
Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 673–680
Manchester, August 2008

Recent Advances in a Feature-rich Framework for Treebank Annotation

Petr Pajas
Charles Univ. in Prague, MFF ÚFAL

Malostranské nám. 25
118 00 Prague 1 – Czech Rep.

pajas@ufal.ms.mff.cuni.cz

Jan Štěpánek
Charles Univ. in Prague, MFF ÚFAL

Malostranské nám. 25
118 00 Prague 1 – Czech Rep.

stepanek@ufal.ms.mff.cuni.cz

Abstract

This paper presents recent advances in
an established treebank annotation frame-
work comprising of an abstract XML-
based data format, fully customizable ed-
itor of tree-based annotations, a toolkit
for all kinds of automated data process-
ing with support for cluster computing, and
a work-in-progress database-driven search
engine with a graphical user interface built
into the tree editor.

1 Introduction

Constructing a treebank is a complicated process.
Among other things it requires a good choice of
tools, varying from elementary data conversion
scripts over annotation tools and tools for consis-
tency checking, to tools used for semi-automatic
treebank building (POS taggers, syntactic parsers).
If no existing tool fits the needs, a new one has to
be developed (or some existing tool adapted or ex-
tended, which, however, seldom happens in prac-
tice). The variety of tools that exist and emerged
from various treebanking projects shows that there
is no simple solution that would fit all. It is some-
times a small missing feature or an incompati-
ble data format that disqualifies certain otherwise
well-established tools in the eyes of those who de-
cide which tools to use for their annotation project.

This paper presents an annotation framework
that was from its very beginning designed to be
extensible and independent of any particular anno-
tation schema. While reflecting the feedback from
several treebanking projects, it evolved into a set

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

of generic tools that is open to all kinds of anno-
tations that involve tree structures. By this paper
we would like not only to promote this framework,
but also show that due to its open nature, it may
be easily extended to fit new requirements. The
first three sections describe base components of
the framework, an abstract data format, a versatile
annotation tool for tree-oriented annotations, and
a framework for automatic annotation processing;
some of these components have been mentioned
in earlier publications, but the framework has nei-
ther been published in its integrity nor described
in much detail. The last section describes a query
engine that is a newest addition to the framework,
first presented by this paper.

2 Data format

The base data format selected for the present an-
notation framework, both for data exchange and
as a memory-model reference, is PML (Pajas and
Štěpánek, 2006). PML is an abstract XML-based
format intended to be generally applicable to all
types of annotation purposes, and especially suit-
able for multi-layered treebank annotations fol-
lowing the stand-of principles. A notable fea-
ture that distinguishes PML from other encoding
schemes, like Tiger-XML (Mengel and Lezius,
2000), XCES (Ide and Romary, 2003), or maybe
even SynAF by ISO TC37/SC4 (Declerck, 2006),
is its generic and open nature. Rather than being
targeted to one particular annotation schema or be-
ing a set of specifically targeted encoding conven-
tions, PML is an open system, where a new type
of annotation can be introduced easily by creating
a simple XML file called PML schema, which de-
scribes the annotation by means of declaring the
relevant data types and possibly assigning certain
roles to these data types. The roles in the con-

673



text of PML are just labels from a pre-defined set
that can be used to mark the declarations accord-
ing to their purpose. For instance, the roles indi-
cate which data structures represent the nodes of
the trees, how the node data structures are nested
to form a tree, which field in a data structure car-
ries its unique ID (if any), or which field carries
a link to the annotated data or other layers of an-
notation, and so on. PML schema can define all
kinds of annotations varying from linear annota-
tions through constituency or dependency trees, to
complex graph-oriented annotation systems. The
PML schema provides information for validating
the annotation data as well as for creating a rel-
evant data model for their in-memory representa-
tion.

To give an example, the annotation of the Prague
Dependency Treebank 2.0 (PDT) (Hajič and oth-
ers, 2006), which was published in the PML for-
mat, consists of four annotation layers, each de-
fined by its own PML schema: a lowest word-form
layer consisting of tokenized text segmented just
into documents and paragraphs; a morphological
layer segmenting the token stream of the previ-
ous layer to sentences and attaching morphological
form, lemma, and tag to each token; an analytical
layer building a morpho-syntactic dependency tree
from the words of each sentence (morphologically
analyzed on the previous layer); and a tectogram-
matical layer consisting of deep-syntactic depen-
dency trees interlinked in a N :M manner with the
analytical layer and a valency lexicon and carrying
further relational annotation, such as coreference
and quotation sets. All these features are formally
described by the respective PML schemas.

The fundamental toolkit for PML comprises of
a validator (based on compiling PML schemas to
RelaxNG grammars accompanied by Schematron
rules), and API, consisting of a Perl library (ba-
sic interfaces for Java and C++ are planned). The
input/output functions of the library are modular
and can work with local files as well as with re-
mote resources accessible via HTTP, FTP or SSH
protocols (with pluggable support for other pro-
tocols). Additionally, the library supports on-
the-fly XSLT-based format conversions that can
be easily plugged in via a simple configuration
file. Consequently, the API can transparently
handle even non-PML data formats. Currently
there are about a dozen input/output conversion fil-
ters available, covering various existing data for-

mats including the TigerXML format, the for-
mats of the Penn Treebank (Marcus et al., 1994),
the CoNLL-X shared task format (Buchholz and
Marsi, 2006), and the formats of the Latin Depen-
dency (Bamman and Crane, 2006), Sinica (Chu-
Ren et al., 2000), Slovene Dependency (Džeroski
et al., 2006) (SDT), and Alpino (van der Beek et
al., 2002) treebanks. Support for XCES formats
is planned as soon as a final release of XCES is
available.

This basic toolkit is further supplemented by
various auxiliary tools, such as pmlcopy which
allows one to copy, move, rename, or GZip sets
of interconnected PML data files without breaking
the internal URL-based references.

3 Tree Editor

The heart of the annotation framework is a multi-
platform graphical tree editor called TrEd, (Hajič
et al., 2001).

TrEd was from the beginning designed to be
annotation-schema independent, extensible and
configurable. TrEd can work with any PML data
format whose PML schema correctly defines (via
roles) at least one sequence of trees. Beside PML
format, TrEd can work with many other data for-
mats, either by means of the modular input/output
interface of the PML library or using its own in-
put/output backends.

The basic editing capabilities of TrEd allow the
user to easily modify the tree structure with drag-
and-drop operations and to easily edit the asso-
ciated data. Although this is sufficient for most
annotation tasks, the annotation process can be
greatly accelerated by a set of custom extension
functions, called macros, written in Perl. Macros
are usually created to simplify the most common
tasks done by the annotators. They can be called
either from menu or by keyboard shortcuts.

Although TrEd ensures that the result of the an-
notation is in accord with the related PML schema,
there is still a chance that an annotator errs in some
other aspect of the annotation. For this reason
TrEd offers the possibility to write macros that in-
corporate custom consistency tests into the built-in
editing commands of TrEd. Such tests can prevent
the user from making accidental mistakes (like as-
signing a case to a verb or subordinating a Subject
to a particle). Macros can also completely disable
some dangerous editing commands (for example,
the PDT annotation modes in TrEd disable the pos-

674



sibility to add or delete tokens or trees).
While macros provide means to extend, accel-

erate and control the annotation capabilities of
TrEd, the concept of style-sheets gives users con-
trol over the visual presentation of the annotated
data. Style-sheets, among other, offer the possi-
bility to: visually differentiate nodes and edges by
color, shape, size or line style according to arbi-
trary criteria; assemble the data associated with
nodes and edges to node and edge labels; alter
node positioning and padding; visualize additional
edges and cross-structure relations by means of
arrows or other types of connections; control the
content and styling of the text (usually the an-
notated sentence) displayed in a box above the
tree. TrEd can also balance trees, visualize dis-
connected groups of nodes, zoom the tree view ar-
bitrarily, and display trees in a vertical mode, see
Fig. 1.

Figure 1: The same tree displayed using horizontal
and vertical display mode in TrEd

Due to model/view separation, TrEd provides
means for controlling which nodes are actually dis-
played (it is thus possible to write modes that col-
lapse subtrees, hide auxiliary nodes, completely
skip some levels of the tree, display multiple trees
at once (Fig. 2), or even display additional “vir-
tual” nodes and edges that are not actually present
in the underlying data structures).

So far, TrEd has been selected as annotation
tool for PDT and several similarly structured tree-
banking projects like Slovene (Džeroski et al.,
2006), Croatian (Tadić, 2007), or Greek Depen-
dency Treebanks (Prokopidis et al., 2005), but also
for Penn-style Alpino Treebank (van der Beek et
al., 2002), the semantic annotation in the Dutch

Figure 2: The main window visualizing node-to-
node alignment of trees in the TectoMT project
(Žabokrtský et al., 2008); side-bar shows data as-
sociated with the selected node.

language Corpus Initiative project (Trapman and
Monachesi, 2006), as well as for annotation of
morphology using so-called MorphoTrees (Smrž
and Pajas, 2004) in the Prague Arabic Depen-
dency Treebank (where it was also used for anno-
tation of the dependency trees in the PDT style).
While most other projects use off-line conversion

Figure 3: One possible way of displaying Penn
Treebank data in TrEd

to some format directly supported by TrEd, for
Alpino Treebank a better approach has been se-
lected: the PML library has been configured to
convert between Alpino XML format and PML
transparently on-the-fly using two simple XSLT
stylesheets created for this purpose.

Like some other annotation tools, for example
DepAnn (Kakkonen, 2006), TrEd provides means
for comparing two (or more) annotations and vi-

675



sually marking the differences. This functionality
is currently provided by macros tailored especially
for the PDT annotations. Modifying these macros
for specific needs of other tree-based annotations
should be easy.

4 Automated processing

The same code-base that runs TrEd (except for the
GUI) is used in a command-line tool for automated
processing of the annotated data called BTrEd.
This tool allows one to search, transform or mod-
ify the data by means of small programs written in
Perl known from TrEd as macros. Given a list of
files, the tool opens the files one after another and
applies a given macro on each of them (or, if one
chooses, to each tree or each node). With the pow-
erful API of TrEd and the expressiveness of the
Perl programming language at hand, one can very
easy prepare scripts that gather information, create
reports, or automate some parts of the annotation
process; in some cases the script can be as short to
fit on the command-line.

It is often the case that one has to process a
large amount of data repeatedly with one or more
scripts. To avoid the need of reading the data
into memory upon each execution, BTrEd is aug-
mented by a client-server interface and a client
tool called NTrEd. NTrEd, given a list of com-
puter hostnames or IP addresses and a list of files,
starts remotely on each of the computers a server-
mode instance of BTrEd and distributes the sup-
plied data among these servers (either equally or
according to CPU load). Since only file-names are
transferred in the communication, some form of
shared data storage is assumed. The BTrEd servers
read their respective share of the treebank, keep it
in their RAM and await client connections. Once
the servers are started in this way, one can pass a
script to NTrEd as one would do with BTrEd; the
tool forwards the script to the servers and collect-
ing the results, outputs them in the same way as
a stand-alone BTrEd would. If the script modifies
the data, the user can send a request to the servers
to either save the changed files or reload them, dis-
carding all modifications. Security of NTrEd is
achieved by means of SHA-based authentication
(completely transparent to the user) and, option-
ally, by SSH tunneling.

Since one machine can run multiple instances of
BTrEd server, each user of a computer cluster can
run its own set of BTrEd servers without interfer-

ing with other users. Concurrent work of several
users on the same data is supported by TrEd and
BTrEd by a simple system of file locks, similar to
that of GNU Emacs.

This kind of processing was exploited heav-
ily during the post-annotation checking phases of
PDT 2.0 production (Štěpánek, 2006). Employing
a cluster consisting from about ten computers, a
typical consistency-checking script processed the
whole amount of PDT 2.0 (1.5 million analytical
nodes and 700 thousand tectogrammatical nodes)
in just a few seconds. This was particularly help-
ful for rapid prototyping or testing hypotheses and
it accelerated the whole process enormously.

The NTrEd system, keeping the data in RAM of
the servers, is sufficient for small to medium-sized
corpora. For huge corpora in scale of terabytes it
may not be the case. For processing such huge
amounts of data, another tool called JTrEd was re-
cently added to the framework. JTrEd is a wrapper
script that simplifies distribution of BTrEd tasks
over a computer cluster controlled by the Sun Grid
Engine (SGE).

The BTrEd machinery is not intended just for
small scripts. A project building a full MT en-
gine on top of this framework is in progress
(Žabokrtský et al., 2008).

5 Data-base driven query engine

One of the reasons for which tree-banks are cre-
ated is that they cover and capture a representa-
tive number of syntactic constructions of the par-
ticular language. However, to be able to identify
them effectively, one has to employ some query-
ing system, consisting of a sufficiently expressive
query language and an engine that can search the
treebank and present the user with all occurrences
matching the constraints of the query.

While for complex queries the tools described
in the previous section serve well to users with
basic programming skills,‘every-day’ querying by
linguistic public requires a more accessible user-
interface. In this section we describe a working
prototype of a new query engine and its user inter-
face, based on the data representation and tools de-
scribed in the preceding sections. First, however,
we briefly review some existing solutions.

For searching over PDT a tool called Net-
Graph (Mı́rovský, 2006) is traditionally used. This
tool’s graphical interface allows the users to for-
mulate their queries in a very natural way, namely

676



as trees whose structures correspond to the struc-
tures of the desired search results (although one
may specify, for example, that an edge in the query
tree should actually match a path in the result tree).
Each node in the query tree can carry a set of at-
tributes that match or otherwise constrain the at-
tributes of the corresponding node in the result
tree. The query can further put some cardinality
constraints on the matching nodes; these are for-
mulated using a special set of labels on the query
tree. A great advantage of NetGraph is its web-
enabled user interface (Java applet). The under-
lying query engine is written in C, and although
relatively simplistic (i.e. no indexing or planning
techniques are used), for PDT-sized corpus it of-
fers reasonable speed for the interactive use. Cer-
tain disadvantages of the NetGraph system in our
view are: lack of support for querying relations
between two or more trees; no support for multi-
layered annotations; limited means of expressing
attribute constraints and their boolean combina-
tions; restriction to a limited legacy data format.

Probably the best-known query languages for
tree structures nowadays are XPath and XQuery,
promoted by (and in case of the latter bound to)
the XML technology. The advantage of these
query languages is that there are several implemen-
tations to choose from. Beside searching, some
tools (e.g. XSH2 (Pajas, 2005)) provide means for
XPath-based data modification. For these reasons,
XPath searches over XML-encoded treebank data
are promoted (Bouma and Kloosterman, 2002).
The disadvantage is, however, that being restricted
to the XML data model, users of such tools have
to query over a particular XML encoding of the
data which often in some way or other obscures
the actual annotation schema and relations the an-
notation represents. Besides, it can be argued that
XPath alone does not provide sufficient expres-
siveness for typical linguistic queries.

As a remedy for the last deficiency, Steven Bird
et al. (Bird et al., 2006) proposed a concise query
language named LPath, which, while extending
core XPath, was designed with the needs of lin-
guistic queries in mind. Their query system is
powered by a relational database in which the
queries are translated from LPath to SQL. To en-
able efficient evaluation of constraints on horizon-
tal and vertical relationships between two nodes
of a tree by the relational database, the database
representation of the trees uses a simple labeling

scheme which labels each node with several inte-
gers so that the relationship constraints translate in
SQL to simple comparisons of the respective inte-
ger labels.

It has been shown (Lai and Bird, 2005) that fur-
ther extension to the LPath language, known as
LPath+, is already 1st-order complete. It should,
however, be noted that 1st-order completeness has
little to do with the practical expressiveness of the
language; certain queries, easily expressed in 1st-
order logic, only translate to LPath+ at the cost of
combinatorial explosion in the size of the query.
For example, like XPath, the only way LPath+ of-
fers to match two non-identical sibling nodes is
to reach one by the child axis and the other us-
ing the following-sibling or preceding-sibling axes
from the first one; thus for a query with n sibling
nodes whose constraints do not necessarily imply
inequality and which can appear in the tree in ar-
bitrary order, the LPath+ query must, in general,
enumerate a disjunction of all the n! possible per-
mutations. This may not be a problem when query-
ing over English treebanks, but is a serious handi-
cap for querying over treebanks for languages with
free word-order.

There are several other tools for querying over
treebanks, we are aware at least of TIGERSearch
(Lezius, 2002) for annotations in the TigerXML
format, and TGrep2 (Rohde, 2001) for Penn Tree-
bank and similar, which we shall not describe here
in detail as they are well known.

For the PML-based annotation system presented
in this paper, we have developed a prototype of a
new querying system, referred to, just for the pur-
poses of this paper, as PML Tree Query (PML-
TQ). The new system attempts to equal the qual-
ities of the above mentioned systems and addition-
ally provide

• a query language with sufficient expressive-
ness yet without complex formalisms

• unified treatment of structural and non-
structural, inter- and cross-layer relationships

• basic reporting capabilities (computing num-
ber or distribution of occurrences, etc.)

• a graphical query editor built into TrEd

• a scriptable and extensible interface

At the current stage, PML-TQ provides a proto-
type query language supporting arbitrary logical

677



conditions on attributes of nodes and their inter-
and cross-layer relations, optional nodes, and ba-
sic cardinality constraints. A result of an evalua-
tion of a PML-TQ can be either a set of matches,
each match being a set of nodes in the treebank
corresponding to the nodes in the query, or a re-
port with some information computed from these
node sets. The reporting capabilities of PML-TQ
allow one to perform various aggregations on the
result node sets and compute statistics over the
aggregated groups. Thus, one may easily formu-
late queries such as “what is the maximum, mini-
mum, and average depth of a tree in the treebank”,
“what preposition forms correspond on the surface
layer to tectogrammatical nodes with the functor
DIR3 and what is their distribution”, “what is the
most common functor for a child node of a node
with functor PRED”, “what is the joint distribution
of functors for nodes in the parent-child relation”,
etc.

In the graphical representation of PML-TQ, re-
lations between nodes are represented by arrows.
Each PML-TQ query forms a tree or forest whose
edges represent basic relations between nodes and
possibly nesting of subqueries and whose nodes
can be interconnected by additional arrows repre-
senting further relations.

a-layer t-layer

• •

xx•�� •��

ff

a-layer t-layer

Obj• •a/lex.rfoo

AuxP•
��

•��

a/lex.rfyy

a/aux.rfoo

Obj•
��

Figure 4: Examples of cross-layer queries in PML-
TQ. Query on the left finds dependency that got
reversed on the PDT tectogrammatical layer com-
pared to the analytical layer; the query on the right
finds tectogrammatical nodes corresponding to an
analytical object governing a prepositional object.

Apart from the graphical representation, PML-
TQ queries can be formulated in a textual form
with syntax resembling XPath (but substantially
more expressive). A query is parsed from this syn-
tax into a syntactic tree encoded in PML; in this
representation the queries can be stored, visual-

ized, and graphically manipulated in TrEd.
There are presently two engines that can eval-

uate PML-TQ queries. To utilize the modern
RDBMS technology for performance and scalabil-
ity, we have created a translator of PML-TQ to
SQL. One can thus query over a static treebank
stored in a database (for encoding tree-structures
into database tables, we have adopted a label-
ing system similar to that described in (Bird et
al., 2006)). For querying over data that change
(e.g. a file currently open in TrEd or a bunch of
files with annotation in progress), we have imple-
mented a simple, yet still relatively fast, evaluator
in Perl with a basic planner that can perform PML-
TQ searches over PML data sequentially in either
TrEd, BTrEd, NTrEd, or JTrEd.

Having two engines behind our query interface
in TrEd has several benefits. The annotators will
be able to perform identical queries over a cor-
pus stored in a remote SQL database as well as to
search in their own locally stored data. The devel-
opers of scripts for BTrEd will be able to formulate
parts of their scripts briefly as PML-TQ queries
whose correctness they will be able to verify in-
dependently on a treebank using the SQL backend
using an interactive environment.

The SQL-based execution system has currently
two database backends for feature and perfor-
mance comparison: Oracle Express 10g and Post-
gres SQL. We use Perl DBI modules to intercon-
nect these backends with the TrEd toolkit.

Figure 5: PML-TQ interface in TrEd. Top: the
query as text, bottom left the query tree, bottom
right a matching tree from PDT 2.0.

The search results can be presented in TrEd in
one of several ways. Results of queries that make
use of the report-generating facilities of PML-TQ
are displayed simply as tables in a text window.
Most PML-TQ queries, however, return matching
nodes or trees. To display them, TrEd retrieves

678



corresponding URLs and node positions from the
database and reads the actual data from the PML
files that must currently be accessible locally or re-
motely via HTTP, FTP or SSH. Since there are sit-
uations when the original data cannot be accessed
in this way, we are working on a solution that
would allow TrEd to fetch and reconstruct the trees
directly from the database.

For populating the database system with tree-
banks, we have developed a tool that can transfer
arbitrary PML-encoded data into a set of database
tables suitable for PML-TQ querying. The in-
formation about available inter-layer and cross-
layer relations is automatically extracted from the
PML schema and can be further adjusted by a few
command-line parameters.

We have evaluated our database search engine
using queries obtained by several means. We had
the luck that the developer of NetGraph kindly pro-
vided us with all queries collected from real Net-
Graph users over the past few years in the server
logs. We thus obtained almost 9000 queries for
the analytical layer and about 5000 queries for the
tectogrammatical layer of PDT 2.0. By translat-
ing them to PML-TQ with a simple Perl script,
we obtained a large collection for testing the ba-
sic functionality and performance of our system.
To that we added a set of queries that test more
advanced PML-TQ features and, for comparison,
several queries analogous to the LPath query ex-
amples given in (Bird et al., 2006).

When we first run our complete query collec-
tion on the Oracle database with 1.5 million nodes
and about 88 thousand trees from the analytical
layer of PDT, we were surprised to see that out
of 8188 queries, 8102 computes in a fraction of
second, further 33 in less then 2 seconds, further
36 in less than 10 seconds, 14 in less than 20 sec-
onds and only 5 in more than one minute. Four
of these, however, took extremely long time to
compute (from hours to days). We observed that
all these time-consuming queries were rather simi-
lar: they imposed either no or too week constraints
on the nodes and sometimes the query tree had
a rather large number of auto-morphisms (there
was a query consisting of a node with six iden-
tical child-nodes none of which carried any con-
straints). We then found a tree in our data set
that contained a node with 85 children. This gives
roughly 1012 solutions to the query with six sib-
lings on this tree alone.

In some cases the queries can be rewritten us-
ing cardinality constraints (“find all nodes with at
least 6 children”), which avoids the combinatorial
explosion. Since we felt this may not always be
possible, we also tried to remove from our data
set all trees with more than 20 siblings (44 trees
from 70K) that turned out to be mostly TV listings
anyway. After that, the performance for the four
of the problematic queries improved dramatically:
first 100 matches were found in a few seconds and
fist 106 matches in less than 10 minutes.

Although we have modified the query compiler
to suggest cardinality constraints were it seems
appropriate and to automatically eliminate some
types of automorphisms on the query tree by im-
posing a strict ordering on the permutable query
nodes, we think it is neither possible to completely
secure the query system against time-exhaustive
queries nor to reliably detect such queries auto-
matically. The querying interface therefore gives
the users the option to select a reasonable maxi-
mum number of results and allows them to cancel
the query evaluation at any time.

6 Conclusion

Over last few years our annotation framework
made a considerable leap, from a simple annota-
tion tool to a feature-rich system with several inter-
operating components. The complete framework
is publicly available, either under the General Pub-
lic License License (GPL), the Perl Artistic Li-
cense or other GPL-compatible free license. A
public release of the tree query interface described
in the previous section is scheduled for mid to end
of 2008.

7 Acknowledgment

This paper as well as the development of the
framework is supported by the grant Informa-
tion Society of GA AV ČR under contract
1ET101120503.

References
Bamman, David and Gregory Crane. 2006. The design

and use of a Latin dependency treebank. In Proceed-
ings of the Fifth International Workshop on Tree-
banks and Linguistic Theories (TLT 2006), pages
67–78, Prague.

Bird, Steven, Yi Chen, Susan B. Davidson, Haejoong
Lee, and Yifeng Zheng. 2006. Designing and eval-
uating an XPath dialect for linguistic queries. In

679



ICDE ’06: Proceedings of the 22nd International
Conference on Data Engineering, page 52, Washing-
ton, DC, USA. IEEE Computer Society.

Bouma, Gosse and Geert Kloosterman. 2002. Query-
ing dependency treebanks in XML. In Proceedings
of the Third international conference on Language
Resources and Evaluation (LREC), Gran Canaria.

Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In
Proceedings CoNLL-X.

Chu-Ren, Huang, Keh-Jiann Chen, Feng-Yi Chen, Keh-
Jiann Chen, Zhao-Ming Gao, and Kuang-Yu Chen.
2000. Sinica treebank: Design criteria, annotation
guidelines, and on-line interface. In Proceedings of
2nd Chinese Language Processing Workshop (Held
in conjunction with ACL-2000), pages 29–37, Hong
Kong, October 7.

Declerck, Thierry. 2006. Synaf: Towards a stan-
dard for syntactic annotation. In Proceedings of
the 5th International Conference on Language Re-
sources and Evaluation (LREC 2006), pages 209–
232.

Džeroski, Sašo, Tomaž Erjavec, Nina Ledinek, Petr Pa-
jas, Zdeněk Žabokrtský, and Andreja Žele. 2006.
Towards a slovene dependency treebank. In Pro-
ceedings of the 5th International Conference on
Language Resources and Evaluation (LREC 2006),
pages 1388–1391.

Hajič, Jan, Barbora Vidová-Hladká, and Petr Pajas.
2001. The Prague Dependency Treebank: Anno-
tation Structure and Support. In Proceedings of
the IRCS Workshop on Linguistic Databases, pages
105–114, Philadelphia, USA. University of Pennsyl-
vania.

Hajič, Jan et al. 2006. The Prague Dependency Tree-
bank 2.0. CD-ROM. CAT: LDC2006T01.

Ide, Nancy and R. Romary. 2003. Encoding syntactic
annotation. In Abillé, A., editor, Building and Using
Parsed Corpora. Kluwer, Dordrecht.

Kakkonen, Tuomo. 2006. Depann - an annotation tool
for dependency treebanks. In Proceedings of the
11th ESSLLI Student Session at the 18th European
Summer School in Logic, Language and Information,
pages 214–225, Malaga, Spain.

Lai, Catherine and Steven Bird. 2005. LPath+: A first-
order complete language for linguistic tree query. In
Proceedings of the 19th Pacific Asia Conference on
Language (PACLIC), Information and Computation,
pages 1–12, Taipei, Taiwan. Academia Sinica.

Lezius, Wolfgang. 2002. Ein Suchwerkzeug für syn-
taktisch annotierte Textkorpora. Ph.D. thesis, IMS,
University of Stuttgart, December. Arbeitspapiere
des Instituts für Maschinelle Sprachverarbeitung
(AIMS), volume 8, number 4.

Marcus, Mitchell P., Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The penn treebank: Annotating predicate
argument structure. In HLT. Morgan Kaufmann.

Mengel, A. and W. Lezius. 2000. An XML-based rep-
resentation format for syntactically annotated cor-
pora.

Mı́rovský, Jiřı́. 2006. Netgraph: A tool for search-
ing in prague dependency treebank 2.0. In Hajič,
Jan and Joakim Nivre, editors, Proceedings of the
Fifth Workshop on Treebanks and Linguistic Theo-
ries (TLT), pages 211–222, Prague, Czech Republic.

Pajas, Petr and Jan Štěpánek. 2006. XML-based repre-
sentation of multi-layered annotation in the PDT 2.0.
In Proceedings of the LREC Workshop on Merging
and Layering Linguistic Information (LREC 2006),
pages 40–47.

Pajas, Petr. 2005. XSH - XML Editing Shell (an intro-
duction). In Proceedings of XMLPrague conference
on XML 2005, pages 69–78, Prague.

Prokopidis, P, E Desypri, M Koutsombogera, H Papa-
georgiou, and S Piperidis. 2005. Theoretical and
practical issues in the construction of a greek depen-
dency treebank. In In Proc. of the 4th Workshop on
Treebanks and Linguistic Theories (TLT, pages 149–
160.

Rohde, D. 2001. TGrep2 the next-generation search
engine for parse trees. http://tedlab.mit.edu/ dr/-
Tgrep2/.

Smrž, Otakar and Petr Pajas. 2004. MorphoTrees
of Arabic and Their Annotation in the TrEd Envi-
ronment. In Nikkhou, Mahtab, editor, Proceedings
of the NEMLAR International Conference on Ara-
bic Language Resources and Tools, pages 38—41,
Cairo. ELDA.

Štěpánek, Jan. 2006. Post-annotation checking of
prague dependency treebank 2.0 data. In Proceed-
ings of the 9th International Conference, TSD 2006,
number 4188 in Lecture Notes In Computer Science,
pages 277–284. Springer-Verlag Berlin Heidelberg.

Tadić, Marko. 2007. Building the croatian dependency
treebank: the initial stages. In Contemporary Lin-
guistics, volume 63, pages 85–92.

Trapman, Jantine and Paola Monachesi. 2006. Manual
for the. annotation of semantic roles in D-Coi. Tech-
nical report, University of Utrecht.

van der Beek, Leonoor, Gosse Bouma, Robert Malouf,
and Gertjan van Noord. 2002. The alpino depen-
dency treebank. In Computational Linguistics in the
Netherlands CLIN 2001, Rodopi.

Žabokrtský, Zdeněk, Jan Ptáček, and Petr Pajas. 2008.
TectoMT: Highly modular hybrid MT system with
tectogramatics used as transfer layer. (To appear).

680


