
Searching through Prague Dependency Treebank

Conception and Architecture

Jiřı́ Mı́rovský
�
, Roman Ondruška

�
, and Daniel Průša

��
Center for Computational Linguistics

Faculty of Mathematics and Physics, Charles University in Prague
Malostranské nám. 25, 118 00 Prague, Czech Republic�
mirovsky,ondruska � @ckl.mff.cuni.cz�

Department of Theoretical Informatics
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské nám. 25, 118 00 Prague, Czech Republic
prusa@barbora.mff.cuni.cz

Abstract

In this paper we present our conception of searching in syntactically annotated corpora. In the first part we
briefly introduce the Prague Dependency Treebank—one of the key projects at our center. Its goal is to build
a large corpus of Czech with a rich annotation scheme. After that we describe architecture and usage of the
software system we have originally developed for searching through the treebank. This tool works in the Internet
environment and has a graphically oriented hardware independent user interface. As a theoretical background
we also present a proof that the subtree counting problem is ��� -complete.

1 The Prague Dependency Treebank

The Prague Dependency Treebank (PDT) ([1]), ([2]) and ([3]) is a manually annotated corpus of
Czech. The corpus size is approx. 1.5 million words. The texts are annotated in three layers:� the morphological layer, where lemmas and tags are being annotated based on their context� the analytical layer, which roughly corresponds to the surface syntax of the sentence� the tectogrammatical layer, or linguistic meaning of the sentence in its context

Unique annotation for every token in every sentence is used on all three layers. Most of them are
annotated manually, using the necessary human judgment.

1.1 The Morphological Layer

The annotation at the morphological layer is an unstructured classification of the individual tokens
(words and punctuation) of the utterance into morphological classes (morphological tags) and lemmas.
The tagset size used is 4257 with about 1100 different tags actually appearing in the PDT.

1

There are 13 categories used for morphological annotation of Czech: Part of speech, Detailed part
of speech, Gender, Number, Case, Possessor’s Gender and Number, Person, Tense, Voice, Degree of
Comparison, Negation and Variant. So-called positional tag system is used, where each position in the
actual tag representation corresponds to one category.

1.2 The Analytical Layer

At the analytical layer ([4]), two additional attributes are being annotated:� (surface) sentence structure� analytical function

A single-rooted dependency tree is being built for every sentence as a result of the annotation. Every
item (token) from the morphological layer becomes (exactly) one node in the tree and no nodes (except
for the single technical root of the tree) are added. The order of nodes in the original sentence is being
preserved in an additional attribute, but non-projective constructions are allowed. Analytical functions
are kept at nodes, but in fact they are names of the dependency relations between a dependant (child)
node and its governor (parent) node.

There are 24 analytical functions used, such as Sb (Subject), Obj (Object), Adv (Adverbial), Pred,
Pnom (Predicate / Nominal part of a predicate for the (verbal) root of a sentence), Atr (Attribute
in noun phrases), Atv, AtvV (Verbal attribute / Complement), AuxV (auxiliary verb), Coord, Apos
(coordination/apposition head), etc.

1.3 The Tectogrammatical Layer

The tectogrammatical layer is the most elaborated, complicated, but also the most theoretically based
layer of syntactico-semantic representation ([5]). The tectogrammatical layer annotation scheme is
divided into four sublayers:� dependencies and functional annotation� the topic/focus annotation including reordering according to the deep word order� coreference� the fully specified tectogrammatical annotation (including the necessary grammatical informa-

tion)

Let us shortly describe at least the first two of the sublayers.

1.3.1 Dependencies and Functors

The tectogrammatical layer goes beyond the surface structure of the sentence, replacing notions such
as “subject” and “object” by notions like “actor”, “patient”, “addressee” etc. The nodes in the tec-
togrammatical tree are autosemantic words only. Dependencies between nodes represent the relations
between the words in a sentence. The dependencies are labeled by functors, which describe the de-
pendency relations. Every sentence is thus represented as a dependency tree, the nodes of which

2

are autosemantic words, and the labeled edges name the dependencies between a dependent and its
governor.

Many nodes found at the morphological and analytical layers disappear (such as function words,
prepositions, subordinating conjunctions, etc.). The information carried by the deleted nodes is not
lost and can be reconstructed.

1.3.2 Topic, Focus and Deep Word Order

Topic and focus ([6]) are marked, together with so-called deep word order reflected by the order of
nodes in the annotation, is in general different from the surface word order, and all the resulting trees
are projective by the definition of deep word order.

By deep word order we mean such ordering of nodes at the tectogrammatical layer that puts the
“newest” information to the right, and the “oldest” information to the left, and all the rest inbetween,
in the order corresponding to the notion of “communicative dynamism”.

2 Introduction to Netgraph

The current version of the Prague Dependency Treebank is PDT 1.0 ([7]) and contains approx. 100,000
sentences on the analytical level. A non-automatic searching for concrete dependencies through so
large set is impossible. For this purpose we have developed a special software called Netgraph.

Netgraph is a multiuser system with a net architecture ([8]). This means that more than one user can
access it at the same time and its components may be located in different nodes of the Internet (see
Fig. 1). Netgraph generally consists of a server part, which mainly realizes the corpus searching itself,
and a client part, which provides a user interface to the system.

3 A view into the inner parts of the Netgraph system

The communication between a client and a server is always started and ended by the client.

The client part, to be flexible, is available in two forms – as a Java2 application and as a Java2 applet.
The client connects to the server using a specified port, a login name and a password1 , obtains some
initial information and then communicates with the server by sending and recieving several types of
messages. The client can ask server for the directory structure of the treebank, select subcorpora, send
queries to the server above the subcorpora and obtain results of the queries—trees from the treebank.

The treebank itself in its natural format is located on the server node. The server part of Netgraph
consists of two main programs, written in C++ in order to be as fast as possible:� netser - it waits for incoming connections from clients and provides the network communication� dotser - it handles all incoming messages and is responsible for query resolving. It is the central

part of the system
1An anonymous login is possible too, but anonymous users are restricted in some ways - they cannot save result trees

to local disks and the amount of trees in the result of one query is limited. Netgraph client as an applet allows only the
anonymous login.

3

client nodeserver node

HTTP
server

NETSER

Java2 run-

time env.

NETGRAPH
application

or

NETGRAPH
applet

Web browser

Java2 plug-in

1

2

3

3

Figure 1: Start of Netgraph client. The arrows #1 and #2 represent the first two steps of the work with the
Netgraph client as an applet. First, the user clicks in a web browser on a link to Netgraph client applet (the
arrow #1). Then the applet is loaded into the web browser (the arrow #2) and connects to the program netser
waiting for connections on the same server the applet has been loaded from (the lower arrow #3). Using the
Netgraph client as an application, the user runs the client, then selects a server (the name and the port) and
the client connects to the server (the upper arrow #3). In both of the cases, the Netgraph client needs Java2
as its environment - either Java2 plug-in (the Netgraph applet) or Java2 run-time environment (the Netgraph
application).

CLIENT

client node

NETSER
(child)

DOTSER DOTSER
(child)

NETSER

server node

NET

Query result
Query def. Files set def.

server port

fifos

Figure 2: Typical situation during the work of a user - dotser communicates with the client through netser
(child) while netser (parent) waits for another connection. Dotser (child) performs a particular query and
communicates with dotser (parent) using several temporal files.

Netser waits on the server node for connections from clients. After a connection from a client is
requested, netser (parent) immediately creates a new process netser (child), which will manage the
communication with the client (see Fig. 2). The netser (child) creates a new process dotser, which will
perform the responses to the client requests. The netser (parent) is ready to accept another connection
from another client.

When an incoming message is identified as a query, dotser creates a new process - dotser (child). This
child processes the query and answers immediately to the client that the query has been accepted. This
mechanism ensures that the system is not blocked in the case of a query which requires larger amount
of time to be processed. The user can send another message or enter a new query during the processing
of a query (the processing of the previous query is then canceled).

4

4 Searching in Netgraph

After the user has connected to the server, s/he has to go through three steps: define a subcorpus to
be queried, define an object of a query, and fetch and display the result of the query. A query has the
form of a labeled tree structure, which is derived from the tree structure that represents sentences in
the corpus files. The result of the query consists of trees from the subcorpus that contain the tree from
the query as a subtree. The matching of the nodes evaluation is checked as well.

All the steps can be done using an easy-to-use graphical interface.

4.1 Subcorpus definition

The user can browse the directory structure of the corpus provided by the server and select files s/he
wants to use for searching; this set can be saved to disk (and loaded back). The subcorpus may be also
defined as the result of the previous query.

4.2 Query definition

Queries determine which trees will be included in the result of searching. The user defines a tree
(see Fig. 3) s/he wants to be included as a subtree in each tree of the result. For defining such a tree,
including the labels of its nodes, a graphical interface can be used. The graphically created tree is
simultaneously displayed in a linear text form; the text form can also be edited directly.

If an unlabeled tree is used for a query then the searching process only considers the tree structure
itself, the node matching is not checked in this case. However, the user usually demands some restric-
tions on some of the node attributes. In Netgraph one may enter them for every attribute by defining so
called masks. The masks are expressions written into particular nodes of a query in brackets, separated
by commas. Two special characters can be used in the mask definitions: the asterisk character ‘*’
represents a sequence of characters and the dot ‘.’ represents a single character.

Example: [origf=.resident*]

This mask indicates that the attribute origf can be of the value ‘President’, ‘presidents’ and so on.

Another useful operation is the alternation—the logical conjunction, represented by the separator ‘|’.

Example:
[lemma=president,afun=Sb]|
[lemma=president,afun=Obj,tag=N...4*|N...6*]

This requires the lemma president as the (subject or (object in (accusative or locative))). The analyti-

[lemma=chodit]
[origf=na]

[tag=N...4*]

Figure 3: Example of a simple query with attributes: lemma—an identifier of the underlying lexical unit,
origf —an original word form as found in text, tag—a morphological category.

5

Figure 4: Example of tree depiction in Netgraph. The nodes in the tree represent words and their linguistic
attributes and the edges represent analytical dependencies. Although the depicted tree is projective, this treat-
ment also supports non-projective dependencies (present in Czech surface shapes of sentences and thus on the
analytical level of PDT). The user can select attributes to be displayed at the nodes of the tree.

cal function is represented by the attribute afun.2

4.2.1 Meta attributes

To define the query in more detail, a system of meta attributes—attributes not really present in the
corpus—can be used. There are five meta attributes at this moment:� transitive – by defining this as true, nodes between this node and its parent (in the query) are

allowed (in a result tree)� optional – if true, then the node (lets call it A) may but need not be present in the result. In the
result tree, there must be a node matching the node A or its son on the place of the node A� depth – this meta attribute defines the distance between a node and the root (in a result tree)� #sons – this meta attribute defines the exact number of immediate sons of a node (in a result
tree); for example, #sons=0 defines the node as a leaf� #descendants – this meta attribute defines the exact number of all descendants of a node (in a
result tree) - all nodes in its subtree (excluding the node itself)

The last three meta attributes allow to restrict the position of a query tree in a result tree and also to
restrict the size of a result tree.

4.3 Viewing the result

After the first tree matching the query is found, it is immediately displayed; the subtree matching the
query is highlighted. The order of words is viewed from left to right. According to that, the tree in

2The exact description of the meaning of all attributes can be found in [7].

6

�
	 ���� ���� � ���� �
���� ��� ��� 	
��� ��� � � 	 ��� ��� � � 	 �

Figure 5: Matrix
�

and its coverage

Fig. 4, obtained as the result of the query from Fig. 3, represents the sentence: “Vojáci v základnı́
službě musejı́ opět chodit na vycházky ve stejnokrojı́ch.” (Soldiers in compulsory service must again
go on walks in uniforms.)

The order of nodes on the analytical level may be different from the order on the tectogrammatical
level. Also, some nodes from the analytical level (esp. those representing function words and punc-
tuation marks) should be hidden on the tectogrammatical level. Netgraph offers two modes of tree
displaying according to these two levels.

5 !#" -completeness of the Subtree Counting Problem

In this section we study complexity of the subtree counting problem. We assume the reader is familiar
with the basic notions of the theory of graphs and the theory of complexity.

We consider the subtree counting problem to be defined as follows:

Definition (the subtree counting problem): For two trees $&% (a query) and $ compute the number
of all different subtrees of $ that match the query.

We do not require vertices of $'% and $ to have some labels. Our goal will be to prove that computing
the number of all different subtrees of $ matching $ % is (*) -complete (which can be interpreted that
it is highly improbable that the number of subtrees returned by a query can be computed effectively
in polynomial time). This result has impact on searching all subtrees. Note that it can be decided in
polynomial time if at least one searched subtree exists in $ (see [9]).

We start by the description of a known (+) -complete problem that we want to transform to the subtree
counting. Let us consider a square matrix

�
of the size , , where each element is � or � (so called

0-1 matrix). We denote elements of
�

by
� �.- �0/ � , for - �0/1	 � �3232324� , . A coverage of

�
is every

permutation � of the set
� � �3232324� ,5� such that

� �.- � ���.- �6� 	 � for all - 	 � �3232324� , . A coverage can be
interpreted as a placement of , rooks on the chessboard of the size , using fields corresponding to
value � so that no two rooks threat each other. Fig. 5 shows a matrix and its coverage. To compute
the number of all different coverages of

�
is a well known (*) -complete problem (the number of

coverages is called permanent of
�

).

As a preparation to the proof we continue by defining some auxiliary trees. Let , � - be positive integers,-87 , . 9;:=< > denotes the tree consisting of a chain of ,@? � vertices and one extra leaf appended to the- -th vertex of the chain (we consider the vertices to be numbered in the ascendant order � �323232�� ,A? �starting by the root, see Fig. 6 for examples of 9':B< > trees). Note that the defined trees have one
important property. If , is fixed there are no two different trees 9C:=< > , 9;:=< D such that one of them is a

7

E E
E EF F F F
F F

E E
E EF F F F
F F

E E
E EF F F F
F FEGG EGG EGG

9IHJ< � 9IHJ< � 9KHJ< H

Figure 6: Trees 9I:=< >
EELLNM M
ELLOM M

ELLOM M
PPP Q Q QR�ST � T � T H

9IHJ< � 9KHJ< � 9IHJ< H
EELLOM M
ELLOM M

ELLNM MLLOM M LLOM M
PPP Q Q QPPP Q Q Q
RU � U � U H

9KHJ< � 9KHJ< � 9IHJ< H 9IHJ< � 9IHJ< H
Figure 7: $V% and $

subtree of the other one. Moreover, the depth of such trees is always ,@? � .We are ready to show now, how the transformation looks like. Let
�

be a 0-1 matrix of the size , .
We construct an instance of the subtree counting problem, i.e. trees $�% , $, such that the number of
all different subtrees of $ matching $C% is the same as the number of all different coverages of

�
. The

construction is done as follows. The root of $ % (denoted R %) has , direct descendants T � �3232324� T : , for
each of them, 9I:=< > is appended to T > . The root of $ (denoted R) has , direct descendants again. Let
they be denoted U � �323232�� U : . For each U > , 9I:B< D is appended to U > if and only if

� �.- �0/ � 	 � . See Fig. 7
for the example of $'% and $ that correspond to

�
in Fig. 5.

We have to prove there is a one to one correspondence between solutions of both problems. Let us
suppose � is a coverage of

�
. $ % can be mapped to a subtree of $ as follows: R % is mapped to R , eachT > is mapped to UXW=Y >[Z . Since 9I:B< > is appended to U;WBY >\Z , the whole subtree having T > as the root can be

mapped to vertices under UIW=Y >[Z .
On the other hand, let us suppose $C% is mapped to some subtree of $. Since the depths of both trees
are the same, R % has to be mapped to R . It implies the vertices T � �3232324� T : are mapped to the verticesU � �3232324� U : , let say each T > to U W4]^Y >[Z , where �K_ is the corresponding permutation. 9 :=< > appended to T >
has to be mapped to 9K:=< > appended to U;W] Y >[Z (since 9I:=< > cannot be a subtree of another 9V:B< D , /a`	 -).
So, it is evident that there is 9V:=< > appended to U;W] Y >[Z , which further implies that

� �b�c_d�.- � � - � 	 � , hence� _fe � is a coverage of
�

.

To complete the proof it is sufficient to note that the transformation is polynomial, since a pair $g% , $
can be easily computed in time polynomial in , .

We have proved the subtree counting problem is (*) -complete. In theory, it indicates we can expect
difficulties during evaluation of queries. However, the number of vertices of examined trees and the
number of subtrees matching a query is usually relatively small, thus it is possible to achieve an
acceptable response on queries that can be, in addition, improved by preprocessing information stored
in trees (to be able to eliminate immediately some queries that cannot match) and by choosing suitable
searching strategies (that prioritize the order of comparisons of some labels).

8

6 Conclusion

Netgraph provides access to PDT to anyone interested simply and effectively. PDT itself is an amor-
phous set of trees without any structure. With Netgraph a user can add structure into PDT and obtain
any linguistic information that PDT contains. The searching problem is generally (*) -complete, but
in our special case it is possible to achieve an acceptable response to queries. Netgraph also works
corpus-language independently, so it is not restricted only to Czech corpuses. It only demands a cor-
pus in fs ([7]) format. Netgraph is stable, but is still being developed and other features are planned to
be added in the future—for example relations among numeric values of attributes cannot be defined in
queries yet. Some technical enhancements like XML support are planned too. The newest version of
Netgraph is available for downloading on the Netgraph home page ([10]).

Acknowledgments

This work has been supported by the Ministry of Education—project Center for Computational Lin-
guistics (No. LN00A063).

The studies of complexity have been supported by Grant Agency of the Czech Republic, Grant-No.
GA CR 201/02/1456.

References

[1] Böhmová A., Hajič J., Hajičová E., Hladká B.: The Prague Dependency Treebank: Three-Level
Annotation Scenario, In: Treebanks: Building and Using Syntactically Annotated Corpora, ed. by
Anne Abeille. Kluwer Academic Publishers, in press.3

[2] Hajič J.: Building a Syntactically Annotated Corpus: The Prague Dependency Treebank, In: Is-
sues of Valency and Meaning, ed. by E. Hajičová, pp.106-132, Karolinum, Praha 1998.

[3] Hajič J., Pajas P. and Vidová Hladká B.: The Prague Dependency Treebank: Annotation Structure
and Support, In: IRCS Workshop on Linguistic databases, 2001, pages 105-114

[4] Hajič J. et al.: A Manual for Analytic Layer Tagging of the Prague Dependency Treebank. ÚFAL
Technical Report TR-1997-03, Charles University, Czech Republic, 1997.

[5] Hajičová E., Panevová J., Sgall P.: A Manual for Tectogrammatical Tagging of the Prague Depen-
dency Treebank. ÚFAL/CKL Technical Report TR-2000-09, 2000.

[6] Hajičová E., Partee B. and Sgall P.: Topic-Focus Articulation, Tripartite Structures and Semantic
Content. Dordrecht, Amsterdam, Netherlands: Kluwer Academic Publishers, 1998.

[7] CD-ROM PDT 1.0, available at http://shadow.ms.mff.cuni.cz/pdt.

[8] Ondruška R.: Tools for Searching in Syntactically Annotated Corpora, Diploma Thesis, Charles
University, Praha 1998.

[9] Matula D. W.: An algorithm for subtree identification. SIAM Rev., 10:273-274, 1968.

[10] Mı́rovský J.: Netgraph home page – http://shadow.ms.mff.cuni.cz/ h mirovsky/netgraph/index.html.

3PDT documentation can be found at
http://shadow.ms.mff.cuni.cz/pdt/Corpora/PDT 1.0/References/index.html

9

