are:
- In order to compare the perceptron-based approach to the previous work, I

have used similar information, therefore mainly morphemic tags.
- The lexicalization performed in (Collins et al. 1999) deals with many features,

but all of them are of the same type (structure) as those dealing only with
morphemic tags. There is a dependency rate improvement, in fact, it is the

104

probably best such improvement for such types of features. But, I believe that
with qualitatively better features it is possible to achieve more than that. This
explains why I did not, for the purpose of development of this work, find
attractive the lexicalization of the features - extending them with
lexicalizations would not bring qualitatively new result that we have already
seen in the work of Collins or Charniak.

- For the purpose of parsing tool development I would definitely use
lexicalized features; what I have written above does not deny their significant
contribution.

The experiment as described in Section 3.8 of Chapter 3 would like to help
to overcome the narrow trigram margins. The PDT nice saturation figures in
Chapter 2, gave rise to the idea that the solution could be restricted by the PDT
itself. Thus, I have decided to work only with such dependencies which exist in
PDT and are defined as a dependency between two morphemic tags34 (counting
with lexical units would not saturate the treebank graph).

The graph theory (including theory of matroids) offers nice formalisms for
dealing with abstract structures. It occurred to me that a maximum spanning tree
could be the true tree of a sentence which graph edges are 'somehow' weighted.
The RBA approach has been the closest one and the one I had a good experience
with, so I have tried to reformulate it such as to be able to work on graphs. This
phase is included in Chapter 6. I though of the process as a process of game
where the weights represent dependency 'lives' - before a dependency 'dies' it
should be repeatedly canceled by several constraints (rules). Taking the MST at
the end of such process should results in a decent dependency tree, I believed.

Searching for the maximum spanning tree algorithm has not been direct. I
have not found any graph theory book where this is described significantly well.
After internet searches I have found the page of Shanchieh Jay Yang which had
the answer I have searched for. At that time I had a small group of enthusiastic
students at the Czech Technical University and we have decided to examine the
efficiency of the algorithm. Consequently, the first version of the MST algorithm
has been written in Perl. We have verified that the algorithm is fast enough and
suitable to be applied on sentence graphs; there was no need of employing
methods in order to determine the tree root, since PDT trees have an artificial
root sign which always represents the root. After refining it, I have used the MST
in a series of experiments I have performed from then on.

The application of the MST algorithm for the modification of the
perceptron algorithm has not been immediate. The results presented in Chapter 7
result from my step by step approaches to the new shape of the perceptron
dependency parsing.

Additional new idea has been the one as defined in Chapter 8, the parsing-
by-tagging problem. Something I will most likely run into very soon.

In order to achieve higher success rate I did not want to start combining
various approaches just for the purpose of increasing the success rate. It would

34 This does not limit us in dealing with lexicalized features or rules.

105

have made no sense to run after percentage improvements if in fact the methods
had performed under the 70% limit. I wanted to increase those 70% only by the
methods themselves or by new ones. Therefore, it seemed more sensible to me to
devote to the algorithms and to reveal their functionality. Undoubtedly, with the
help of many pre- or post-processing hints as word groupings, idiom and phrase
fixing, help of valency dictionary or other kind of dictionary, separation of short
and non verbal sentences, parenthetical parts, enumeration lists etc., the success
would rise as there are many such elements in PDT. Such modifications were
deliberately not done here. Thus, from its purely algorithmic perspective, the
presented results are original and, at least within the Czech environment, best of
their kind. The methods worked out and presented here are easy to re-use, to
verify and to improve. This work also presents many aspects relevant for
possible hybrid approaches and super parsing of Czech.

Let me summarize that for the purpose of automatic building of a
dependency tree this work has presented the following new elements in
dependency parsing:

- the rule-based approach accompanied by a variety of modifications,
- the perceptron-based approach and its modifications,
- two relatively well-performing naive parsers,
- a definition of a parsing-by-tagging experiment.

Every chapter of this work ends with concluding remarks on the discussed
topic and all main experiment results are gathered in the Appendix. I will
therefore not repeat myself here. Yet, some additional notes follow.

The performed experiments and achieved results for the rule-based parsing
as in Chapter 1 and Chapter 3 do not give future prospects for their application
the way they currently are. Anyway, if one wants to follow this direction, it is
advisable that the problem is divided in two stages - a stage of "word grouping"
or chunking such that dependent words will get reasonably close together and
afterwards, a stage of local dependency tree building. The rule-based approach,
especially its graph variant (Chapter 6) learns well on sentences, which share
some common characteristics or are of shorter length. The rule-based approaches
share their advantage of being capable of learning from a relatively small
training set. Nevertheless, this is of no practical use in our case, since the absolute
success rates are low. The only exception is the rule-based graph variant, which
demonstrated to perform at least as well as the picture-based naive parser and at
the same time indicates space for further improvement.

If I were to point out what I find most challenging it would be the use of
the rooted directed maximal spanning tree - this idea allowed me to perform the
modification of the perceptron algorithm, to play with the sentence graph in the
rule-based way, and to play with frequencies and pictures. Its low complexity
allows the MST operation to be performed repeatedly without significant delays
of process execution time.

106

I was flattered by how well, without any training the MST performed on
dependency frequencies. It is a fact that the first computational experiments on
parsing of Czech did not exceed 40% of success rate, while from current
perspective something as the frequency, without any learning, significantly
outperforms our algorithmic ancestors.

While playing with the pictures, it was nice to notice that the picture
approach does not depend on sentence length, that is not usually the case with
learning algorithms, e.g. the rule-based one. The fact that the pictures perform
non-neglectingly well indicates that there is something, yet to be found, out there
between the father and the son node or beyond. The fact that pictures do not
perform better than they do, indicates that the difficult stuff to do with Czech
syntax starts above the 70%.

I was pleasantly surprised by how fast the perceptron algorithm converges
and by how many features it can support. This method deserves big attention in
the direction of parsing and in the direction of tagging. Additional good news
about the perceptron is in the possibility to incorporate any type of features,
which deal with the sentence surface elements, including manually designed
features.

The à la RBA approach, when trained on small sets extracted the sentence
dependencies with a success of approx. 85% (as stated in Chapter 6, the
application afterwards has been unfortunately much worse). A way how to make
this local character a global one might be in combining the rules and the
perceptron by taking graphrule best rules (from a series of à la RBA trainings
on smaller data sets) as perceptron features. As shown in Chapter 7 the rules and
the features can share the same form.

The parsing-by-tagging idea as presented in Chapter 8 demonstrates that it
is possible to transform the parsing problem to a tagging one approximately. This
would place the tagger as a central NLP device and extend it to a tool for one-to-
one assignment of linguistic categories to words. Common ground for the tagger
and the parser would be a creation of good features as a prime direction to
follow.

Let me conclude in the same way as in Chapter 8, but more generally that,
in order to perform better, statistic approaches need rules and, rule-based
approaches need statistics to perform better with their rules.

I hope that the results presented here will be of benefit to my colleagues
who are primarily interested in the performance of the learning procedures. I
have written this work as an inspiration and as a possibility to contribute to the
NLP community with some new input and fresh ideas. And, not only from good
results, but also by learning from our mistakes, we can get better.

107

References
Bémová, A. et al. (1997). "Anotace na analytické rovinì: návod pro anotátory",

Technical Report of the Institute of Formal and Applied Linguistics TR-1997-
03, Faculty of Mathematics and Physics, Charles University, Prague. English
version available as a part of PDT 1.0 documentation.

Böhmová, A. (2001). "Automatic Procedures in Tectogrammatical Tagging", The
Prague Bulletin of Mathematical Linguistics vol. 76, Charles University Press.

Bock, F. (1971). "An algorithm to construct a minimum spanning tree in a
directed network", Developments in Operations Research, Gordon and
Breach, NY, pp. 29-44.

Brill, E. (1992). "A simple rule-based part of speech tagger", Proceedings of the
Third Conference of Applied Natural Language Processing, ACL, Trento,
Italy.

Brill, E. (1993a). "Automatic grammar induction and parsing free text: A
Transformational-Based Approach", In the Proceedings of the 31st Meeting of
the Association of Computational Linguistics in Columbus, Ohio, and as well
in the Proceedings of the ARPA Human Language Technology Workshop in
Princeton, N.J.

Brill, E. (1993b). "Transformation-based error-driven parsing", Proceedings of the
Third International Workshop on Parsing Technologies, Tilburg, The
Netherlands.

Brill, E. (1993c). "A Corpus-Based Approach to Language Learning", A
Dissertation in the Department of Computer and Information Science,
University of Pennsylvania.

Camerini, P.M, Fratta, L., Maffioli, F. (1979). "A note on finding optimum
branchings", Networks vol. 9, pp. 309-312.

Charniak, E. (2001), Internal studies and inter-institutional communication.
Chu, Y.I. and Liu, T.H. (1965). "On the shortest arborescence of a directed graph",

Science Sinica vol 14, pp. 1396-1400.

Collins, M. (2002). "Discriminative Training Methods for Hidden Markov
Models: Theory and Experiments with Perceptron Algorithms", In
Proceedings of EMNLP 2002.

Collins, M., Hajiè, J., Ramshaw, L., Tillmann, C. (1999). "A Statistical Parser for
Czech", Proceedings of ACL´99, Maryland, USA.

Edmonds, J. (1967). "Optimum branching", Research of the National Bureau of
Standards, 71B, pp. 233-240.

Elworthy, D. (1995). "Tagset Design and Inflected Languages", Proceedings of the
ACL Sigdat Workshop, Dublin, Ireland, pp. 1-9.

Hajiè, J., Ribarov, K. (1997): "Rule Based Dependencies", Workshop on Empirical
Learning of NLP Tasks, 9th European Conference on Machine Learning,
Prague.

108

Hajiè, J. (1998). "Building a Syntactically Annotated Corpus: The Prague
Dependency Treebank", In Issues of Valency and Meaning - Studies in Honour
of Jarmila Panevová, edited by Eva Hajièová, Karolinum, Charles University
Press, Prague, pp. 106-132.

Hajiè, J. (2004). Disambiguation of Rich Inflection (Computational Morphology of
Czech), Faculty of Mathematics and Physics, Charles University, Prague.

Hajiè, J., Vidová-Hladká, B., Böhmová, A., Hajièová, E. (2003). "The Prague
Dependency Treebank: A Three-Level Annotation Scenario", In Building and
Using Syntactically Annotated Corpora, edited by Anne Abeille, Kluwer
Academic Publishers.

Hajièová, E. editor (1995). "Text and Inference Based Approach to Question
Answering", Theoretical and Computational Linguistics vol. 3, Faculty of
Philosophy, Charles University, Prague.

Hajièová, E., Sgall, P. (1980). "A Dependency Based Specification of Topic and
Focus", Statistical Methods in Linguistics (SMIL) 1-2, pp. 93-140.

Hladká, B., Ribarov, K. (1998). "Part of Speech Tags for Automatic Tagging and
Syntactic Structures", In Issues of Valency and Meaning - Studies in Honour of
Jarmila Panevová, edited by Eva Hajicová, Karolinum, Charles University
Press, Prague, pp. 226-240.

Holan, T. (2003). "K syntaktické analýze èeských (!) vìt", Proceedings of MIS2003,
Matfyzpress, Prague, pp. 66-74.

Holan, T. (2004). "Tvorba závislostního syntaktického analyzátoru", Proceedings
of MIS2004, in print.

Horák, A. (2000). Analýza znalosti ve vìt ì , PhD Thesis at the Faculty of
Informatics at the Masaryk's University in Brno.

Kirschner, Z. (1987). "APAC3-2: An English-to-Czech Machine Translation
System", Explizite Beschreibung der Sprache und automatische
Textbearbeitung XIII, Faculty of Mathematics and Physics, Charles University,
Prague.

Kirschner, Z. (1988). "A Dependency-Based Analysis of English for the Purpose
of Machine Translation", Explizite Beschreibung der Sprache und
automatische Textbearbeitung IX, reprint (2nd edition), Faculty of Mathematics
and Physics, Charles University, Prague.

Klavans, J.L., Resnik, P. - editors (1996). The Balancing Act. The MIT Press.
Králíková, K., Panevová, J. (1990). "ASIMUT - A Method for Automatic

Information Retrieval from Full Texts", Explizite Beschreibung der Sprache
und automatische Textbearbeitung XVII, Faculty of Mathematics and Physics,
Charles University, Prague.

Kuboò, V. (2001). Problems of Robust Parsing of Czech, PhD Thesis at the Faculty
of Mathematics and Physics, Charles University, Prague.

Matoušek, J., Nešetøil, J. (2000). Kapitoly z diskrétní matematiky. Karolínum
Press, Prague.

109

Mírovský, J. (NetGraph). PDT search engine programmed by Jiøí Mírovský,
Faculty of Mathematics and Physics, Charles University, last release at:
http://quest.ms.mff.cuni.cz/netgraph.

Mitchell, T.M. (1997). Machine Learning, McGraw Hill Companies, Inc.

Lawler, E. (1976). "Combinatorial optimization: networks and matroids",
Saunders College Publishing.

Oliva, K. (1989). "A Parser for Czech Implemented in Systems Q", Explizite
Beschreibung der Sprache und automatische Textbearbeitung XVI, Faculty of
Mathematics and Physics, Charles University, Prague.

PDT 1.0: The Prague Dependency Treebank, PDT 1.0, has been developed by the
Institute of Formal and Applied Linguistics and the Center for Computational
Linguistics, see http://ufal.mff.cuni.cz/ and/or http://ckl.mff.cuni.cz/.

Petkeviè, V. (1995). "A new formal specification of underlying structures",
Theoretical Linguistics vol. 21, pp. 7-61.

Pajas, P. (TrEd). Tree Editor programmed by Petr Pajas, Faculty of Mathematics
and Physics, Charles University, last release at: http://ckl.ms.mff.cuni.cz/
~pajas/tred.

Panevová, J., Böhmová, A., Hajièová, E., Sgall, P., Ceplová, M., Øezníèková, V.
(2000). "A Manual for Tectogrammatic Tagging of the Prague Dependency
Treenbank", English version in Technical Report of the Institute of Formal and
Applied Linguistics and the Center for Computational Lingustics TR-2000-09,
Czech version in Technical Report of the Institute of Formal and Applied
Linguistics TR-1999-07, Faculty of Mathematics and Physics, Charles
University, Prague.

Plátek, M., Sgall, J., Sgall, P. (1984). "A Depndency Base for a Linguistic
Description", In Contributions to Functional Syntax, Semantics, and Language
Comprehension edited by Petr Sgall, Academia, pp. 63-97.

Ratnaparkhi, A. (1996). "A maximum entropy part-of-speech tagger",
Proceedings of the empirical methods in natural language processing
conference.

Ribarov, K. (1996). Automatic natural language grammar generation, MSc Thesis
at the Faculty of Mathematics and Physics, Charles University.

Ribarov, K. (2000a). "Rule-Based Tagging: Morphological Tagset versus Tagset of
Analytical Functions", Proceedings of LREC'2000.

Ribarov, K. (2000b). "The (Un)Deterministic Nature of Morphological Context",
Proceedings of LREC'2000.

Ribarov, K. (2002). "On Rule Based Parsing of Czech", The Prague Bulletin of
Mathematical Linguistics vol. 77, Charles University Press.

Sgall, P., Hajièová, E., Panevová, J. (1986). The Meaning of the Sentence in Its
Semantic and Pragmatic Aspects, edited by Jacob L. May, D. Reidel Publishing
Company, Dordrecht. (Published as well by Academia, Prague, 1986).

110

Stráòáková Markéta (2001). Homonymie pøedložkových skupin a možnost jejich
automatického zpracování, PhD Thesis at the Faculty of Mathematics and
Physics, Charles University, Prague.

Tarjan, R.E. (1977). "Finding Optimum Branching", Networks vol. 7, pp.25-35.

Weisheitelová, J., Králíková, K., Sgall, P. (1982). "Morphemic Analysis of Czech",
Explizite Beschreibung der Sprache und automatische Textbearbeitung VII,
Faculty of Mathematics and Physics, Charles University, Prague.

Zeman, D. (1998). "A Statistical Approach to Parsing of Czech", The Prague
Bulletin of Mathematical Linguistics vol. 69, Charles University Press.

Zeman, D. (2001). "Parsing with Regular Expressions: A Minute to Learn, a
Lifetime to Master", The Prague Bulletin of Mathematical Linguistics vol. 75,
Charles University Press.

Žáèková, E. (2002). Parciální syntaktická analýza (èeštiny), PhD Thesis at the
Faculty of Informatics at the Masaryk's University in Brno.

111

Appendix

This appendix gathers in Table A.1 and Table A.2 the percentage tables of this
work, i.e. Table 3.8, Table 5.5, Table 6.1 and Table 7.1. The percentages from
Chapter 8 are included as well. The original (partial) tables contain footnotes and
explanations, which are omitted here.

Algorithm Size and
identification
of train data

Size and
identification of

test data

Dependency
accuracy

Note

25 sentences 20 sentences 42%RBA,
Chapter 1,
With no treebank
available all
sentences were hand
crafted only for the
purpose of
development of the
algorithm.

100 sentences the same as above 42%

100 sentences on the train data 47% On PosTag1171 as in
Table 3.3.

the same as above on the train data 65% On PosTag34 as in
Table 3.4. The same
accuracy was
observed on modified
positional tagset,
taking only the first
two positions, i.e. POS
and subPOS..

100 sentences
[1]

400 sentences 43% On POS and subPOS
only.

200 sentences the same as above slightly less
than 43%

On POS and subPOS
only.

300 sentence the same as above slightly less
than 43%

On POS and subPOS
only.

100 sentence,
the same as [1]

on the train data 73% On POS and subPOS
only, using error
function as in Section
3.5.

100 sentences
with 1 verb

200 sentences with
one verb

47% On POS and subPOS
only.

RBA,
Chapter 3,

PDT was under
development; the
used sentences at
that time consisted
of many linguistic
inconsistencies
(cleaned several
years afterwards).
During that period
the morphemic
tagset has also been
changed several
times before it
settled to the
positional one.

100 sentences 200 sentences 56% No morphemic but
analytical function
tags were used.

anal_
general_
train

anal_
general_
etest

63.27% Freq/m and m5, as in
Table 5.1.

the same as above on the train data 63.96% Freq/m and m5, as in
Table 5.1.

the same as above anal_
general_
etest

58.46% Freq/m and m5, and
not considering
dependency length
bigger than 5.

Frequency-based
MST parser,
Chapter 5,
Section 5.3

the same as above the same as above 59.07% Freq/m and m5, and
not considering
dependency length
bigger than 7.

112

the same as above the same as above 60.23% Freq/m and m5, and
not considering
dependency length
bigger than 11, which
is average dependency
length.

the same as above the same as above 61.25% Freq/m and m5, and
not considering
dependency length
bigger than 15.

the same as above All sentences from
anal_general_e
test with no

verbs

67.35% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with 1

verb

70.37% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with 2

verbs

62.02% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with more
than 4 verbs

55.20% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with one
verb and at
most 8 tokens

84% Freq/m and m5.

the same as above All sentences from
anal_general_e
test with at
most 8 tokens

77% Freq/m and m5.

anal_
general_
train

on the train data 68.34% All segments and
inverse distance.

the same as above the same as above 52.95% All segments and
without distance.

the same as above the same as above 52.95% Only the after segment
with inverse distance.

the same as above the same as above 51.41% Only the before
segment without
distance.

the same as above the same as above 53.99% Only the in segment
with distance.

Picture-based
MST parser,
Chapter 5,
Section 5.4

All pictures consist
of m5 type of nodes
(the first 5 positions
of the morphemic
tag), and no lexical
units.

the same as above the same as above 58.06% Only the in segment
without distance.

Combination of
the above two
naive parsers

the same as above the same as above at least 70% Freq/m and m5, and
all segments and
inverse distance

The table continues ...

113

- - 63% Initial structure
dependency accuracy.

100 sentences on the train data 82%-87% Interval of
dependency accuracy
on several cross-
validation
experiments.

400 sentences 100 sentences 66%
the same as above on the train data 69%

À la RBA
parsing,
Chapter 6

c101.am file on the train data lower than
above

On m5l type of nodes.

- - 18%-30% Initial success on
random trees.

100 sentences on the train data 68%-78% Range on various
cross-validation
experiments.

400 sentences 100 sentences 67%-72% Range on various
cross-validation
experiments.

1 sentence on the train data 100% This is characteristic
only for this approach
and does not happen
within the other
approaches.
Experiments
confirmed the result
on tenths of various
sentences.

100 sentences on the train data 89% Sentences with 1 verb
and shorted than 15
verbs; only on m5 type
of nodes.

100 sentences on the train data 64%-71% Cross-validation on
m5 type of nodes.

The perceptron-
based approach,
Chapter 7

100 sentences on the train data 56%-64% Cross-validation on
m5 type of nodes and
without the is not
between feature and
without picture type
of features.

0 sentence, no
need to train

All c1*am files
from

anal_general_
training part of

PDT, i.e. over 2000
sentences

95.23% On full morphemic
tagset, assuming only
closest distance
candidates and in case
of ambiguity
preference of left
dependency.

the same as above the same as above 94.88% the same as above, but
on m5 nodes.

the same as above the same as above 87% the same as above, but
on m2 nodes.

The parsing-by-
tagging
experiment,
Chapter 8

the same as above the same as above 93.38% the same as above, but
on full tagset and
excluding the case
category.

Table A.1: The percentages
Table A.2 is a table of improvements expressed via dependency accuracy.

By improvement I denote the dependency accuracy percentage rate by which the
algorithms have raised up their initial success (the success before their
performance) on a test set, according to Table A.1: the initial tree structure (right

114

chain structure) for RBA, the initial sentence graph with frequencies and inverse
distance for à la RBA, and the initial random trees on a sentence graph for the
perceptron-based approach.

Algorithm Improvement (approximate)

RBA, Chapter 1 +8.5%

RBA, Chapter 3 +16%

À la RBA +3%

Perceptron-based +50%

Table A.2: The improvements

I would like to note that in terms of further improvement, I find the study
of the algorithms including the rules and the features very important. The here-
presented percentages should be used only for better preparation of our future
work.

115

Notes:

116

117

Notes:

118

