
1

The Faculty of Mathematics and Physics
Charles University

Problems of Robust Parsing of Czech

Vladislav Kuboň

PhD Thesis

Institute of Formal and Applied Linguistics
Praha, 2001

2

Disertační práce byla vypracována v rámci doktorandského studia, které uchazeč absolvoval
v Ústavu formální a aplikované lingvistiky Matematicko-fyzikální fakulty Univerzity Karlovy v Praze
v letech 1996-2001.

Uchazeč: RNDr. Vladislav Kuboň

�kolitel: Prof. PhDr. J. Panevová, DrSc.
Ústav formální a aplikované lingvistiky, MFF UK

�kolicí pracovi�tě: Ústav formální a aplikované lingvistiky, MFF UK
Malostranské náměstí 25, 118 00 Praha 1

Oponenti: Prof. Patrice Pognan
CERTAL INALCO, Paris

Doc. RNDr. Vladimír Petkevič, CSc.
Ústav teoretické a komputační lingvistiky, FF UK

3

Contents

CONTENTS 3

INTRODUCTION 5

CHAPTER 1: BASIC NOTIONS 7

CHAPTER 2: EXISTING AUTOMATIC PARSERS OF CZECH 12
2.1 RUSLAN ... 12

2.1.1 Syntactic analysis in RUSLAN... 13
2.2 A PROTOTYPE OF A GRAMMAR-BASED GRAMMAR CHECKER FOR CZECH............................... 14
2.3 EXPERIMENTS WITH A STOCHASTIC PARSER OF M. COLLINS .. 15

CHAPTER 3: BASIC FEATURES OF OUR APPROACH 16
3.1 AN APPROACH TO ROBUSTNESS... 17
3.2 BASIC PRINCIPLES OF BUILDING SYNTACTIC TREES .. 18
3.3 REDUCTION OF THE NUMBER OF RESULTS OF SYNTACTIC PARSING .. 19

CHAPTER 4: BASIC COMPONENTS OF THE SYSTEM 22
4.1 AVAILABLE RESOURCES .. 22

4.1.1 Morphology .. 22
4.1.2 Software environment... 22

4.2 NEW COMPONENTS .. 22
4.2.1 Grammar ... 22
4.2.2 Dictionary ... 23
4.2.3 Testing and debugging.. 23

CHAPTER 5: BASIC NOTIONS II 24
5.1 ROBUST FREE ORDER DEPENDENCY GRAMMAR... 24
5.2 A RELATIONSHIP BETWEEN DR-TREES AND D-TREES... 27
5.3 SYNTACTIC ANALYSIS AND A NONPROJECTIVITY MEASURE OF A LANGUAGE 28
5.4 THE MUTUAL RELATIONSHIP OF NONPROJECTIVITY MEASURES AND THE DEGREE OF

ROBUSTNESS ... 30
CHAPTER 6: COMPLEXITY ESTIMATIONS 33

CHAPTER 7: SOFTWARE ENVIRONMENT 39
7.1 PARAMETERS OF METARULES.. 40
7.2. THE INTERPRETATION... 43

CHAPTER 8: SYNTACTIC DICTIONARY 46
8.1 INFORMATION CONTAINED IN THE DICTIONARY.. 46
8.2 THE STRUCTURE OF INDIVIDUAL CLASSES OF WORDS... 47

8.2.1 Nouns.. 47
8.2.2 Adjectives ... 48
8.2.3 Pronouns ... 48
8.2.4 Numerals... 48
8.2.5 Verbs... 49
8.2.6 Adverbs... 49
8.2.7 Prepositions... 49
8.2.8 Conjunctions ... 50
8.2.9 Interjections, particles and delimiters (.,:;!? etc.).. 50

8.3 SAMPLE INPUT DATA STRUCTURE.. 50

4

8.4 DATA CONTAINED IN VALENCY FRAMES ... 51
CHAPTER 9: IMPLEMENTATION OF THE METAGRAMMAR 53

9.1 A NOMINAL GROUP .. 53
9.2 VERBAL MODIFIERS ... 60
9.3 COMPLEX VERBAL FORMS ... 64
9.4 COORDINATION.. 67
9.5 EMBEDDED NOMINAL GROUPS AND CLAUSES.. 71
9.6 SUBORDINATE CLAUSES... 73
9.7 BRACKETS.. 77
9.8 ADVERBS ... 78
9.9 COMPOSITION OF NUMERALS... 79
9.10 SELECTIVE CONSTRUCTION.. 80
9.11 COMPARISON BY MEANS OF THE CONJUNCTION NE� (THAN)... 80
9.12 PAIRS OF EXPRESSIONS .. 82
9.13 EMPHASIS... 84
9.14 BEGINNING AND END OF THE SENTENCE.. 85
9.15 GENERAL REMARKS ... 86

CHAPTER 10: TESTING AND DEBUGGING 87

CHAPTER 11: THE TESTBED 90
SENTENCE (1)... 90
SENTENCE (2)... 92
SENTENCE (3)... 94
SENTENCE (4)... 99
SENTENCE (5)... 101
SENTENCE (6)... 104
SENTENCE (7)... 106
SENTENCE (8)... 107
SENTENCE (9)... 109
SENTENCE (10)... 111
SENTENCE (11)... 113
SENTENCE (12)... 115
SENTENCE (13)... 117
SENTENCE (14)... 119
SENTENCE (15)... 121

CHAPTER 12: A METHOD FOR ANALYZING CLAUSE COMPLEXITY 124
12.1 MOTIVATION.. 124
12.2 MOTIVATING EXAMPLE.. 128
12.3 DEFINITIONS .. 133
12.4 GENERAL PRINCIPLES OF BUILDING S-GRAPHS.. 138

12.4.1 More complicated types of sentences ... 139
12.5 GENERAL PRINCIPLES OF BUILDING CS-GRAPHS ... 142
12.6 THE CORRESPONDENCE BETWEEN CS-GRAPHS AND D-TREES... 143
12.7 THE CONNECTION BETWEEN CS-GRAPHS AND OUR METAGRAMMAR 144

CONCLUSION 146

REFERENCES 148

5

Introduction

It is not surprising that the problem of syntactic parsing of natural languages belongs to the
most popular fields of computational linguistics. An automatic syntactic parser is a key element of a
wide range of natural language processing systems. The quality of various types of research projects
directly depends on the quality of parsing modules contained in these systems.

Natural language parsing is also a very interesting research field. On the one hand, it is
sufficiently close to the problem of parsing formal languages, which has been studied by computer
scientists for a very long time and which has therefore been investigated to a great depth (at least for
context-free languages). On the other hand, the syntactic analysis of natural languages does not allow
for a direct application of the results of the theory of formal languages and thus provides more than a
sufficient challenge for those wishing to develop new methods and approaches both in theory and in
implementation.

The practical experience in the field of natural language parsing shows that every project
aiming at a (as much as possible) complete coverage of the natural language under consideration has
to cope with imperfections of the input. Even in case the input texts were thoroughly checked (and
grammatically corrected) by human reviewers (for example in journals or newspapers), it is often
possible to encounter a grammatical error. The investigations carried out during the Joint Research
Project PECO 2824 have shown that printed texts contain numerous errors of a wide range of error
types - cf. [Petkevič 95]. Even worse is the situation with spoken language. It is therefore quite clear
that if we aim at parsing any input sentence from a real text in the given language, we have to build a
robust parser.

This work approaches the problem of building a robust parser for Czech (as a typical language
with high degree of word-order freedom) from two points of view. The first one is the theoretical point
of view, in which we are aiming at a more exact specification of the term robust parsing, at its
connection to related fields (natural language analysis, grammar checking etc.) and at the parsing
complexity of approaches designed here. The second point of view is that of an implementation of a
sample metagrammar covering (a subset of) syntactic rules for Czech. The metagrammar represents in
fact the first implementation of a rule-based robust parser for Czech. It serves mainly for two purposes
� the first one is the purpose of demonstrating the usability of an approach described in the theoretical
part, the second one is to provide stimuli for the subsequent development of even better and more
adequate theoretical description of the problem.

For the sake of consistency of the text the dissertation contains not only the description of the
work done solely by the author, but also the results of a collaborative work carried out during the past
six years by the research team of which the author was one of the members. However, the parts that
are a result of a cooperative work are explicitly marked as such.

The first chapter introduces the basic notions, which are necessary for the description of the aims and
goals of this thesis.
The second chapter aims at the history of the automatic parsing of Czech. It stresses especially the
systems, which may be considered a direct predecessors of our system.
Basic features of our approach are described in the third chapter.
The fourth chapter describes individual components of the system of a robust parser of Czech.
Second part of the description of the basic notions can be found in the fifth chapter. It provides
additional definitions allowing to formulate important conclusions concerning complexity estimations
in the following chapter.
The seventh chapter contains a description of the software environment used for the implementation of
the system.

6

The format of the syntactic dictionary is described in detail in the eighth chapter.
The ninth chapter contains a thorough description of one of the key elements of the system � the
metagrammar. It also contains the description of the linguistic phenomena the system is (or is not) able
to handle.
Important facts about the process of testing and debugging the metagrammar are to be found in the
tenth chapter.
The eleventh chapter contains a thorough description of the results of parsing a set of sentences used
as a testbed in the process of the development of the metagrammar.
The last, the twelfth one, chapter is devoted to a description of a method for analysis of the structure of
clauses in complex sentences. This method was developed as an attempt to solve some of the problems
encountered in the process of the system development and discussed in the eleventh chapter.

The definitions from the third and fifth chapter were developed as a result of a joint effort with
Martin Plátek, Tomá� Holan and Karel Oliva and had already been published in several papers. The
software environment described in the seventh chapter was developed by Tomá� Holan. The format of
the syntactic dictionary was also to a large extent influenced by the work of H. Skoumalová done in
the project identified as JEP PECO 2824 Language Technologies for Slavic Languages.

7

Chapter 1: Basic notions

In this chapter we would like to describe the basic notions used throughout the whole text.
First of all, let us define the basic data structure we are going to use both for visualization of the
results of the parsing process and also for theoretical purposes. This data structure is a traditional
means for the visualization of the syntactic structure of a sentence in the European continental
linguistic dependency oriented syntactic tradition. A number of different formalizations exist, e.g.
[Nebeský 72], [Kunze 72]. Our definition contains more information than the traditional ones and in
this manner better reflects the needs of subsequent chapters. It was originally defined in [Holan et al.
2000].

Definition 1.1 (Dependency-tree, D-tree)
We define the tree T to be a dependency tree (D-tree) over the sentence w = a1...an, if T contains
exactly n nodes, and for each i ∈ {1..n} there is a node of the tree T in the form [ai,i,vi,di], where we
denote the individual parts ai,i,vi,di of the node as follows:

ai is the symbol of the node (the word label),
i is the horizontal index (the surface position, counted from left),
vi is the vertical index (the distance, measured by the number of edges, of the given node

from the root),
di is the dominance index (the horizontal index of the governor),

and the following holds:
- vi,di∈ {0..n}; vi=0 if and only if di=0, in which case the node [ai,i,0,0] is the root node of the tree T.
- if u=[ai,i,vi,di] and di≠0, then there exists exactly one node v=[adi,di,vi�1,ddi]. The (ordered) pair

(u,v) creates the (single, oriented) edge of the tree T, incident to the node u.

Let us illustrate the definition using the following example.

Example 1.1
Nepodařilo se otevřít zadaný soubor.
[Lit.: It_was_not_possible Refl. to_open specified file.]
(It was not possible to open the specified file.)

There are the following nodes in the D-tree of this sentence:
u1=[Nepodařilo,1,0,0], u2=[se,2,1,1], u3=[otevřít,3,1,1], u4=[zadaný, 4,3,5], u5=[soubor,5,2,3]

Fig. 1.1. D-tree T1 for the sentence from example 1.1

8

In the following text we are also going to speak very often about a very important property of
dependency trees, namely the nonprojectivity. Let us first define the term of projection of a node of
the D-tree (in some of our previous papers we have used the term coverage), which then allows us to
formulate the definition of the projectivity/nonprojectivity term in a manner suitable for further
definitions of measures of nonprojectivity.

Definition 1.2 (Projection of a node of a D-tree)
Let T be a D-tree and let u be a node of T. The set of horizontal indices of all nodes v of the tree T such
that there exists an (oriented) path from v to u will be called the projection of u within T and marked
off as Cov(u,T). When defining Cov(u,T), we take into consideration also the empty path, hence
Cov(u,T) always contains the horizontal index of u.

Projections of individual nodes of the D-tree T1 from the Fig.1.1 look as follows:
Cov(u1,T1)={1,2,3,4,5}, Cov(u2,T1)={2}, Cov(u3,T1)={3,4,5}, Cov(u4,T1)={4}, Cov(u5,T1)={4,5}

The next necessary step is the definition of a hole in the projection of a node.

Definition 1.3 (Hole (in the projection of a node))
Let T be a D-tree over the sentence w = a1...an, let u be a node of the tree T and let

Cov(u,T)= {i1,i2,...,ik}, i1 < i2 < ... < ik-1<ik.
For 1 ≤ j < k we say that the pair (ij,ij+1) creates a hole in Cov(u,T), iff ij+1 � ij > 1.

Let us now demonstrate the notion of a hole using only a slightly modified sentence from the previous
example:

Example 1.2
Zadaný soubor se nepodařilo otevřít.
[Lit.: Specified file Refl. it_was_not_possible to_open.]
(The specified file failed to open.)

There are the following nodes in the D-tree of this sentence:
u1=[Zadaný,1,3,2], u2=[soubor,2,2,5], u3=[se,3,1,4], u4=[nepodařilo, 4,0,0], u5=[otevřít,5,1,4]

Fig. 1.2. D-tree T2 for the sentence from example 1.2
The projections of individual nodes of the D-tree T2 from the Fig.1.2 look as follows:
Cov(u1,T2)={1}, Cov(u2,T2)={1,2}, Cov(u3,T2)={3}, Cov(u4,T2)={1,2,3,4,5}, Cov(u5,T2)={1,2,5}
The projection of the fifth node Cov(u5,T2)={1,2,5}contains a hole.

The last step we need to make before we are able to define the terms of projectivity and
nonprojectivity is the definition of the following measure:

9

Definition 1.4 (Measure dNh)
Let T be a D-tree over the sentence w and let u be a node of the tree T. We define the measure
dNh(u,T) (number of holes in a dependency subtree rooted in u) as the number of holes in Cov(u,T).

It is now easy to formalize the traditional terms of projectivity and nonprojectivity of a dependency
tree (for previous usage of these terms cf. [Marcus 65], [Kunze 72], [Nebeský 72]) using the notions
defined in previous definitions.

Definition 1.5 (Projectivity, Non-projectivity)
Let T be a D-tree over the sentence w. The number dNh(T), equal to the maximum of {dNh(u,T);
u ∈ T}, will be called the magnitude of non-projectivity of the sentence w with the structure T.
If dNh(T)=0 holds, we say that the sentence w with the structure T is projective, otherwise we say that
the sentence w with the structure T is nonprojective.

According to our definitions the sentence from the Example 1.1 (Nepodařilo se otevřít zadaný soubor)
is projective and the sentence from the Example 1.2 (Zadaný soubor se nepodařilo otevřít) is
nonprojective.

The next very important set of terms used in the subsequent text is connected with our ultimate goal,
namely with the robust parsing of Czech. It is often the case that different people in different
circumstances understand the term of natural language analysis or natural language parsing in various
ways. For example, for statisticians the term (stochastic) natural language parser means a device that
always provides just one syntactic structure as its result for any input sentence. For people working
with theories of formal parsing, the result a parser should provide is a set of structures, each of which
represents a plausible analysis of the input according to a certain grammar. On the other hand, for
linguists the result of (syntactic) parsing should be a set of structures representing all plausible
readings of the input sentence. The difference between the last two variants consists in that linguists
very often exploit not only syntactic knowledge, but take also into account the semantics, pragmatics
or even the real world knowledge when deciding about the acceptability of resulting structures. On the
contrary, from the point of view of �formalists� the only criterion of acceptability of parsing results is
the grammar according to which the input is parsed. Linguists are typically able to assign various
degrees of acceptability to various structures representing the results of natural language analysis, they
even may be able to give an answer to the question what�s the �best� result out of the set obtained as a
result of the parsing. From the point of view of a parsing theory, there is nothing like a �better� or a
�worse� result, all structures obtained as a result of parsing are equally acceptable.

In order to overcome this terminological uncertainty we have decided to stick to the following
terminology:

We are going to use the term natural language analysis for a complex process involving not
only syntactic analysis, but also semantics, pragmatics and real world knowledge. The result of
natural language analysis is typically one (the best, most acceptable) sentence structure. A typical
example of natural language analysis is the tectogrammatical level of the Prague Dependency
Treebank [Hajičová et al. 99], the result of human�made analysis taking into account all possible
sources of knowledge and information (including very broad context in which a particular sentence
appeared).

The term (syntactic) parsing will denote the process of analysis according to a grammar (or
metagrammar) containing (syntactic) rules and constraints. If the rules and constraints capture the
rules and constraints of the surface syntax, we talk about a surface (syntactic) parsing. The result of
(surface) parsing is a set of structures describing all possible syntactically acceptable variants of the
analysis of a particular input sentence. None of the resulting structures is considered to take
precedence or to be �better� or �worse� than the rest.

When we are concerned only with whether a particular input sentence belongs to the set of all
well-formed sentences of a given natural language, we talk about a (syntactic) recognition. This notion
is very important e.g. for grammar checking, where we are mainly concerned with the task of

10

distinguishing the well-formed sentences from ill-formed ones. To be sure that the sentence is
syntactically correct we need to find just one plausible structure for the sentence. Only in case the
sentence is ill-formed we need its complete syntactic analysis in order to be able to locate and classify
the syntactic error(s) it contains.

Probably the most important term used in this dissertation is the term robust (syntactic)
parser. Generally the robustness is understood as a property of a particular system to cope with all
kinds of input regardless whether it is ill-formed or well-formed. A typical example of a robust parser
in this sense is in fact any stochastic parser. The stochastic analysis does not provide any means for
distinguishing ill-formed sentences from well-formed ones, dealing with both types in a uniform way
and assigning just one, the most probable, structure to each input sentence. In this way it is even
possible to obtain a structure for a sequence of word forms, which is so highly ill-formed that even the
native speakers are neither able to assign a structure to this sequence, nor to understand what the
sequence of words actually means.

It is quite clear that such a broad robustness may be useful for practical applications, but it has
nothing to do with the aim at a more adequate description of a particular natural language. The
robustness we are aiming at is different. Our motivation is to simulate how a native speaker of a
particular language will be able to cope with ill-formed sentences. If the sentence is so much corrupted
that it is both syntactically ill-formed and unintelligible even for a native speaker, then the robust
parser also should be unable to parse it. The robustness, as we understand it, has certain limits.

The first goal we aim at is the ability of the robust parser to guarantee syntactic acceptability.
While a syntactic parser draws a strict line between sentences belonging to the set of syntactically
well-formed sentences of a given natural language and those which are not, a robust parser should be
able to draw a similar line between ill-formed sentences which may be corrected according to the
syntax of a particular language and those which are definitely syntactically unacceptable.

The second goal of our approach is more general � we aim at creating a theoretical framework
allowing to shift this borderline in a consistent and adequate manner by means of the application of a
set of general constraints expressed through measures defined in this thesis (and in the papers about
our approach published in the previous years). This goal in fact means that in general sense our theory
allows to create a scale of parsers with different degrees of robustness or word-order freedom.

One of the main topics of this thesis is the endeavor to describe at least some constraints
allowing to achieve these goals. We do not claim that the constraints introduced here are the only
constraints suitable for the declared purpose, it is quite clear that several other types of constraints may
be formulated in the future. These constraints will then allow to create even a more refined scale of
parsers and thus they will also support a more adequate description of syntactic properties of natural
languages with a high degree of word order freedom.

At this point it is also necessary to specify the type of constructions which are going to be
considered as syntactically ill-formed in the following text. The position adopted in this work reflects
the fact that very often a sentence is rejected by a human reader for some extrasyntactic reasons. For
example it may be unintelligible; it may be stylistically unacceptable; its preferred reading may violate
grammatical rules while there is a second, syntactically well-formed reading, with a meaning
unacceptable in the given world, etc. Let us demonstrate this fact on a very simple sample sentence:

Koťata chytaly my�i. [Kitten(pl.neut.) were_catching(pl.fem.) mice(pl.fem.)]
The problem of this sentence is the collision of syntax with other factors important for human

understanding of a sentence, namely with the real world knowledge. At first sight it seems that the
sentence is ill-formed due to the wrong (feminine) form of the verb (chytaly instead of chytala). When
we look closer at the reasons for rejection of this sentence, we find out that they are based on the
assumption that only koťata [kitten] are the acceptable subject of this sentence due to the fact that
under normal conditions usually mice are being caught by kitten, not vice versa. The syntactically
correct reading suggests the translation �Mice were catching the kittens�, while the human common
sense prefers the reading which may be translated as: �Kittens were catching the mice�, even though
this reading violates the syntactic rule of subject-predicate agreement. The reason for rejection of this
sentence is therefore purely extrasyntactic, it is based on the real life experience.

11

This example illustrates that it is really necessary to draw a clear borderline between natural
language analysis and (surface) syntactic parsing (as described above). Rather than to attempt at
solving a wide spectrum of very complicated problems of natural language analysis we would like to
concentrate on the question of what can be done if only �pure� syntax is taken into consideration, thus
aiming at solving the problem of syntactic parsing. The following chapters show that even with such a
drastic restriction of scope the problem of robust parsing of a language with high degree of word-
order freedom is very complicated and complex. Thus, throughout the following text, wherever we are
going to refer to ill-formed constructions or sentences, we will have in mind only those constructions
or sentences which are ill-formed from the point of view of the syntax only, no other factors are going
to be taken into account. This position is similar, for example, to the position taken in the classical
literature in [Kunze 75].

12

Chapter 2: Existing automatic parsers of Czech

In this chapter we are going to describe basic facts about automatic parsers of Czech
developed in the past. Two of these systems, namely the parser of Czech developed primarily for the
Czech-to-Russian machine translation system and used also in the question-answering system TIBAQ
[Hajičová 95] and the parser implemented in the JEP PECO 2824 LATESLAV project, directly
influenced our robust parser.

2.1 RUSLAN
The first automatic syntactico-semantic parser of Czech was created for the Czech-to-Russian machine
translation project RUSLAN in the late eighties [Oliva 89]. The system was implemented in
Colmerauer's Q-systems [Colmeraurer], a chart-parser-like formalism successfully used in the
machine translation system TAUM-METEO. Q-systems allow dividing the grammar into modules,
where the output of a previous module serves immediately as the input for the following module. Each
of the modules consists of a set of rules that in principle describe transformations of tree structures.

The project RUSLAN was conceived of with the aim at the industrial exploitation in
translation of handbooks for operating systems of mainframes. The project consisted of about twenty
different modules ranging from the morphological analysis of Czech to the morphological synthesis of
Russian. The proper syntactic parser of Czech occupied only three modules. It covered a wide range of
syntactic phenomena and also exploited some lexical-semantic information. This information was used
in semantic constraints of individual grammar rules. These constraints took care of the attachment of
�proper� types of dependent lexical items to the governing ones. The following mechanism was used:
1. Each noun had a set of so called �proper semantic features�, marking it as belonging to one of

several semantic categories (concrete object, abstract object, human, institution etc.).
2. Some valency frames� slots contained two other sets of semantic features, the so called �required�

and �forbidden� semantic features. The former took care about filling the particular valency slot
by a proper type of noun, while the later blocked filling the valency slot by a noun which had
among its proper semantic features at least one �forbidden� feature.

The main idea behind the use of semantic features was to decrease the number of trees obtained as a
result of parsing. Expressed in the terms defined in the previous chapter, the use of semantic features
in fact meant one step from syntactic parsing towards the natural language analysis. The practical
experience with semantic features was slightly disappointing. Much more often than reducing the
ambiguity of the attachment by filtering out semantically unacceptable candidates the semantic
features blocked the attachment of a single unambiguous candidate and thus led to a parsing failure.

The main problem was hidden in the dictionary � with almost ten thousand lexical items in the
main dictionary of the system it was very difficult to assign all correct semantic features. A very nice
example illustrating the nature of problems encountered is the verb běhat [to run]. It contained some
required semantic features for its subject � the subject was expected to be a human or a living being.
These required semantic features were assigned by language specialists, who did not take into account
that the manuals to operating systems are full of programs and operating systems, which also tend to
run. It was, of course, very easy to correct the information for a single dictionary item, but in the long
run it was more costly to assign and correct semantic features of hundreds of lexical items than simply
remove all semantic features and to return to a syntactic parsing not exploiting the lexical semantics.

The problems with semantic features in RUSLAN were also one of the reasons why we have
decided to concentrate on �pure� syntax in our robust parser. Our aim is the introduction of a clear
invariant serving as a simple criterion of syntactic acceptability. Although the use of �pure� syntax has

13

its drawbacks (for example, it is often very difficult to distinguish between syntax and semantics in a
number of language phenomena), it is by far the best candidate for this purpose.

2.1.1 Syntactic analysis in RUSLAN
The first of the three parsing modules covering syntactic analysis of Czech contained mainly rules for
parsing simple nominal groups, the only syntactic phenomenon that was considered simple enough to
be handled separately from the main module of syntactic analysis.

The second module was the most important one. It contained rules handling the proper
syntactic parsing of Czech input sentences. In case this module succeeded, it issued one or more
linearized syntactic trees representing the syntactic structure of the sentence. In case for some reason
the syntactic parser did not succeed, it passed over to the next module a chain of subtrees covering the
whole sentence. In this case the next module containing so called "fail-soft rules" tried to construct a
complete syntactic tree from the subtrees created in the second module. There were four most typical
reasons for the parsing failure:
1. One or more words were not found in the main dictionary of the system. Even though RUSLAN

was designed as a restricted domain system, it was quite often the case that the text contained a
word not covered by the dictionaries of the system. If the word was of Greek or Latin origin
(technical terminology often has a foreign origin) or if it had a productive ending allowing to
guess morphological characteristics of the word, a special module called the transducing
dictionary [Bémová, Kuboň 90] took care about it. The idea of a transducing dictionary comes
from Z.Kirschner, who used it in the English-to-Czech translation system APAČ, see [Kirschner
88]. If even the transducing dictionary didn�t help, the unrecognized word blocked the parsing of
the whole sentence.

2. The grammar contained a series of constraints, which allowed to restrict the nondeterminism of Q-
systems and to reduce the number of spurious ambiguities. This needs a bit more detailed
explanation. The fact that the interpreter of Q-systems applies the grammar rules in a non-
deterministic way (from the point of view of the user it is impossible to determine the order of
application of individual grammar rules to the given input) has a direct consequence. It is very
often the case that spurious ambiguities are created during the process of application of individual
grammar rules. The most typical is the case when the left-hand side and right-hand side modifiers
of a particular word are processed without any preference. In that case it is possible to get the
resulting dependency syntactic tree by a number of ways (this is, of course, not the case when
constituent trees are used, because they describe the derivational history and thus the different
order of application of rules results in a different shape of the constituent tree). In order to avoid
this situation the grammar used in RUSLAN contained a preference of the left-hand side modifiers
at the level of the main (governing) verb of the sentence. The attachment of the right-hand side
modifiers was blocked until all left-hand side modifiers were attached. The application of such
kind of preference is always slightly dangerous � unsuccessful processing of any of the left hand
side modifiers of the main verb blocks the processing of the items on the right hand side of the
verb. This was very often a source of parsing failures.

3. The third most common case of the parsing failure was caused by the incompleteness of the
grammar or by errors in grammar rules. The process of testing and debugging the grammar that is
interpreted in a nondeterministic way is generally very long and complicated. The situation of the
parser in the RUSLAN system was even worse due to the fact that it had never been finished, it
stopped for the lack of funds shortly after the political changes made the Czech-to-Russian
translation useless. Therefore also the grammar of the system was far from complete.

4. Apart from the above mentioned properties of the syntactic parser in the RUSLAN system there
was also a certain limit with respect to the type of syntactic phenomena the parser was able to
handle. This is connected with the fact that the parser in fact worked in a manner which was
similar to what could be described in mathematical terms as a lower estimation of syntactically
correct sentences. This statement means that each sentence parsed by a Czech syntactic parser in
RUSLAN was guaranteed to be syntactically correct. The system was, of course, not able to
handle all syntactically well-formed sentences, so in fact it was able to parse a proper subset of the

14

language. With corrections of and additions to the grammar during its development this subset
grew, but it never covered the entire set of all syntactically well-formed Czech sentences.
It worked in a strictly projective manner, due to the fact that the framework used, Colmerauer�s Q-
systems, was originally designed for languages with relatively fixed word order and thus it doesn�t
support a more relaxed word order. The non-projective constructions are much more common in
languages with high degree of word order freedom, where different kinds of topicalization or word
order variants are much more natural than in natural languages with fixed word order.
The syntactic parser in RUSLAN did not contain any rules attempting to overcome this
insufficiency of Q-systems. This is an opposite orientation than should be chosen for a robust
parser for languages with a more relaxed order of words. Such a robust parser must aim not only at
the analysis of all possible syntactically well formed projective sentences of a given language, it
must also be able to handle syntactically ill-formed and/or non-projective sentences. It has to work
with relaxed constraints of two types � the constraints on the order of words and the constraints
guaranteeing syntactic well-formedness of sentences. In this sense the robust parser aims at the
upper estimation of the set of all syntactically well-formed sentences for a given language. Fig. 2.1
shows the mutual relationship of three sets of sentences � those parsable by RUSLAN, by a robust
parser and those belonging to the set of all well-formed sentences of a given language.

Fig. 2.1. Mutual relationship between the set of all well-formed sentences of a given language
and the sets parsed by the RUSLAN system and by the robust parser.

Some of the parsing failures of the module of syntactic analysis in the RUSLAN system (especially
those belonging to the first two categories) were handled in the third parsing module. It contained
slightly modified rules of the second module. They basically allowed a continuation of parsing the rest
of the sentence in case the procedure was blocked on the left-hand side of the main verb. No other
technique of robust parsing was used at the syntactic level. The parsing modules did not contain any
special rule for processing an ill-formed input.

Even though the RUSLAN system was never completed (there was no commercial demand for
Czech to Russian MT system after 1989), its parsing component may be considered as the first
automatic syntactic parser of Czech.

2.2 A prototype of a grammar-based grammar checker for Czech
The second important project which had a great influence on our robust parser was the Joint European
Project PECO 2824 LATESLAV Language Technology for Slavic Languages. The main task of that
project was to develop and implement a grammar-based grammar checker for Czech and Bulgarian.
The project started in January 1993 and was finished in June 1996. The theoretical and practical work
performed during that project provided a good base for the work on the implementation of a robust
parser of Czech. The relevant parts of the project are mentioned in the following chapters of this
thesis.

There are several differences between the syntactic parser of Czech in RUSLAN and that in
the LATESLAV project. Among the most important ones there is definitely the difference in the
ability to handle nonprojective constructions and the degree of attention devoted to the problems
connected with parsing ill-formed input. The difference was also in results obtained from both parsers
� the parser in RUSLAN was oriented more towards the natural language analysis in the sense defined
in the previous chapter, while the grammar checker in LATESLAV worked with syntactic recognition
of well-formed sentences and with syntactic parsing of ill-formed ones. On the other hand, both

15

parsers also have many common features, for example they both follow the tradition of Czech
linguistics and use dependency trees as a means of representation of sentence structure.

It is possible to say that both projects created certain kind of boundaries for a robust parser of
Czech described in this dissertation. The parser used in the RUSLAN system was not robust enough to
be widely used for parsing unrestricted text, while the grammar checker used in the LATESLAV
system was mainly concerned with the identification and localization of syntactic errors, not so much
with providing a complete set of results expected from a syntactic parser in the sense defined in the
previous chapter.

2.3 Experiments with a stochastic parser of M. Collins
Both parsers mentioned above are rule-based systems that were created in accordance with the long
tradition of Czech theoretical and computational linguistics. However, the attention of researchers
shifted towards stochastic systems in the last decade and it concerns the Czech language, too. There
were several attempts to create a stochastic syntactic parser of Czech during previous two years. Most
of them are not worth mentioning since their success ratio was hardly better than 50%. This might
seem to be a good result, until we take into account what this number actually means. It expresses the
number of pairs of [governing,dependent] words, which were created correctly with respect to a set of
sentences contained in a treebank (hand-parsed by native speakers). This number in fact means that
there is a very low probability that at least one sentence in a given set of sentences was parsed
correctly.

There is one exception among stochastic parsers of Czech. The best results were achieved
during the workshop at the John�s Hopkins University in Baltimore in June of 1998, see [Hajič 98].
The application of the stochastic syntactic parser of M. Collins to the parsing of Czech texts provided
much better results, about 80% of correctly assigned pairs. This parser has already proved its quality
for English, where the results exceeded 90%. From the point of view of the task of parsing free-word-
order languages it is interesting that the stochastic parser of M. Collins achieved about 10% worse
results for Czech than for English. This result might indicate that the typological difference between
these languages has an influence on the complexity of the task of their parsing. We are far from
drawing unjustified conclusions (some people think that the rich inflection of Czech makes the task of
parsing easier), but it seems to be clear that parsing a language with such a high degree of word-order
freedom as Czech requires slightly different approach both in stochastic and rule-based parsers then
the approach used for languages with relatively rigid word order. The following chapters explain in a
more detail how we have coped with the challenges of a robust parsing of a free-word-order language.

16

Chapter 3: Basic features of our approach

The task of a syntactic parser of a formal language is clear � to provide all possible syntactic
structures for a given input. Formal languages (at least those which are designed for practical
applications, not for theoretical purposes) are usually designed in a manner which tries to make this
task only as difficult as it is really necessary. Typically there are no ambiguous input symbols, the
languages may be parsed by relatively standard means (they are rarely more complex than context-free
languages) and also syntax and semantics are usually clearly separated from each other. A good and
practically useful formal language should be designed not only with the aim at its suitability for a
given purpose, but also with the aim at easy, fast and unambiguous parsing of that language.

Natural languages, on the other hand, have many properties, which make their parsing very
complicated. The input often contains word forms, which are morphologically ambiguous not only in
gender, number or case, but also with respect to the part of speech information (cf. in Czech stát [to
stand/the state], �enou [woman(instrumental case)/(they) chase] or tři [three/rub(imperative)].

The syntax and semantics of a natural language accompanied by pragmatics and real world
knowledge are so closely bound together that in some cases it may mislead even native speakers of a
particular natural language. A simple sample sentence supporting this claim was already presented in
the first chapter. That sentence may seem to be artificial, so let us give one more example of the
complexity of the problem, this time taken from a newspaper:
V novém vládě budou obsazena doposud prázdná křesla.
[Lit.: In new[loc.sg. masc./anim./neut] government[dat./loc.sg.fem.] will be_occupied up_to_now
empty chairs.]
(In the new one, the up to now empty chairs will be taken away from the government.)

At first sight this sentence is clearly ill-formed due to the adjective-noun disagreement in
gender of the second and third input word. Unfortunately the situation is not so straightforward. A
syntactically plausible reading of this sentence is much more difficult to find than in the previous case,
but nevertheless it exists. The key to this reading is hidden in the fact that the sentence may contain an
ellipsis following the adjective nový [new]. The noun vládě [government] may then be in the dative
instead of the locative case and thus it may have a role of a free modifier of the verb obsazena
[occupied] instead of being a part of the free modifier expressed by a prepositional nominal group in
the locative case (that is the preferred reading from of the original sentence). The free modifier is then
expressed by the ellipsis. The acceptability of the syntactically well-formed reading in this case
depends on the context and real-world knowledge, but there are several examples of very similar
sentences which are definitely acceptable. Let us list one of them:
V novém (divadle) majitelům budou obsazena v�echna doposud prázdná křesla.
[Lit.: In new (theatre) to_owners will be_occupied up_to_now empty chairs.]
In the new one, the up to now empty chairs will be taken away from the owners.

Similarly as in this example, if there are any empty chairs belonging to the government
somewhere, then the syntactically correct reading may be taken into account. Nevertheless, even in
such a case the higher complexity of the syntactically plausible reading will probably play an
important role in acceptance or rejection of the sentence. It is highly probable that this sentence will be
rejected by a majority of human readers. This example supports our general strategy to concentrate on
syntactic parsing and to avoid the involvement of semantics and pragmatics wherever possible. The
task of a complete linguistic analysis of natural languages in the sense defined in the first chapter is
too complex to be handled in one step. It generally seems to be a good strategy to solve complex
problems by dividing them into a series of smaller ones. That is the main reason why we have decided
to investigate two main tasks in this dissertation, namely the task of finding one of the possible
approaches to the problem of dividing the analysis of a natural language into smaller steps and the task

17

of a thorough investigation of one of those smaller steps, namely the robust syntactic parsing. The
problem of semantic or even pragmatic analysis is simply too complex to be handled together with
syntactic analysis. The same holds for the incorporation of the real world knowledge into the process
of analysis. With the current level of knowledge achieved in the field of knowledge representation we
cannot even think about it.

There are, of course, many other differences between formal and natural language parsing, but
even those mentioned above provide a ground for asking important questions. We may, for example,
ask the question about the strategy of how to cope with the ill-formed input. Should the possibility of
the occurrence of a syntactic error in the input text be taken into account? And when: only in case
there would be no syntactically correct structure found for a complete input sentence or should the
possibility of ill-formedness be taken into account from the very beginning of parsing? The following
text does not provide a complete set of answers to these questions, it rather advocates one of the
possible approaches to the problem of robust parsing of Czech and discusses its advantages and
drawbacks. We also hope that the methods presented here are applicable not only to Czech, but also to
other (Slavic) languages with a high degree of word-order freedom.

3.1 An approach to robustness
Another question which to a high degree influences not only the quality of results, but also the
complexity of the task itself, is the question of a manner in which the robustness should be
incorporated into the parser. It goes without question that the task of robust parsing is very closely
related to parsing well-formed input, but the problem is which strategy should be chosen to enrich the
classical parsing methods in order to provide acceptable parsing results for ill-formed sentences. This
basically means that we have to decide if we are going to build a system composed of two basic parts,
both of them separate and more or less independent. The first part would be a standard non-robust
parser capable of creating either complete syntactic structures for well-formed (with respect to the
grammar of the parser) sentences or a set of (sub)trees representing partial structures of the input
sentence. The second part would basically consist in an algorithm attempting to construct syntactic
representations of the whole input sentence based on these partial trees.

Another possible approach is to try to use similar methods as in grammar-based (not pattern
based) grammar-checking. In this case we will first try to localize and identify a syntactic error (or,
more exactly, the syntactic inconsistency) of the input and then to make some "correction" which will
allow to create the required syntactic representation of a particular input sentence. In this case the
quality of the result to a large extent depends on the accuracy of the error identification, which
substantially influences the quality of error-correcting mechanism.

It is quite natural that both approaches have certain advantages and disadvantages and thus
every robust parser will probably try to combine to a certain extent both approaches in order to exploit
their advantages and suppress their weaker points.

The advantage of the first approach is the separation of a standard parser and its robust
component. That allows to use a standard formalism for the description and implementation of the
parser and to develop only a certain kind of mechanism for handling partial parses. A similar approach
was proposed even for one version of a grammar checker in the early stage of the project LATESLAV
[Oliva 93], but it was abandoned later, while the second approach provided a base for a successful
implementation of a prototype of a grammar-based grammar checker for Czech (cf. [Holan et al. 97]).

The main disadvantage of the first approach (and also the disadvantage of all other methods
based on the evaluation of partial parses) lies in the complexity of the problem of choosing the
"correct" partial parses, which may be used for creating a global syntactic structure of a particular
sentence. Simple strategies do not seem to be useful and the complexity of more sophisticated methods
may exceed the complexity of the original problem. That leads directly to the application of a certain
kind of heuristics. The quality of the result is then substantially influenced by the quality of the
heuristics used.

The other approach, using a method similar to grammar-based grammar checking, relates the
problem of reconstructing the "correct" form of the syntactic representation of a sentence to the

18

problem of localization and identification of syntactic inconsistencies. The difference between a
syntactic inconsistency and a syntactic error, as we understand it, is based on the assumption that one
particular syntactic error may manifest itself during the parsing process by means of several
inconsistencies. A syntactic inconsistency is a particular conflict of two parts of an input sentence,
which is encountered during the parsing process. The syntactic inconsistency in fact means that there
is no rule in the grammar allowing to join two particular partial structures into a single one. The
syntactic error, on the other hand, may be determined only after several syntactic inconsistencies are
evaluated. For example, in a Czech sentence �Mladí chlapec �li domů� (Young[nom. pl] boys[nom.
sg.] went[pl.] home) there are two inconsistencies, one is the number disagreement between mladí a
chlapec, the other is the subject-predicate disagreement between chlapec and �li. Both are caused by
the same syntactic error, namely the incorrect form of chlapec (instead of chlapci).

Without a precise knowledge about the nature and location of syntactic errors it is not possible
to build a reliable estimation of a "correct" syntactic tree. This is the main reason why we have
decided to use in our system the methods developed in the LATESLAV project (cf. [Kuboň et al. 97])
and to adapt them for the task of robust parsing. As we have already mentioned, one of the main
differences between the robust parsing and the grammar checking is the fact that the grammar checker
aims at the syntactic recognition of syntactically well-formed sentences, while the robust parser needs
to perform a complete syntactic analysis.

3.2 Basic principles of building syntactic trees
In the first chapter we have already defined the dependency trees we are using for the representation of
the syntactic structure. The definition describes the data type used for this purpose, but it does not give
any information about the manner how the syntactic structure is encoded into the dependency tree. In
this paragraph we would like to discuss several basic principles used for coding the syntactic structure
of input sentences:
• All input items (word forms, punctuation marks etc.) are represented by separate nodes. This is

hardly surprising because, for example, in the Prague Dependency Treebank (a semiautomatically
annotated treebank of syntactically tagged Czech sentences [Bémová et al. 97]) the same approach
was adopted on the analytical level.

• When assigning the roles of the governing and the dependent nodes to a pair of mutually
connected nodes in the syntactic tree we try to follow the linguistic tradition whenever possible,
with only a few exceptions. Among these exceptions are those pairs of nodes where the tradition
does not provide a clear guideline. This is, for example, the case of coordination inside one clause.
If we take a sentence �Petr a Pavel �li do kina.� (Petr and Pavel went to the cinema.), we may use
at least six different ways of expressing the coordination in the syntactic tree by means of oblique
edges:

Fig. 3.1. Six variants of expressing coordination by means of oblique edges of the syntactic tree

19

• In similar cases, when the choice between possible variants is more or less arbitrary, we have
decided to use very simple criterion for the decision about which of the nodes should be the
governing and which the dependent one. We compare the amount of information stored in
individual nodes and assign the role of the governor to the node that contains more morphological
or syntactic information. We follow a very simple idea whenever possible � we think that the
natural language parsing is a very complex task even if we do not burden it with unnecessary (with
a strong stress on this adjective) transport of information through the dependency tree.
In the example above this criterion clearly rules out the variants with a conjunction a [and] as the
governing item of at least one pair of nodes (the second, fifth and sixth picture), because the
conjunction carries much less information then both nominal nodes. The decision between the
remaining three variants is also inspired by our endeavor to make the parsing process as simple as
possible. Under normal circumstances it is usually much easier to determine where the
coordination ends than where it starts (due to the presence of coordinating conjuction preceding
the last member of the coordination), therefore we try to process the coordination from right to
left. The last noun and the conjunction are processed first (that rules out the third variant) and the
leading noun is attached to the result (the first variant) or vice versa (the fourth variant). The
choice between these two variants is more or less arbitrary. We have decided to use the fourth
variant of notation throughout this dissertation. According to our opinion this variant is more
readable e.g. for coordinated sentences, where the higher depth of the subtree allows to distinguish
more easily the two coordinated clauses from each other.
The general strategy described here applies also to the decision whether a nominal group in
prepositional case should depend on a noun or on a preposition and to other similar cases. We
prefer the notation with a noun as a governing node and the preposition as the leftmost dependent
node of the subtree representing the whole group.

• According to our definition of the dependency tree there are no labels assigned to their edges. This
fact is a consequence of our decision to concentrate on creating a structure of the sentence and to
leave aside everything that is not substantial. This decision is supported by two facts:
− The analytical function can be assigned later on the basis of the information about the number

of a particular grammar metarule, according to which the edge was created and on the basis of
the information contained in the governor or dependent. For example, if the dependent noun is
attached to the finite verb by means of a metarule for filling a valency frame slot and if the
dependent noun is in the nominative case, then it is highly probable that it is the subject of the
clause (there are only very few examples of constructions in Czech violating this rule, e.g.
Jako �éf se Milan změnil. [As a boss Milan changed.] where both Milan and boss are in
nominative case).
The connection of analytical functions and individual metarules of the grammar of the system
is discussed in more detail in Chapter 9 describing individual metarules.

− The experiments were made in the past whether it is possible to assign analytical functions
reliably if we know the syntactic structure of the sentence [Starý 97]. These experiments used
stochastic methods for choosing the proper analytical function and they achieved very good
results.

3.3 Reduction of the number of results of syntactic parsing
If we decide to aim at building syntactic trees on the basis of purely syntactic and morphological
information only, we also have to make some important decisions before starting to implement the
grammar. The omission of semantics affects the number of possible variants of syntactic trees �
without semantic clues it is in certain cases impossible to decide to which node of the syntactic tree to
attach a dependent subtree. The number of possible readings of the input sentence thus grows. Let us
consider the following pair of sentences:

(a) Banky sni�ují úroky z ekonomických důvodů.
(Banks are lowering interests for economical reasons)

20

(b) Banky sni�ují úroky z krátkodobých půjček.
(Banks are lowering interests of short-term loans)

When we take into account the meaning of both sentences, we will end up with one syntactic
tree representing the structure of each sentence:

Fig. 3.2. Syntactic trees representing preferred readings of sentences (a) and (b), respectively

If semantics is not taken into account, it is impossible to distinguish between these two
sentences and it is necessary to issue for each of the sentences both types of trees.

The previous example demonstrates that the decision to omit semantics and to concentrate on
pure syntax has an influence on the number of structures obtained as a result of parsing. Semantics or
pragmatics is often very important, for example, in assigning the �correct� free modifiers to verbs or
nouns. Without semantic or pragmatic clues it is necessary to consider the combinations of all free
modifiers in all possible manners (a nice example of a very complicated structure of free modifiers is
the sentence (2) of the testbed presented in Chapter 11). In order to avoid unnecessary duplicity of
results we have decided to reduce the number of results generated by our parser by means of the
application of general constraints blocking the multiple attachment of a single free modifier. We will
discuss these constraints in more detail in Chapter 9 describing the particular metarules of our system
(namely in section 9.2 Verbal modifiers, in the description of the metarule(6)). One example of such a
constraint is the decision to attach the free modifier (or, more exactly, a nominal group in a
prepositional case) to the nearest candidate from the left-hand side (in the sense of the linear order of
nodes given by their horizontal index). For the sample sentences (a) and (b) we will get the following
D-trees:

Fig. 3.3. Syntactic trees representing results of syntactic parsing of sentences (a) and (b), respectively, by
means of our robust parser

This may seem to be too much simplified, but in fact, no information is lost. If we take into
account that the general constraint forbidding the attachment to any other than the nearest preceding
candidate was applied, we may easily reconstruct all remaining results. The structures obtained give us
a very good clue which nodes belong among the candidates, so we may generate a full set of results.
The fact that the free modifier may be attached also to the main verb of the sentence leads to the
following pair of results for our sample sentences:

21

Fig. 3.4. Syntactic trees representing those structures for sentences (a) and (b), respectively, which can be
generated from structures in Fig. 3.2

The application of general constraints in certain metarules thus allows us to create a subset of
results of a syntactic parser, which represents the whole set in the sense that, if required, the full set of
results may be obtained in a simple and regular way out of the subset. In this sense we speak about a
skeleton of the set of possible syntactic trees. A thorough discussion of the problem of generating
additional syntactically plausible structures to a single structure representing the preferred reading of a
sentence may be found in [Panevová, Straňáková 99], therefore we are not going to cover the problem
here. The authors take as a basic structure the trees from the Prague Dependency Treebank (there is
only one tree for each sentence in the PDT representing the most likely reading from the point of view
of a human annotator) and formulate a set of rules allowing to generate all syntactically plausible
variants of dependency trees for each sentence.

The ambiguity of attachment of prepositional groups is very common in Czech. In most cases
these groups play a role of free modifiers, but quite frequently they may even belong to a set of inner
participants of the governing word. One of the major problems of syntactic parser is its inability to
distinguish these two cases from each other. The endeavor to develop sophisticated rules solving this
problem is described for example in [Straňáková 99] or [Straňáková 01]. Even more problematic is the
robust parsing of ill-formed sentences. The task of the proper free modifier attachment is complex
enough even in case it is possible to rely on the fact that the input sentence is well-formed. The fact
that we should expect ill-formed input sentences means that there is even less information, which may
be used for resolving the ambiguity of the free modifier attachment.

These reasons led us to a substantial simplification of valency frames (compared to the
theoretical version described for example in [Panevová 80]. Due to our inability of distinguishing for
prepositional groups whether a particular group is a free modifier or an inner participant it is useful to
handle these two types of valency frame members in a uniform way. As our simplified valency frames
do not contain any slots for nominal groups in prepositional cases, we always attach nominal groups in
prepositional cases as free modifiers. The structure of valency frames used in our robust parser is
described in a more detail in Chapter 8.

22

Chapter 4: Basic components of the system

Every project of natural language parsing may be divided into a number of smaller specialized
subsystems. Among the most important ones there are, for example, a morphological analysis and
disambiguation of the input (very important for languages with a rich inflection), a parsing formalism,
a grammar, a dictionary capable to provide information required for parsing. Equally important are the
tasks that do not constitute a proper part of the system, but provide a valuable support in the phase of
system implementation. The task of the development of a method for effective testing and debugging
the grammar including the development of a representative test suite belongs to this category. Let us
now introduce these units and tasks and divide them into two categories � already existing resources,
which were reused for our purposes, and those which had to be created anew.

4.1 Available resources
It is always a great advantage if a new project can reuse the already existing resources. Also for our
implementation of the robust parser for Czech it was not necessary to build all of its components from
scratch. Some of the important resources were already available and were reused. Let us briefly
mention these resources:

4.1.1 Morphology
The morphological analysis of Czech had already been created in the past [Hajič 94], originally for a
commercial spelling checker of Czech. The morphological dictionary now covers almost the entire
Czech vocabulary. There is nothing that could be added in the frame of this project, so the problem of
morphological analysis of Czech was not addressed here at all. We can skip the phase of
morphological analysis altogether supposing that every input sentence has already been processed by
morphological analysis and that it already carries all relevant morpho-lexical information as part of the
input.

4.1.2 Software environment
The choice of software environment for the development of the parser is a decision that to a great
extent influences the general behavior of the system. There is usually a trade-off between the speed
and efficiency and the use of a high-level linguistic formalism. Especially unification-based
formalisms, probably the most widely used tool in current computational linguistics, are infamous for
a great inefficiency of their implementations. Fortunately, the RFODG (Robust Free Order
Dependency Grammar) developed in the LATESLAV project [Kuboň et al. 97] together with FODG
(Free Order Dependency Grammar) [Holan et al. 00] proved to be useful even in the project of a
robust parser for Czech. The main advantage of the RFODG is its ability to handle syntactically
correct and ill-formed sentences in a uniform way, while FODG already proved its suitability for the
description of nonprojective constructions and different kinds of measures allowing to formulate
general constraints applicable in robust parsing.

4.2 New components

4.2.1 Grammar
There are at least two reasons why it is not possible to use a context-free grammar directly for natural
language parsing. The first reason is that context-free grammar is too weak for an adequate description

23

of Czech (cf. the discussion of parsing complexity of nonprojective constructions in Chapter 6), the
second reason is that it is also impractical � it would simply require too many rules. It is therefore
quite natural to use a metagrammar instead of a context free grammar. Such a metagrammar is in fact
a two-level grammar � each metarule of the metagrammar represents a finite set of grammar rules. The
metarule also allows us to use a (finite) set of attributes and it should also provide means for
formulating constraints. There might generally be two kinds of constraints � the first kind are the
constraints imposed on values or types of individual attributes, the second kind are general constraints
controlling the application of individual metarules. The metagrammar also allows pruning spurious or
inadequate structures. Chapter 9 contains a detailed description of our metagrammar and its metarules.

The metagrammar is, of course, far from complete in the sense that it does not cover all subtle
syntactic phenomena of Czech, but it covers the most frequent ones, which allow us to represent the
syntactic structure of simple clauses and also the structure of certain types of complex sentences. It
also contains a few examples of how marginal phenomena should be handled in the future. The
grammar is important from at least one more point of view � it provides a basis for the discussion of
the influence of certain linguistic phenomena on parsing complexity and efficiency. It also serves as a
background for the discussion of possible improvements of the methodology and technology of the
robust parser leading to a more adequate and efficient implementation of the robust parser in the
future.

4.2.2 Dictionary
In order to syntactically parse an input sentence it is, of course, necessary to combine the morpho-
lexical information acquired in the phase of morphological analysis with the lexico-syntactic
information contained in the syntactic dictionary of the system. The task of building such a syntactic
dictionary is very costly and time�consuming, therefore we use in this project only a sample of such a
dictionary. The dictionary structure used in the LATESLAV project [Skoumalová 94] was modified
and a sample dictionary containing a representative selection of lexical items was developed for the
purpose of the robust parser.

4.2.3 Testing and debugging
The last but not least important task addressed also in this project was the development of a method
allowing for the effective testing and debugging of the grammar during the process of its development.
One of the most substantial problems of nondeterministic approach to parsing is the problem of
preserving the consistency of new and modified rules of the formal grammar with the already existing
rules. It is very often the case that the newly added rule to a certain extent overlaps with one or more
already existing rules and it is necessary to specify a set of constraints adjusting the relationship
between these rules. It is one of the crucial problems of every project aiming at a development of a
large-scale formal grammar of a natural language. The problems of testing and debugging are
discussed in Chapter 10.

24

Chapter 5: Basic notions II

One of the most useful results of the LATESLAV project was the introduction of a class of
formal grammars called RFODG (Robust Free-Order Dependency Grammars). This class of formal
grammars is based on the earlier definition of dependency grammars related to formal languages,
which can be found for example in the textbook [Gladkij 73]. Our definition was developed as a tool
for the description of syntactically ill-formed sentences of a language with a high degree of word-
order freedom and for the differentiation of syntactically well-formed and ill-formed sentences. It also
provides means for localization of syntactic inconsistencies. The exact definition of RFODG can be
found in [Kuboň et al. 97]. The following paragraphs contain only that part of the description of
RFODG which is necessary for the sake of understanding the remaining chapters.

5.1 Robust Free Order Dependency Grammar
RFODG serves primarily for the description of surface syntax. It provides the base of the parsing with
subsequent localization and evaluation of syntactic inconsistencies and errors (as already mentioned, it
is useful to distinguish between the notion of syntactic inconsistency as an instance of a violation of a
syntactic rule and the notion of syntactic error as a result of evaluation of one or more syntactic
inconsistencies). It is assumed that RFODG is applied when the lexical and morphological analysis is
already completed, it was not designed as a formalism for error detection on lexical level. In the sequel
the RFODG's are analytic (recognition) grammars.

It is also assumed that the result of lexical and morphological analysis for each word form of
the input is a finite set of symbols representing lexical and morphological properties of the word form.
It is further assumed that formal syntax is connected with lexical analysis in that the terminal symbols
of the formal grammar accounting for syntax are the symbols representing lexical and morphological
properties of the word forms.

The RFODG uses the following types of classification of the set of symbols:
a) terminals and other symbols (nonterminals)
b) positive and negative symbols.

The sets under a) have the usual meaning. The terminals of RFODG are the lexical categories
of the morpho-lexical analysis combined with the lexico-syntactic information (valency frames etc.).

The sets under b) serve for the localization and rough classification of syntactic
inconsistencies.

Each pair of sets of symbols under a) and b) constitutes the set of all symbols used by
RFODG. That means that each symbol of the set of symbols V (cf. Definition 5.1) is at the same time
a member of exactly two subsets, one from each pair.

Definition 5.1. (of the RFODG)
Robust Free-Order Dependency Grammar (RFODG) is a 4-tuple (N, T, St, P), where N is the set of
nonterminals, T is the set of terminals and the union of N and T is denoted as V, St ⊂⊂⊂⊂ N is the set of
root symbols (starting symbols), and P is the set of rewriting rules of two types of the form:

a) A →X BC, where A, B, C ∈∈∈∈ V, X is denoted as the subscript of the rule, X ∈∈∈∈ {L,R,LP,RP},
b) A →→→→ B, where A, B ∈∈∈∈ V.

We suppose that V = Vp ∪ Vn, where Vp is the set of positive (correct) symbols, and Vn is the set of
negative symbols (negative symbols mark syntactic inconsistencies contained in the tree representing
the syntactic structure of a sentence).

25

The occurrence of the letter L in the subscripts of the rules means that the first symbol on the
right-hand side of the rule is considered dominant, and the other dependent.

The occurrence of the letter R in the subscripts means that the second symbol on the right-
hand side of the rule is considered dominant, and the first one dependent.

If a rule has only one symbol on its right-hand side, the symbol is considered as dominant.
Applying such a rule means to rewrite an occurrence of the right-hand side symbol by the left-

hand side symbol.

A rule whose right-hand side contains two symbols is applied (for a reduction) in the
following way:

The dependent symbol is deleted, and the dominant one is rewritten (replaced) by the symbol
standing on the left-hand side of the rule.

The rules A →L BC, A →R BC can be applied for a reduction of a string z to any of the
occurrences of symbols B,C in z, where B precedes C in z.

This in fact means that in RFODG it is possible to apply this type of rules on discontinuous
pairs of symbols from z (immediate precedence of B is not required). This property of RFODG is used
for capturing nonprojective constructions.

The rules A →LP BC, A →RP BC can be applied for a reduction of a string z to any neighboring
occurrences of symbols B,C in z, where B precedes C in z.

The definition allows the terminals to appear on the left-hand side of rules. This is due to the
fact that we consider this grammar to be an analytical grammar. The analysis is done by reduction. If,
for example, a sequence of reductions analyzing the subordinate clause is completed, it is necessary to
represent the subordinate clause by an appropriate terminal symbol on the level of the governing
clause in order to maintain the well-formedness (or ill-formedness) of a given sentence for the purpose
of further analysis.

For the sake of the following explanations it is necessary to introduce a notion of a DR-tree
(delete-rewrite-tree) according to G. A DR-tree maps the essential part of history of deleting
dependent symbols and rewriting dominant symbols performed by the rules applied. The definition of
a DR-tree was for the first time introduced in [Holan et al, 1998].

Put informally, a DR-tree (created by a RFODG G) is a finite tree with a root and with the
following two types of edges:

vertical (V-edges): these edges correspond to the rewriting of the dominant symbol by the
symbol which is on the left-hand side of the rule (of G) used. The vertical edge leads (is oriented) from
the node containing the original dominant symbol to the node containing the symbol from the left-
hand side of the rule used.

oblique: these edges correspond to the deletion of a dependent symbol. Any such edge is
oriented from the node with the dependent deleted symbol to the node containing the symbol from the
left-hand side of the rule used.

Let us now provide a more formal definition of DR-trees. In the sequel the symbol Nat
denotes the set of natural numbers (without zero):

Definition 5.2.(DR-tree)
A triple Tr=(Nod,Ed,Rt) is called DR-tree created by a RFODG G (where Nod means the set of
nodes, Ed the set of edges, and Rt means the root node), if the following points hold for every
U ∈ Nod:
a) U is a 4-tuple of the form [A,i,j,e], where A ∈ V (terminal or nonterminal of G), i,j ∈ Nat, e is

either equal to 0 or it has the shape kp, where k,p ∈ Nat. The A is called symbol of U, the number i
is called horizontal index of U, j is called vertical index, e is called domination index. The
horizontal index expresses the correspondence of U with the i-th input symbol. The vertical index

26

corresponds to the length increased by 1 of the maximal path leading bottom-up to U. The
domination index either represents the fact that no edge starts in U (e=0) or it represents the final
node of the edge starting in U (e=kp, cf. also the point e) below).

b) Let U= [A,i,j,e] and j>1. Then there is exactly one node U1 of the form [B,i,k,ij] in Tr, such that
1 <= k < j and the pair (U1, U) creates a vertical edge (V-edge) of Tr, and there is a rule in G with
A on its left-hand side, and with B in the role of the dominant symbol of its right-hand side.

c) Let U= [A,i,j,e]. Then U is a leaf if and only if A ∈ T (terminal symbol of G), and j=1.
d) Let U= [A,i,j,e]. U=Rt iff it is the single node with the domination index (e) equal to 0.
e) Let U= [A,i,j,e]. If e=kp and k < i (resp. k > i), then an oblique edge leads from U (dependent

node) to its mother node Um with the horizontal index k, and vertical index p. Further a vertical
edge leads from some node Us to Um. Let C be the symbol from Um, B from Us, then there exists a
rule in G of the shape C →L BA (resp. C →R AB).

f) Let U= [A,i,j,e]. If e=kp, and k=i , then a V-edge leads (bottom up) from U to its mother node
Um =[B,i,p,em] (for some em). If there is not such an oblique edge, for which Um is its dominating
node, then there exists a rule in G of the shape B → A. In the other case, see the point e).

We say that a DR-tree Tr is complete if for any of its leaves U= [A,i,1,e], where i>1, it holds that there
is exactly one leaf with the horizontal index i-1 in Tr.

Example 5.1.
This example illustrates the notion of DR-tree. Let us take the sentence from the example 1.2:
Zadaný soubor se nepodařilo otevřít.
[Specified file Refl. it_was_not_possible to_open.]
(The specified file failed to open.)

The following grammar G1 is a RFODG. G1 = (N1,T1,{S},P1), T1 = {Zadaný, soubor, se,
nepodařilo, otevřít, . }, N1 = {N,V,I,S}, P1 = {N->R Zadaný soubor, V->R se nepodařilo, V->L V I, I->R
N otevřít, S->L V .}. Fig. 5.1 displays a DR-tree Tr1 derived by G1 for the sentence. The nodes of Tr1
are:
L1=[Zadaný,1,1,22], L2=[soubor,2,1,22], L3=[se,3,1,42], L4=[nepodařilo,4,1,42], L5=[otevřít,5,1,53],
L6=[.,6,1,45] (leafs) and N1=[N,2,2,53], N2=[V,4,2,44], N3=[I,5,3,44], N4=[V,4,4,45] and N5=[S,4,5,0].

Fig. 5.1. A DR-tree Tr1 derived by G1 for the sentence Zadaný soubor se nepodařilo otevřít.

Definitions 5.3.
TN(G) denotes the set of complete DR-trees rooted in a symbol from St, created by G. If Tr ∈ TN(G),
we say that Tr is parsed by G.

Let w=a1a2 ... an, w ∈ T*, Tr ∈ TN(G), and let [ai,i,1,e(i)] denote the i-th leaf of Tr for i=1, ...
,n. In such a case we say that the string w is parsed into Tr by G.

27

The symbol L(G) represents the set of strings (sentences) parsed into some DR-tree from
TN(G).

We will also write TN(w,G)={Tr; w is parsed into Tr by G}.

Remark
At this point it is necessary to stress that the RFODG is not implemented directly � the grammar
composed of rules of the type defined above would be too large. In order to avoid this obstacle we
have decided to develop a special software environment which allows describing the grammar by
means of metarules representing sets of related rules of the RFODG. This "metalanguage" is described
in a more detail in Chapter 7.

5.2 A relationship between DR-trees and D-trees
There is a very straightforward correspondence between DR-trees and D-trees (as they were defined in
the first chapter). Informally, a D-tree is obtained by the contraction of vertical paths of a DR-tree and
by the addition of information about the distance of a particular node from the root (vertical index).
Definition 5.4. (A tree contracted from a DR-tree)

Let Tr ∈ TN(w,G) (w is parsed into Tr by G), where w=a1a2 ... an. The tree dT(Tr) contracted
from the DR-tree Tr is defined as follows: The set of nodes of dT(Tr) is the set of 4-tuples [ai,i,j(i),k(i)]
(ai is the i-th symbol of w). For each symbol ai there is exactly one node in dT(Tr).

k(i)=0 if and only if the root of Tr has the horizontal index i (then the [ai,i,j(i),k(i)] is also the
root of dT(Tr)).

k(i) ∈ Nat if and only if in Tr an oblique edge leads from some node with the horizontal index
i to some node with the horizontal index k(i).

The index j(i) is constructed in several steps, starting with the node representing the root of
dT(Tr):
1. j(i) is assigned the value 0 if and only if the root of Tr has the horizontal index i (then the

[ai,i,j(i),k(i)] is also the root of dT(Tr));
2. j(i) is assigned the value 1 if and only if there is an oblique edge in Tr leading from a node with

the horizontal index i to the node with the same horizontal index as the root.
3. j(i) is assigned the value n if and only if there is an oblique edge in Tr leading from a node with

the horizontal index i to the node with the same horizontal index as a node [am,m,n-1,k(m)] ∈
dT(Tr).

The third slot of nodes of dT(Tr) is called the vertical index.
We can see that the edges of dT(Tr) correspond (one to one) to the oblique edges of Tr, and

that they are fully represented by the second and the fourth slot of nodes of dT(Tr). The second slot is
called the horizontal index of the node. The fourth slot is called the dominance index.

Example 5.2.
Let us take the sentence from the previous example and let us contract the DR-tree from Fig.5.2.
Zadaný soubor se nepodařilo otevřít.
[Specified file Refl. it_was_not_possible to_open.]
(The specified file was the one it was not possible to open.)
There are the following nodes in the contracted tree dT(Tr) of this sentence:
u1=[Zadaný,1,3,2], u2=[soubor,2,2,5], u3=[se,3,1,4], u4=[nepodařilo, 4,0,0], u5=[otevřít,5,1,4],
u6=[.,6,1,4]

28

Fig. 5.2. A contracted tree dT(Tr) for the sentence from example 5.2

Lemma 5.1.
Let Tr ∈ TN(w,G) (w is parsed into Tr by G), where w=a1a2 ... an. The tree dT(Tr) contracted from the
DR-tree Tr is a D-tree.
Proof: dT(Tr) contains exactly n nodes, one for each symbol ai, with the horizontal index i ∈ {1..n}.
One of these nodes (the contracted root of Tr), the node [ai,i,0,0], is a root of dT(Tr). The construction
of the vertical index of dT(Tr) guarantees that its value represents the distance of the node from the
root . The dominance index of a node from dT(Tr) represents the horizontal index of its governor, as it
is described in the definition of dependency trees from chapter 1. If u=[ai,i,vi,di] and di≠0, then there is
exactly one node v=[adi,di,vi-1,ddi]. It is the node representing the node from Tr to which leads an
oblique edge from a node of Tr with the horizontal index i. For every horizontal index i of a node of Tr
(except the horizontal index of the root) there is only one oblique edge leading from a node with this
index to a node with a different horizontal index.

Definition 5.5
If a DR-tree Tr ∈ TN(w,G) (w is parsed into Tr by G) contains only positive symbols (from Vp), we say
that Tr is positively parsed by G. If Tr contains also negative symbols (from Vn), we say that Tr is
robustly parsed by G.

We say that a sentence w is positively parsed, if there is a positively parsed DR-tree among the
DR-trees parsed from w. A sentence w is robustly parsed, if it is parsed, but not positively parsed.

5.3 Syntactic analysis and a nonprojectivity measure of a language
In this section we would like, first, to generalize the definition of magnitude of nonprojectivity of the
pair [sentence; (one of) its structures] to the magnitude of nonprojectivity of a sentence (i.e. without
respect to a particular structure of the sentence). Based on this, we define the measure of
nonprojectivity for a set of sentences, that is, for a language.

Let us first define the notion of a D- analysis, which allows for making statements about a
sentence jointly with all its structures (that is, basically, irrespective of the set of its structures).

Definition 5.6 (D-analysis)
Let A be a (finite) alphabet and let T be a set of dependency structures (trees) over sentences created
over A. A function D: A* -> P(T) is called1 a D-analysis over the alphabet A.

That is, a D-analysis is a function2 which assigns each sentence w a set of dependency trees
D(w).

1 P(T) denotes the set of subsets of T
2 At this moment we do not intend to study the way this function should be defined. We suppose that this

function is given by the linguistic knowledge.

29

In cases where it is clear what the alphabet is, we abbreviate the wording of the term
accordingly, and instead of a D-analysis over the alphabet A, we speak about D-analysis only.

Let us now introduce the terms language and D-analysis of a language.

Definition 5.7 (Language)
A language over an alphabet A is a set L ⊂ A*. If it is clear what the alphabet is, we abbreviate the
term to language only.

Definition 5.8 (D-analysis of a language)
Let L be a language over the alphabet A and let D be a (fixed) D-analysis over A. We say that D is a
D-analysis of the language L, if the following holds:

L = {w ∈ A*; D(w) ≠ ∅ }
that is, the language L contains sentences for which the analysis gives at least one tree as a

result, and only these sentences.

Having defined all necessary notions, we can finally define the magnitude of non-projectivity
of a sentence and of a language.

Definition 5.9 (Magnitude of non-projectivity of a sentence, magnitude of non-
projectivity of a language)
Let L be a language, w ∈ L be a sentence and let D be a (fixed) D-analysis of L. The measure
dNh(w,D) = max T ∈ D(w) dNh(T) is called the magnitude of non-projectivity of the sentence w according
to D-analysis D.

Let L be a language and let D be a (fixed) dependency analysis of the language L. Let us
define dNh(L,D) = sup w ∈ L dNh(w,D). The measure dNh(L,D) is called the magnitude of non-
projectivity of the language L according to D-analysis D.

There is one more measure, which is important for the description of structures obtained as a result of
robust parsing and for the formulation of global constraints on parsing. This measure describes the
degree of �ill-formedness� of a particular sentence. For this purpose we will need slightly modified
D-trees. The original definition of D-trees does not allow keeping track of syntactic inconsistencies
encountered in the parsing process. There is a very natural way of adding this information to standard
D-trees, namely adding information about the location of syntactic inconsistencies to D-trees.

Definition 5.10 (Robust D-trees)
Let Tr ∈ TN(w,G) (w is parsed into Tr by G), where w = a1 a2 ... an. Let dT(Tr) be a D-tree contracted
from the DR-tree Tr. We say that the D-tree dTr(Tr) is a robust D-tree if it has the following
properties:
a) The set of nodes of dT(Tr) is the set of 5-tuples [ai,i,bi,j(i),k(i)] (ai is the i-th symbol of w). For

each symbol ai there is exactly one node in dT(Tr).
b) k(i)=0 if and only if the root of Tr has the horizontal index i (then the [ai,i,bi,j(i),k(i)] is also the

root of dT(Tr)). k(i) ∈ Nat if and only if in Tr an oblique edge leads from some node with the
horizontal index i to some node with the horizontal index k(i). The index j(i) is constructed in the
same manner as in the definition 5.4.

c) The symbol bi ∈ {0,1} has the value 1 iff in the DR-tree Tr the node with the horizontal index k(i)
towards which the oblique edge from the node with the horizontal index i leads contains a
negative symbol (nonterminal). It equals 0 in the opposite case or in case that k(i)=0. The symbol
bi is called the index of robustness.

We can see that the edges of dT(Tr) correspond (one to one) to the oblique edges of Tr, and that they
are fully represented by the second and the fifth slots of nodes of dT(Tr). The second slot is called the
horizontal index of the node. The fourth slot of nodes of dT(Tr) is called the vertical index. The fifth
slot is called the dominance index.

30

Remark
The definition shows that the robust D-trees are in fact D-trees with the added information about the
existence of syntactic inconsistencies. In the trees drawn by the interpreter of our metagrammar as a
result of parsing (cf. Chapter 11) are the third slots of all nodes (the index of robustness) represented
by edges leading up from a particular node. If the index of robustness of that node equals 1, the path
leading up to the dominating node is drawn as a dashed line.

Definition 5.11 (Degree of robustness of DR-trees and D-trees)
Let Tr ∈ TN(w,G) and T is a robust D-tree over a sentence w. We say that a node of Tr is negative, if
it contains a negative symbol (nonterminal). We denote as Rob(Tr) the number of negative nodes in Tr
and Rob(T) the number of nodes in T in the form [ai,i,1,j(i),k(i)] (the nodes with the index of
robustness equal to 1). We say that Rob(Tr) and Rob(T) is the degree of robustness of Tr and T,
respectively.

5.4 The mutual relationship of nonprojectivity measures and the
degree of robustness

As we have already mentioned in previous chapters, we understand the robust parser as a tool for
assigning (a) syntactic structure(s) to ill-formed sentences which do not violate certain global
constraints and also as a tool for filtering out the sentences which violate them. In this way we would
like to simulate the fact that certain ill-formed sentences may be parsed (and understood) by a human,
while others are so corrupted that even a human is not able to parse them. This task is, of course, very
difficult, because the human has at his or her disposal not only syntax, but also semantics, pragmatics
and real world knowledge. That in fact means that we are looking for as natural constraints as possible
in order to achieve a goal which would be at least close to the results achieved by humans.

The measures we have defined in this chapter represent one of the possible global constraints
which may be used for a robust parser. The degree of robustness and the nonprojectivity measures
capture the complexity of sentences relevant from the point of view of a robust parsing of languages
with a high degree of word-order freedom. They provide a theoretical base for the division of a parsing
process into phases, whose aim is to analyze input sentences step by step, with more relaxed global
constraints for each subsequent phase. In our implementation of the robust parser for Czech we have
decided to use the following phases:

The first phase, called a positive projective phase, tests whether the set of projective positively
parsed trees is empty. If not, the sentence is syntactically correct and the parser issues all trees
representing the syntactic structures of all syntactically acceptable readings of the sentence.

If the sentence is not projective or is syntactically ill-formed, the second phase, called negative
projective or positive nonprojective, starts. It tries to find either a positively parsed nonprojective tree
or a projective tree with the degree of robustness equal to or greater than one, i.e. a projective tree
representing an ill-formed sentence. If the parser succeeds, it stops and issues all relevant trees as the
result of parsing.

If the second phase fails, the partial results are handed over to the third phase, which is called
negative nonprojective. It tries to find a nonprojective tree with the degree of robustness equal or
greater than zero. This phase is the last one and if it fails, the whole parsing fails and issues a relevant
error message. The practical experiments have shown that even though Czech is a language with an
unlimited magnitude of nonprojectivity, cf. [Holan et al 00], it would be reasonable to restrict the
magnitude of nonprojectivity to the lowest possible threshold, i.e. one gap. The chapter dealing with
actual results of robust parsing of sentences from our testbed clearly shows that the increase of parsing
time in each phase is really substantial. We would like to stress that the main task of our work is to
develop a method capable of handling the problem of robust parsing, not to concentrate on detailed
practical solutions. At this point it is also necessary to point out that a much subtle scale of phases is
currently being developed by the author of the software environment used here, Tomá� Holan cf.
[Holan 01]. We think that from this point of view our restriction is reasonable.

31

A combination of negative projective and positive nonprojective parsing in the second phase is
quite natural. In some cases it is very difficult or even impossible to find out if the sentence is correct
and nonprojective or ill-formed and projective.

We can illustrate this fact by the following sentence:
"Které děvčata chtěla koupit ovoce?"
[Lit.: Which girls wanted [to] buy fruit?]

Some of the native speakers consider this sentence to be correct, some say that it is incorrect and most
of them are uncertain, but they usually say that this sentence is simply weird. The problem is that the
sentence can be assigned at least three possible trees. Two of them do not contain any syntactic
inconsistency (but are nonprojective), with the pronoun Které [Which] depending on the noun ovoce
[fruit] (cf. Fig. 5.2) or on the infinite verb koupit [to buy] (cf. Fig. 5.3). The structure from Fig. 5.2. in
fact represents two different readings, with the pronoun Které either in genitive or in dative case.

At this point we would like to make an important comment concerning the dependency trees
in the figures. Their nodes are different from the nodes of dependency trees drawn according to our
definition from Chapter 1. The reason is that the figures describing the results of robust parsing are in
fact screenshots of actual results obtained. These trees contain complete information necessary for
drawing real dependency trees. The symbol ai represents the whole node, the horizontal index is
represented by means of preserving the surface word order from the left to the right, the vertical index
is preserved according to the definition as a number of edges leading from the root to a particular node
and the dominance index is represented by a particular edge. The presence of a syntactic inconsistency
in the tree is represented as a dashed line leading from a governing node to the node with the index of
robustness equal to 1. In other words, the dashed line represents an occurrence of a syntactic
inconsistency between the nodes belonging to a dashed edge. In some cases the system also draws
numbers of metarules, which were used for the creation of a particular edge. The use of simplified
nodes was motivated by practical reasons � if a sentence contains more than 20 input words, it is very
difficult to use full size nodes and to preserve readability of the structure at the same time. The trees
from figures 5.3�5.5 are actual results of our robust parser. The results of our robust parser presented
in Chapter 11 are displayed in the same manner, as screenshots of actual results (with simplified
nodes).

One more explanation is necessary � all screenshots contain a special node for
LEFT_SENTINEL as the governing node of the whole structure. This node is used throughout the
input data as a marker showing where the sentence starts.

Fig. 5.3. A nonprojective tree representing the sentence �Which fruits did the girls wanted to buy?�

The other reading contains a syntactic inconsistency between the pronoun Které [Which] and
the noun děvčata [girls] � these two words disagree in gender. This reading may be represented by the
projective tree from the Fig.5.5.

32

Fig.5.4. The second nonprojective parse representing the sentence �To whom did the girls want to buy
fruits?�

Fig. 5.5. A projective parse with one syntactic inconsistency

It is possible to argue that a nonprojective parse should be preferred, but unfortunately there is
not enough of quantitative data to support this claim. Anyway, if such a need arises, there is no
problem in dividing the parser into four basic parts, positive nonprojective being the second and
negative projective being the third. We have to be very careful in making this kind of preference,
because it has to be taken into account that sometimes a sentence which is considered to be
syntactically incorrect by a majority of native speakers may have a more or less obscure parse which is
correct from the point of view of formal surface syntax. As we have already stressed, the human
speakers usually take into account not only the formal syntax of the sentence when they decide about
the grammatical correctness or incorrectness.

33

Chapter 6: Complexity estimations

In the previous chapter we have mentioned the necessity to limit the degree of nonprojectivity
if we want to reduce the complexity of the problem of the syntactic parsing. The argument presented
there concerned the practical experience with our metagrammar and with the sentences from our
testbed. In this chapter we would like to provide one more argument � namely the statement that the
complexity of parsing significantly grows with the growing magnitude of nonprojectivity. More
precisely, we would like to show that there is a substantial difference in the upper estimation of the
parsing complexity of a language containing only sentences with a fixed limit of the value of dNh and
the lower estimation of the parsing complexity for a (potentially infinite) sequence of Czech sentences
where the value of dNh increases systematically with each next element of the sequence, and hence
dNh exceeds any limit previously given. A thorough discussion of examples supporting the claim that
Czech sentences have this property may be found in [Holan et al. 00].

Let us first introduce some important notions, which we are going to need for a more precise
complexity estimation. The first important notion is the notion of D-parsing. This notion differs in a
certain way from the D-analysis (see Definition 5.6). The task of obtaining all dependency trees
directly is too complex (the set of trees can be too large), and also algorithmically not too interesting.
We will proceed in a way similar to the CF-parsing or the TAG-parsing, cf. [Sikkel, Nijholt 97], where
the parsing means obtaining a set of 'items' of a certain form instead of a set of trees. D-parsing means
to obtain a set of items of a similar form, which contains the relevant information about the D-analysis
of the 'parsed' sentence, but represented in a much more economic way than it is required by the D-
analysis.

Before we start describing more exactly what we understand by the notion of D-parsing, we
must first introduce a data structure suitable for our purposes. For each node ui=[ai,i,vi,di] of a D-tree
T we define Ci=[i,Cov(ui,T)]. As the formula suggests, this pair contains the information about the
index and the projection of a particular node in a D-tree T. Even though the pair Ci is defined as
consisting of two pieces of data, for our purposes it is more appropriate to represent it as a general n-
tuple of indices ICi=[i, i1, ... ,in-1], where the subscript n is an odd integer, n ≥ 3. The index in the first
slot then equals the index i from the original definition of Ci above and each pair of indices ik,ik+1 (k is
an odd integer) represents the span (the leftmost and the rightmost index) of one continuous section of
Cov(ui,T). The number of these pairs directly corresponds to the number of continuous sections in the
Cov(ui,T). We denote the ICi=[i, i1, ... ,in-1] as an item of T, which corresponds to its i-th node.

The full set of items for a particular D-tree T is an alternative way of representation of the D-
tree T. We can see that different D-trees from a D-analysis can share some equivalent items. For
example, the D-tree T2 from Fig. 1.2 with the projections Cov(u1,T2)={1}, Cov(u2,T2)={1,2},
Cov(u3,T2)={3}, Cov(u4,T2)={1,2,3,4,5} and Cov(u5,T2)={1,2,5} can be represented by the following
set of items:

IC1=[1,1,1], IC2=[2,1,2], IC3=[3,3,3], IC4=[4,1,5], IC5=[5,1,2,5,5]

Definition 6.1 (D-parsing of a sentence)
Let D be a D-analysis over A* and w ∈ A*. We denote as D-parsing of w the set of items
DP(w)={IC|IC is an item of a T ∈ D(w)}.

Obviously, the set DP(w) resembles closely the set of items used in the CYK-parsing scheme
or Rytter's parsing scheme, cf. [Sikkel, Nijholt 97]. The difference, however, is that we define DP(w)
statically, going out from the given set of D-trees, assigned to a sentence w. In this manner we can
consider this notion as a notion which originates in (algebraic) linguistics.

For the sake of our explanation we need also the notion of complexity of D-parsing.

34

Definition 6.2 (Complexity of D-parsing and degree of ambiguity of D-analysis)
Let DP(w) be a D-parsing of w. We denote the number of items of DP(w) as the complexity of DP(w).

Similarly, let D(w) be a D-analysis of w. We denote the number of D-trees of D(w) as the
degree of ambiguity of D(w).

Observation
Let DP(w) be a D-parsing of w. The complexity of DP(w) can serve as a lower estimation of the time
complexity for any sequential procedure computing DP(w)

This observation is based on the following consideration. Any sequential procedure computes
the items of DP(w) in some sequential order, and needs at least one step for any item. Therefore it
uses at least such amount of steps which equals the number of items in DP(w).

In the same way we can obtain a similar observation for the degree of ambiguity of D-
analysis.

The number of D-trees assigned to a sentence w consisting of n words may be quite large, up
to nn-1. However, these trees contain in many cases identical subtrees, which can be computed only
once. We may therefore reduce the task of creating all possible trees to the task of creating all possible
items. Therefore we further consider only the complexity of D-parsing.

For our purpose it is also important that there is a direct correspondence between the value of
dNh for a particular D-tree T and between the maximal size of items ICi � if h=dNh(T), then the
maximal size of items ICi equals 2h+3. It means that for projective D-trees (h=0) the items ICi will
consist of 3 indices, while for the representation of a non-projective D-tree with two holes it is
necessary to use the items ICi with the maximum of 7 indices. The items representing nodes with the
value of dNh smaller than maximum will contain only the necessary number of indices, not the
maximal one. These facts allow for a (rough) upper estimation of parsing complexity of projective
sentences and sentences with a limited value of dNh. It is equal to the number of all items ICi that may
be created for the input sentence containing n words.

For projective sentences of the length n we may get maximally n3 items � all three indices may
acquire any integer value from the interval <1;n> (for the upper estimation it is not necessary to take
into account the fact that for example the triple [1,2,3] is not a valid item, because the first index of the
triple has to be an integer from the interval <2,3>). A similar idea may be applied to sentences with a
limited value of dNh. Let us suppose that m=dNh(w) for a sentence w. In such a case the items ICi
will contain up to 2m+3 indices and the (rough) upper estimation of the number of items ICi equals
n2m+3. As in the previous case, we do not take into account that some of these items are invalid and that
it is therefore possible to make a better upper estimation. Generally it is possible to say that the upper
estimation of the parsing complexity of a language L with its D-analysis D, where dNh is limited by a
constant, is polynomial. Or, more exactly, that it equals n2m+3, where m=dNh.

The other problem (the lower estimation of the parsing complexity of a language Lc, for
example Czech, with its D-analysis Dc, with the value of dNh greater than any natural number) needs a
different approach. The first thing we have to do is to find an appropriate (infinite) sequence of
sentences from Lc with increasing values of dNh and possibly rapidly increasing values of complexity
of D-parsing.

As has been demonstrated in [Holan et al. 00], Czech theoretically allows for an unlimited
number of holes. Some examples presented there do have something in common. The sentences with a
high score of dNh contain at least two richly modified words. The best candidates are verbs, one of
them being a finite verb (Vfin) and the other being a verb (Vinf) in an infinitive form. Let us mark the
dependents of Vfin as Gi (dependents of the governing verb) and the dependents of Vinf as Dj
(dependents of the dependent � subordinated � verb), where integers i,j represent the left�to�right
order among the dependents of the respective governor. According to the examples presented in
[Holan et al. 2000], the sentential pattern of the sentence with dNh=

 −

2

1n is then as follows:

D1 G1 ...Dk Gk Dk+1 Vfin Vinf

35

where 2k+3=n and the Cov(Vinf) contains k+1=

 −

2

1n holes. (For an odd n we get exactly
2

1−n

holes, while for an even n we get
2

2−n holes.). Fig. 6.1 shows a sketch of a D-tree for this sentential

pattern.

[D1,1,2,2k+3]

[G1,2,1,2k+2]

[Dk,2k-1,2,2k+3]

[Gk,2k,1,2k+2]

[Dk+1,2k+1,2,2k+3]

[Vfin,2k+2,0,0]

[Vinf,2k+3,1,2k+2]

Fig. 6.1. A scheme of a typical nonprojective D-tree with dNg=k+1

In order to find a Czech sentence with the pattern described above, let us use the following example :

Example 6.1.
Co se komu Petr zítra rozhodl darovat?
[Lit.:What Refl. to_whom Petr tomorrow decided to_give]
(What did Petr decide to give to whom tomorrow?)
Fig. 6.2 shows the D-tree with maximal number of holes for this sentence.

[Co,1,2,7]

[se,2,1,6]

[komu,3,2,7]

[Petr,4,1,6]

[zítra,5,2,7]

[rozhodl,6,0,0]

[darovat,7,1,6]

Fig. 6.2. A D-tree of the sample sentence with dNh=

 −

2

1n = 3

It is, of course, quite clear that if we try to increase the length of this sentence, we would
sooner or later run out of nonprepositional dependents. We would have to use free modifiers in the
form of prepositional cases and thus to increase the number of words necessary for creating a hole in
the sentence. It means that the lower estimation of dNh(w) in the (stepwise increasing) sentence w (of
the mentioned type) with respect to its length can be taken as equal to n/4 because of the fact that both
the holes and the intervening sections of a projection typically consist of a preposition followed by a
noun. Thus the (maximal) length of the strings separating holes is equal to 2 in this case. In the
remaining text we will stick to this result.

The fact that a large number of holes implies the presence of a large number of free modifiers3

in the sentence (we speak about Czech) has a very important consequence. The layout of the D-tree
(more specifically, the existence of edges between two particular nodes) depends very much on the
interpretation of a particular sentence. This interpretation is, of course, to a large extent dependent on
the real-world knowledge of a particular human reader and thus cannot be taken into account during
parsing. A syntactic parser should do the opposite � it should provide (in some way) all syntactically
plausible D-trees for a given sentence, regardless whether they represent readings acceptable for a

3 If we used only participants (i.e. subcategorized-for elements) for the purpose, the number dNh(w) would
indeed have an upper bound, set by the largest number of participants for a lexical head in the language

36

human or not. The task of the syntactic parser is to analyze the sentence syntactically, not to interpret
it.

Let us illustrate this idea by the following sentence:

Example 6.2
Proti odvolání se zítra Petr v práci nakonec důrazně rozhodl protestovat.
[Lit.: Against dismissal Refl. tomorrow Petr at work finally vigorously decided to_protest]
(Petr finally decided to protest vigorously against the dismissal at work tomorrow.)

Figure 6.3 shows the D-tree with a maximal value of dNh for this sentence:

[Proti,1,3,2]

[se,3,1,10]

[práci,7,2,11]

[Petr,5,1,10]

[zítra,4,2,11]

[rozhodl,10,0,0]

[protestovat,11,1,10]

[odvolání,2,2,11]

[v,6,3,6]

[nakonec,8,1,10]

[důrazně,9,2,11]

Fig. 6.3. A D-tree representing a maximal possible value of dNh=4 for the sentence Proti odvolání se
zítra Petr v práci nakonec důrazně rozhodl protestovat.

In order to illustrate the problem with the attachment of free-modifiers we may draw other D-
trees representing acceptable results of syntactic parsing of the same sentence.

[Proti,1,3,2]

[se,3,1,10] [práci,7,1,10][Petr,5,1,10][zítra,4,1,10]

[rozhodl,10,0,0]

[protestovat,11,1,10]

[odvolání,2,2,11] [v,6,2,7]

[nakonec,8,1,10]

[důrazně,9,2,11]

Fig. 6.4. A D-tree of the sentence from the example 6.2 with dNh= 2

It may be argued that the attachment of the temporal adverbial expressing future (zítra �
tomorrow) to the verb in past tense in the D-tree from the Fig 6.4 is incorrect. The unacceptability of
this reading is not based on the knowledge of context or on the real-world knowledge of the reader, it
is based on the lexical semantics of the adverb conflicting with the tense of the verb. Moreover, if we
take the word včera � yesterday instead of the word zítra � tomorrow, the D-tree from the Fig. 6.4 and
6.5 would be semantically correct as well.

However, from the point of view of the �pure� syntax the reading is as plausible as the
previous one and the syntactic parser should provide it together with other syntactically correct results.

37

The parser should provide even more �strange� results, as for example a projective D-tree described in
Fig. 6.5. Also this D-tree represents a syntactically acceptable result of parsing:

[Proti,1,3,2]

[práci,7,1,10][Petr,5,1,10][zítra,4,1,10]

[rozhodl,10,0,0]

[protestovat,11,1,10][odvolání,2,2,10]

[v,6,2,7]

[nakonec,8,1,10] [důrazně,9,2,10][se,3,1,10]

Fig. 6.5. A D-tree of a sample sentence with dNh= 0
The previous set of examples shows that in a language such as Czech, which allows for an

unlimited value of dNh, it is necessary to take into account that for any natural number n there exists a
sentence of length n containing n/4 holes. Moreover, the same sentence may be understood by a
human as a sentence containing any smaller number of holes or it may even be understood as a
projective one. This claim is based on the fact that when interpreting a sentence containing several free
modifiers, the human reader has to rely on extrasyntactic clues (semantics, pragmatics, real world
knowledge, context etc.). This may lead to a different interpretation (and thus also to a different
number of holes) than the one intended by the author. The task of the syntactic parser (with the stress
on the word �syntactic�) is to provide information about all syntactically plausible D-trees. Someone
or something else, be it a human or an expert system, will then decide which of those D-trees represent
the most appropriate reading with respect to the given moment, the background of the reader, the
context and other important factors. A very good example of such decisions represents the work on the
Prague Dependency Treebank [Bémová et al. 97], where the human annotators are given sentences in
their context and they try to create analytical trees reflecting the single most acceptable reading from
their point of view even for sentences which are clearly syntactically (or even semantically)
ambiguous.

In order to fulfill its task the syntactic parser should compute not only the items with maximal
value for a given sentence, but also all syntactically plausible items corresponding to lower values of
dNh. The number of possible combinations equals m

m

i i
m

2
0

=

∑
=

, where m = dNh. Given our earlier

assumption that for any n understood as the number of words in a sentence there exists in Czech at
least one sentence which can be considered at the same time as containing n/4 holes, and as containing
(n/4)�1 holes, ... , and as containing no hole, we have obtained a result we were looking for � the
lower estimation of parsing complexity with respect to the length of the input sentence is exponential
or, more exactly, it equals O(42

n).
This result supports our earlier claim that the complexity of parsing substantially grows with

the growing magnitude of nonprojectivity (taking into account the number of items which have to be
derived in order to parse a sentence with a certain magnitude of nonprojectivity). It also justifies our
decision to limit the magnitude of nonprojectivity to 1 for the development, testing and debugging of
the metagrammar used in our system � due to the fact that identical metarules are used for the parsing
of nonprojective sentences regardless whether the sentence contains one or more holes.

At this point we feel the necessity to stress once more the difference between syntactic parsing
and grammar checking. As we have demonstrated in this chapter, the task of the syntactic parsing is to
provide all syntactically acceptable trees. It must consider non-projective trees wherever possible,
even when the sentence is perfectly projective for a human reader. This fact leads to the complexity
mentioned above. On the other hand, a grammar checker is concerned with syntactic correctness, it is
not concerned with the nonprojectivity as much as a syntactic parser. The main goal of a grammar
checker is to find at least one syntactic tree for each input sentence. It is therefore quite natural to
orient the grammar checker towards the simplest possible tree � it should look for a projective tree
without syntactic inconsistencies first. Only in case such a tree does not exist the grammar checker
should try to look either for a non-projective tree with the smallest possible number of holes or it

38

should look for a tree with edges representing syntactic inconsistencies. This strategy is the reason
why it is possible to consider grammar checking as a less complex task than syntactic parsing.

To conclude this chapter we would like to remind that the majority of examples used
throughout the chapter and also in the paper containing a thorough discussion of the problem of a
nonexistence of the upper estimation of the number of holes in Czech [Holan et al. 00] uses simple
sentences without any kind of coordination. This fact means that our lower estimation of parsing
complexity is very conservative � for complex sentences containing coordination it would probably be
possible to obtain a much higher lower estimation.

39

Chapter 7: Software environment

The actual implementation of the software environment necessary for the development, testing
and debugging of the metagrammar was carried out by Tomá� Holan in the LATESLAV project. It is
described for example in [Kuboň et al. 97]. We stick to that original version even though the same
author has made several newer versions since then. The current state of the implementation is
described in [Holan 01]. The implementation was to a large extent influenced by the demand for
effectiveness of the whole system. Even though the speed and efficiency are not among the leading
criteria for experimental robust natural parser systems, this implementation proved to be suitable also
for our purpose.

The implemented formalism requires the use of a very simple data structure representing
individual items. The simplicity of the data structure allows faster and more effective interpretation of
the grammar. The data structure is a set of attribute-value pairs with the data about valency frames of
particular words as the only complex values (embedded attribute-value pairs). The description of data
structures for particular word categories can be found in Chapter 8.

As was already briefly mentioned in the previous chapter, it would be very difficult to use
directly the rules of RFODG in the attempt to develop a formal grammar of a natural language. With
respect to the number of terminal symbols (representing the morpho-syntactic and lexico-syntactic
properties of individual word forms) used by the grammar it is virtually impossible to write grammar
rules covering a substantial part of any language. For this reason we use a kind of a two-level
description of a grammar by means of metarules, each of which represents a finite (but typically very
large) number of rules of RFODG. The metagrammar is then a set of metarules accompanied by
constraints. The metarules are interpreted in a manner given by the set of constraints used.

The metarules have a common general form A B ⇒ X where the letters A and B represent
already existing items (from the point of view of an application of an individual metarule we
sometimes refer to these items as to the input items of a metarule). The item A always stands to the
left from the item B (each item represents a particular word form and has a horizontal index referring
to the position of the word in the input). In case a particular metarule may be applied to items A and B,
a new item X is created (X represents an output item from the point of view of the application of an
individual metarule to a given pair of input items A and B). The metarules express a procedural
description of the process of checking the applicability of a given metarule to a particular pair of items
A and B. In addition to the items A, B and X the metarules use also the temporary item P. The
commands and constraints of individual metarules are interpreted from the beginning sequentially with
respect to their order.

The syntax of metarules does not allow to create metarules with a reduced left-hand side either
of the type A => X or B => X. This means that the type of rules mentioned in the definition of
RFODG under b) (A->B, where A, B ∈ V) were not implemented in this version of our formalism.

Every metarule in our metagrammar typically starts with a header, consisting of comments
containing the rule number and a short description of the objective of the metarule. This part is not
obligatory, but it serves for a better orientation in the grammar during its development, testing and
debugging. The interpreter numbers the metarules sequentially, starting with the rule number 1. These
numbers appear (when required, their appearance is triggered by a parameter) also in the graphs
representing results of application of a metagrammar to a sentence. It is therefore a good idea to use
the same kind of numbering. It may of course be argued that the interpreter could number the
metarules automatically. At this point it is necessary to stress that the software environment was
developed primarily as a development tool, it was being developed together with the earlier versions

40

of the metagrammar and thus it underwent a number of changes. It is then no wonder that the
interpreter lacks to a certain extent the user-friendliness.

The header may be followed by the following parameters:

7.1 Parameters of metarules
Any combination (even the empty one) of the three parameters PROJECTIVE, CLOSEST and
NEGATIVE may precede all commands and constraints in a particular metarule.

PROJECTIVE means that the metarule may be applied only in a projective way � it is in
principle the same as a rule of a standard CFG. In the definition of the RFODG this parameter
represents the values of X∈ {LP,RP}. This of course does not mean that the application of the rule
with this parameter should be restricted to projective phases � it only means that regardless of the type
of the phase this particular rule may be applied in a projective way only. If this parameter is omitted,
then it means that in projective phases the metarule in fact represents the rules of RFODG with the
values of X∈ {LP,RP}, while in nonprojective phases the value of X ∈ {LP,RP,L,P}.

NEGATIVE means that the metarule is taken into account only in an extended grammar (in
the grammar working both with positive and negative symbols). The metarules of this type are in fact
error anticipation rules � they describe typical syntactic inconsistencies that are frequent in Czech
texts.

CLOSEST indicates that the metarule may be applied only to the closest input items A and B,
in the sense of a static order of input words. It means that if the input items A' A" B' B" are in this
order, the metarule may be applied only to the pair of items A" B'.

The header is followed by a body of a metarule. It consists of a sequence of instructions and
constraints, using the following elementary instructions:

 Hard constraint
 A.x = const
 or
 A.x = B.y
where A and B represent input items, x, y are their attributes and �const� is a constant of the

same type as the attribute A.x.
The interpretation: If the equation does not hold, then this rule cannot be applied for particular

input items A and B. This type of constraints is interpreted in the same way in both the positive or
negative parsing phases.

 Soft constraint
 A.x ? const ERR
 or
 A.x ? B.y ERR
where A,B,x,y and �const� are the same symbols as in the previous instruction and ERR is a

code of a syntactic inconsistency.
The interpretation: The soft constraints may be relaxed in negative phases. In such a case the

soft constraint does not block an application of the metarule even in case when the constraint is
violated. The code of the encountered syntactic inconsistency (ERR) is written into the output item in
such a case. In positive phases they are applied in the same manner as the hard constraints. These
constraints typically describe errors in agreement, but they are able to cover much wider range of
errors. Several soft constraints may be relaxed at the same time.

 Assignment
 X.x := const
 or

41

 X.x := A.y
where X is an output item, A is an input item, x, y are their attributes (of the same type) and

�const� is a constant of the same type as the attribute X.x.
The interpretation: If the attribute x is not present in the data structure X, it is added. The copy

of the value of the attribute A.y becomes the value of X.x. This instruction allows to insert into the
resulting item an important information which may later be propagated through relevant items. The
previously non-existent attributes inserted by means of the assignment are most often used for
transport of important information bottom up through the tree. They may, for example, contain the
information about the type of items which were already combined with the item containing this
attribute � cf. the attributes dep_neg, dep_rel, dep_dem etc. in the comments accompanying the
metarule (1) in Chapter 9. In the following text we call this type of attributes auxiliary attributes.

 Branching
IF <condition> THEN <instructions1> ELSE <instructions2> ENDIF
The interpretation: When the <condition> following the keyword IF is not met, the

computation does not fail but continues with <instructions2> or after ENDIF if ELSE is missing. If the
<condition> is met, the computation continues with <instructions1> following the keyword THEN.
Nested branching is allowed.

 The choice of an element from a set
P in A.x
where P is a temporary and A an input item, x is an attribute of A.
The interpretation: If the item A has no attribute x or if the value of this attribute is not a list or

if the list is empty, then the application of the rule fails for the data it is being applied to.
In the opposite case the current position in the program is stored, P acquires the value of one

element from the list A.x and the computation continues.
When the computation is finished, no matter whether successfully or not, the program returns

to this point and tries to proceed taking another item from the list A.x, until all items were tried.
This command may create more output items from one input item.

 Deleting in a list
\ P from X.x
where P is a temporary item, X.x is an attribute whose value is a list containing the same value

as P.
The interpretation: The item equivalent to P is deleted from the list of values of the attribute x

(if x contains a list of values). If the deletion cannot be performed, the computation fails.

 Comment
;
The semicolon starts a comment, which automatically ends at the end of the same line

There are two keywords, which may be used throughout the body of the metarule. These
keywords end the interpretation of the metarule. There may be several keywords of this type in one
metarule:

 Success
OK
The interpretation: Success. The output variable X contains an item, which is the result of the

application of the rule on the input items A and B. This keyword must be preceded by an assignment
of one of the items A or B to X (X:=A or X:=B). This assignment determines which of the two input

42

items is the governing one. Such assignment means that all attributes and values of the input item A
(or B) are copied into the output item X.

 Failure
FAIL
The interpretation: Failure. The rule is not applied to the input items. No new item is created.

If the interpreter encounters the keyword FAIL, the interpretation of the metarule stops immediately.

Every metarule ends with a special keyword. This marker serves for the orientation only, in
fact it is never reached during the intrpretation of the metarule because one of the special codes FAIL
or OK must be reached earlier.

 End of a metarule
END_P
This keyword marks the end of a metarule.

Example 7.1
An example of a (simplified) metarule describing the attachment of a nominal modifier in the genitive
case from the right hand side of the noun (e.g. "ministr[nom.] dopravy[gen.] " � minister of transport).
For a better readability of the metarule the comments are included in brackets {} instead of being
preceded by a semicolon:

PROJECTIVE
CLOSEST

{This rule may be applied only in a projective construction and only to A and B which are
immediate neighbors.}

IF A.SYNTCL = noun THEN ELSE
IF A.SYNTCL = prephr THEN ELSE FAIL ENDIF

ENDIF
{If the symbol A represents an item which is a noun or a prepositional group then go on, else
fail and do not continue with the application of this rule.}

B.SYNTCL = noun
B.CASE = gen

{The symbol B represents an item, which is a noun in the genitive case}
A.RIGHTGEN ? yes Second_genitive

{Soft constraint checking if there already has been a noun in the genitive case attached as a
right hand side modifier before the application of this rule. This is necessary, because Czech
does not allow a noun to be modified by more than one noun in genitive case from the right
hand side. It might be argued that in case of coordination of two or more nouns in the genitive
case it would be syntactically correct to attach more than one noun in the genitive case. It is
generally true, but our metagrammar does not allow it. It always tries to process the
coordination first and to attach it as one item (subtree). The detailed description of metarules
of our metagrammar is contained in Chapter 9.
The string " Second_genitive " is the code of a syntactic inconsistency, which is used in case
the soft constraint is violated in the negative phases.}

X:=A
{The symbol A is copied into the newly created item X.}

X.RIGHTGEN := no
{The value of an attribute RIGHTGEN of the item X is modified in order to block the
attachment of the second noun modifying the same item A}

OK
{The keyword OK confirms a successful application of the rule on the given pair of symbols
A and B.}

43

END_P
{Keyword marking the end of the rule.}

7.2. The interpretation
The interpretation of the metagrammar is performed by means of a slightly modified CYK

algorithm (a description of this algorithm may be found among other books also in [Sikkel 97]). The
grammar works with unambiguous input data (ambiguous words are represented as sets of
unambiguous input items with the same horizontal index � cf. the definition of DR-trees in Chapter 5).
The interpreter also takes care of the duplicity of certain syntactic structures (subtrees) during the
process of parsing. In nondeterministic parsing it is often the case that we might get the same subtree
by an application of certain rules in a different order. This situation was quite common in the Czech
parser of the system RUSLAN due to the fact that Q-systems work in a nondeterministic manner. As
an example of such a situation we may take the sentence Karel poslal dopis (Charles sent [a] letter). If
the parser attaches object to the verb first, we get the situation from Fig.7.1:

Fig. 7.1. An object attached to the verb in the sentence �Charles sent a letter�

If the rule for the attachment of the subject is applied first, the parser will create the structure from
Fig.7.2:

Fig. 7.2. A subject attached to the verb in the sentence "Charles sent a letter"

A nondeterministic parser will create both structures. The main problem is that later it will attach the
subject to the verb from Fig.5a and the object to the verb from Fig.5b. As a result of these attachments
it will in both cases create the identical structure from Fig. 6:

Fig. 7.3. The syntactic structure of the sentence "Charles sent a letter"

The existence of such spurious ambiguities is a great pain, they can substantially slow down the
parsing or even block the success of the parsing by exhausting available resources (for example the
memory). One solution to this problem was implemented in the system RUSLAN, where the left-hand
side attachments were preferred to the right-hand side ones. Such approach may cause more problems
rather than it solves, since sometimes it might be difficult to find out whether all left-hand side
modifiers of a particular word have already been attached. The other important problem is that in case
of a failure of an attachment of some of the left-hand side modifiers the parser might not be able to
continue in attaching the right-hand side ones. Another argument against the use of such techniques is
the fact that there usually is no linguistic reason for such preference of modifiers from either side,
especially in languages with a high degree of word order freedom, where many modifiers may appear
on both sides of the governing word.

The interpreter of RFODG works in a different manner. It can apply various kinds of global
constraints on a set of items created during the interpretation of a particular metagrammar not only at
the end of the process, but also during it. There are several kinds of global constraints applied during

44

the parsing process, among others also the constraints on the degree of nonprojectivity which were
mentioned in the previous chapter. Spurious ambiguities are handled by a global constraint which
filters out all items with the same structure immediately after they are created. In this way the
grammar is not burdened with additional commands and conditions which make the parsing process
more complex than necessary and the metarules may concentrate on really linguistically motivated
problems.

Another global constraint is used in negative phases. This constraint suppresses syntactic
inconsistencies wherever there exists a �correct� (i.e. without inconsistency) item. The necessity to
apply this global constraint is a consequence of the fact that the input items of the parser are
unambiguous in the sense that each morphologically or syntactically ambiguous word is represented
by a set of unambiguous input symbols. For example, if a preposition may be associated with a noun
either in the accusative or in the locative case, then it is represented by two input items, one
representing the preposition �governing� accusative case, the other representing the same preposition
�governing� the locative case. This general property of all input items causes a substantial problem in
negative phases.

For example, a typical error in free word order languages is an agreement error. Let us
suppose that we have the following three input words as immediate neighbors in the order presented
below:
1. Preposition (�governing� accusative or locative case) � [2 unambiguous items]
2. Adjective (masc. inanimate gender, nominative, accusative or vocative case, masc. animate

gender, nominative or vocative case, singular) � [5 unambiguous items]
3. Noun (animate gender, genitive or accusative case singular) � [2 unambiguous items]

These words are represented by nine unambiguous items. If we try to create a nominal group
in prepositional case without the constraint relaxation, we get one resulting item representing the
nominal group in an animate gender, accusative case and singular number. On the other hand, after the
relaxation of constraints there are 20 items created. One of them (the one mentioned above) does not
contain any syntactic inconsistency, 2 items contain one syntactic inconsistency and the remaining 17
have two. Without the application of global constraints filtering out all items with at least one
syntactic inconsistency all 20 variants would be used in the subsequent parsing. This would cause a
combinatorial explosion of mostly irrelevant results.

The global constraint works in the following manner: Every time an item representing a new
branch or subtree is created, it is compared with the items representing other branches or subtrees with
the same structure and projection. If it is "worse" than those already existing according to the measures
applied (if it has a higher degree of robustness), it is not parsed further.

This technique substantially reduces the number of items in negative phases, but it has also
one rather unpleasant side effect: the syntactic inconsistencies may be suppressed and appear later in a
different position in the tree.

Let us demonstrate this undesirable property by the following example. Let us suppose that we
parse the sentence:

Začátek novému roku nám přiná�í novou naději.
[Lit.: Start new[...,nom.sg.,...] year[gen.sg,dat.sg.,loc.sg.] to_us brings new hope.]
(The start to the new year brings a new hope to us.)
The problem of this sentence is the nominal group začátek novému roku, which contains a

syntactic inconsistency (the adjective has a dative instead of the correct genitive form). The nominal
group locally does not contain any inconsistency, since it may be parsed as being in the dative case.
Our interpreter will never find this type of inconsistency. It will locally parse the nominal group as one
of the three candidates for filling the valency slot of the main verb. Only later, when trying to fill the
two valency slots of the verb with three candidates, it will report a syntactic inconsistency of a
completely different type. The superfluous nominal group in the dative case may neither have a role of
a free modifier in the dative case in this sentence due to the fact that there is already one nominal
group in the dative case present (nám � to_us) in the sentence. The problem related to the difference
between syntactic inconsistencies and errors is not a substantial one, because a simple module

45

comparing and evaluating syntactic inconsistencies of all syntactic trees obtained as a result of robust
parsing of a particular input sentence may take care of such cases.

46

Chapter 8: Syntactic dictionary

In every natural language parsing system it is necessary to make one very important decision �
to which extent the syntactic information is going to be divided between the (meta)rules of a
(meta)grammar of the system and the syntactic dictionary of the system. It is clear that any extreme
solution (either all relevant information is present in the grammar and the dictionary is almost empty
or the majority of syntactic phenomena is encoded in the dictionary and the grammar contains only a
few basic rules) requires more effort than the system in which the syntactic information is balanced
between the dictionary and grammar. During the last years there was, however, a general trend
towards the latter solution. It has several advantages for small�scale experimental systems, but for a
dictionary of hundreds of thousands of lemmas it is very difficult to build and maintain a consistent
syntactic dictionary.

Also in the previous attempts to implement a syntactic dictionary for Czech it was always the
case that the division of the information was slightly in favor of the dictionary. The main reason is
probably the fact that in languages with relatively free word order the valency information is
substantial for building a syntactic representation of sentences and thus the dictionary information is
very important. This claim is also supported by the fact that Czech verbs may have a wide variety of
combinations of participants in their valency frames (cf. [Panevová 80]). It is very difficult, to
categorize the verbs into classes with identical valency frames, there are simply too many variants
(even though the most typical combination [nominative � accusative] in the active mode and
[nominative � instrumental] in the passive mode is quite frequent). For this reason it is better when the
valency information is attached to individual words in the dictionary.

The basic idea of the split of syntactic information in our robust parser is quite simple � basic
properties of all well�defined groups of words should be written in the form of grammar metarules,
the specific behavior of individual words should be contained in the dictionary. This means, for
example, that the fact that every noun may have a postponed nominal modifier in genitive and that this
modifier can be only one, is a part of the metagrammar, while the information that the verb �ádat [to
ask] is not reflexive belongs into the syntactic dictionary.

8.1 Information contained in the dictionary
As we have already mentioned in previous chapters, the data are stored in the form of a set of

attributes and their values. The actual nature of data stored in the syntactic dictionary of the system
varies to a great extent with respect to the particular part of speech. There are nevertheless some
attributes that are common (we may even say obligatory) for all types of words:

lexf is the basic form of the word, which identifies the word in the dictionary and allows a
mapping with the morphemic information acquired by the morphological analysis;

wcl represents the �morphological� information about the part of speech of the word. This
information corresponds to the part of speech information contained in lexicons written for human
readers;

syntcl represents the "syntactic" part of speech of the word. The value of this attribute
represents the syntactic behavior of the word. We make distinction between wcl and syntcl for the
reason that in many cases the information about the part of speech (wcl) does not give a sufficient clue
how to handle a particular word during syntactic analysis � for example pronouns are very often
treated similarly to adjectives or nouns. In other words, a word with the value of wcl equal to prn very
often has a syntcl with the value either adj or noun with respect to the part of speech of words, which it
syntactically resembles.

47

There is one more attribute which is common for several categories of words � the attribute
frameset contains the information about the valency frame of the given word (at this point it is
necessary to stress that it contains only the information relevant for our purposes, not the information
which belongs to the valency frame from the point of view of linguistic theory). This is the only
attribute, which may have complex values.

The syntax of this attribute is:
frameset: ? ([slot]...[slot]) , ... , ([slot]...[slot]) !
where each slot is a triple of attributes
actant contains the name of the participant represented by this slot
case stores the information about the case of the nominal participants or about the type of the

participant in case the participant is not nominal (e.g. infinitive or clause)
prep represents a conjunction in case the participant is a clause (in our simplified valency

frames no prepositional groups are present � cf. the discussion in section 8.4).
The symbol ? marks the start of the list of frames, commas delimit individual frames and !

marks the end of the list. These symbols are used generally in all dictionary items as markers for
variants both at the level of values and at the level of attributes. It is possible to embed more levels of
these markers one into the other. In such a case they are not allowed to cross, the innermost question
mark always matches the innermost exclamation mark.

The structure of individual classes of words resembles the structure of the syntactic dictionary
used in the LATESLAV project [Skoumalová 94]. Since the dictionary in that project was supposed to
be a general resource for different variants of grammar checkers (there were in fact three versions of
the Czech grammar checker developed in the frame of the project [Kirschner 94, Oliva 96, Kuboň et al
97]), it contains a lot of information irrelevant for the purpose of robust syntactic parsing (for example
the description of the meaning of homonyms, semantic features etc.). For this reason it was necessary
to modify it in the way described in the following paragraphs.

8.2 The structure of individual classes of words
In the sequel, the three obligatory attributes lexf, wcl and syntcl are not listed. On the other

hand, not all attributes listed bellow are explicitly a part of the description in the syntactic dictionary.
If, for example, a verb is not reflexive, it does not have the attribute refl at all. Some attributes are also
present only virtually and appear in the structure only when they are needed during the parsing
process. This is, for example, the case of the attribute rightgen, which is inserted into the structure
with the value equal to no in case there is a nominal modifier in genitive attached to a particular noun
from the right hand side. These attributes are more or less auxiliary and are listed separately. The sole
reason for the split of attributes into groups of syntactic and morphemic ones below is the readability
of the list of attributes, it has no function neither in the dictionary nor in the metagrammar.

8.2.1 Nouns
Syntactic attributes:

tant marks if the particular word is a singulare (sg) or plurale (pl) tantum or none of these (0)
refl information about the required type of reflexive particle (se, si or none (0))
frameset contains the information about the valency frame
title is an attribute marking the possibility of using a particular word as a title (cf. comrade Zeman

or chairman Mao). It is clear that the number of nouns which may be used in the syntactic role
of a title is rather big (cf. that stupid bitch Vlasta, the bloody murderer O.J. etc.), but only those
used regularly and often in this role get this attribute.

In the process of parsing the following morphemic attributes are also used:
gender marks the gender (animate, inanimate, feminine or neutral)

48

num contains the information about number (sg or pl)
du informs whether the word form is dual or not
case contains the information about the case of the word form. Czech has seven cases (nominative,
genitive, dative, accusative, vocative, local and instrumental).

Among the auxiliary attributes, which might be used during the parsing process and are not
explicitly listed in the dictionary, there are the following ones:

rightgen � equals no if a nominal modifier in the genitive case is already attached to the given noun
from the right hand side

dep_poss, dep_pers, dep_refl, dep_dem, dep_que, dep_indef, dep_neg, dep_rel, dep_tot are the
attributes which indicate that a certain type of a pronoun (the names of these attributes
correspond to the values of the attribute prn_type, cf. chapter 8.2.3) already depends on the
noun from the left�hand side

dep_card, dep_ord, dep_sort, dep_spec indicate that a particular type of a numeral (the names of
these attributes correspond to the values of the attribute num_type, cf. chapter 8.2.4) already
depends on the noun from the left�hand side

prep contains the lexical value of a preposition in case the noun is in a prepositional case

8.2.2 Adjectives
Syntactic attributes:

adj_type is either ordinary, aposs (possesive), vact (verbal active) or vpass (verbal passive form)
deg represents the degree of an adjective (positive, comparative or superlative)
neg negation (yes or no)
frameset contains information about the valency frame
refl information about the required type of the reflexive particle (se, si or none (0))

Morphemic attributes:
nomform short (nominal) form of an adjective (yes or no)
gender, num, du, case are same as the attributes of nouns with identical names

8.2.3 Pronouns
Syntactic attributes:

prn_type represents a type of a pronoun � personal, reflexive, relative, demonstrative, indefinite,
negative, possesive, que (interrogative) pronouns and totalizers

encl � clitic yes or no
pprep informs whether a preposition is required in front of the form of the pronoun (cf. ji but pro ni

[her � for her])
Morphemic attributes:

gender, num, du, case are the same as the attributes of nouns with identical names. Those
pronouns, which do not have these categories, also do not have these attributes (the attributes
are not obligatory).

pers means person (1st, 2nd or 3rd)

8.2.4 Numerals
Syntactic attributes:

numcl represents a class of a numeral (cardinalia, ordinalia, specialia, multiplicativa and generic
(ord))

numtype is a type of a numeral (relative, que (interrogative), demonstrative, indefinite, total, digit)
Morphemic attributes:

49

gender, num, du, case are the same as the attributes of nouns with identical names. Those numerals,
which do not have these categories, also do not have these attributes (the attributes are not
obligatory).

8.2.5 Verbs
Syntactic attributes:

v_cl is a class of verb � full(main), auxiliary
refl contains information about the required type of reflexive particle (se, si or none (0))
aspect informs about the aspect of the verb (prf(perfective), impf(imperfective) or iterative)
v_form is a form of the verb � finite, infinite, past participle, passp (passive participle) or

transgressive
frameset contains information about the valency frame
neg negation (yes or no)
encl � clitic yes or no

Morphemic attributes:
tense is either past, present or future
pers is a person
num contains information about number (sg or pl)
gender marks the gender (animate, inanimate, feminine or neutral)
pass refers to the ability to form the passive voice: periphrastic, rfl (reflexive) or none (0)
mode is indicative, conditional or imperative

Auxiliary attributes
clause indicates the type of the clause governed by the verb
relgender, relnum contain information about the gender and number of the antecedent of a relative

clause. This way of the transfer the gender and number of relative pronouns is necessary due to
the fact that we have decided to attach relative pronouns to main verbs of relative clauses and
thus there are no edges leading directly from the relative pronoun to its antecedent in our
syntactic trees (cf. section 9.6 decribing the metarules handling the attachment of relative
clauses).

8.2.6 Adverbs
Syntactic attributes:

adtype is a type of an adverb � relative, que (interogative), demonstrative, indefinite, negative,
total, adl (main)

addep is the part of speech of the word the adverb depends on (from the left or right hand side) �
advb (verb), add (adverb), ada (adjective), adnr (noun).

frameset contains the information about the valency frame
encl � clitic yes or no
deg represents the degree of the adverb (positive, comparative or superlative)
neg negation (yes or no)

8.2.7 Prepositions
Syntactic attribute:

case is the case of the noun to which the preposition belongs (typically 2 to 3 cases).

50

8.2.8 Conjunctions
Syntactic attributes:

conjtype is a type of conjunction, either coordinate or subordinate
conjcl specifies, whether the conjunction connects clauses (cls) or phrases
compar indicates that the conjunction may be used in comparative constructions
pair indicates that the conjunction may belong to a pair of conjunctions nejen � ale i [not only � but

also], ani � ani [neither � nor] (cf. section 9.12 Pairs of expressions).

8.2.9 Interjections, particles and delimiters (.,:;!? etc.)
They do not have any special attributes except lexf, wcl and syntcl.

The auxiliary attributes eos, eoc, end may be attached to all types of governing words. They

indicate that the end of the sentence or clause was already processed. The detailed description of their
role may be found in section 9.1. among the comments explaining the function of the metarule (3).

8.3 Sample input data structure
The following data structure represents the verb nepředpokládá � [{he/she/it does} not suppose] as it
appears at the input to the robust parser. It contains the complete set of attributes and their values, with
combined morphemic and syntactic data. The first row of data represents the word form as it appeared
in the input sentence, the keyword END marks the end of the data structure. Every input sentence is
represented by a set of data structures of this type in the order given by the surface order of words in
the sentence. The sentence starts with the data structure representing the left sentinel (a special marker
determining the beginning of each sentence).

nepředpokládá
lexf: předpokládat
wcl: vb
syntcl: v
v_cl: full
refl: 0
aspect: impf
frameset: ? ([actant: act
 case: nom

 prep: 0]
[actant: pat
 case: acc
 prep: 0])
,
([actant: act
 case: nom
 prep: 0]
[actant: pat
 case: clause
 prep: �e])
 !

mode: ind
neg: yes
v_form: fin
gender: ? anim , inan , fem , neut !
num: sg
pers: 3

51

tense: pres
END

8.4 Data contained in valency frames
As we have already mentioned in previous chapters, the strategy of our approach to robust parsing
reflects to a great extent the fact that a robust syntactic parser should be able to analyze (accept) also
syntactically ill�formed sentences. The question of acceptability of a particular input sentence as a
well�formed sentence of a given natural language is to a great extent influenced by semantics. The
task of drawing the line between semantically plausible and implausible constructions is according to
our approach beyond the scope of this thesis. Unlike purely syntactic rules, semantics and pragmatics
do not constitute a solid base for an automatic decision about the acceptability of a particular sentence.
Semantics, pragmatics and real�world knowledge involved when native speakers decide whether to
accept or reject a particular sentence is too complicated to provide a well�defined tool usable in the
automatic language processing.

These considerations had a strong direct influence on our work. It was necessary to modify the
theory in order to avoid problems that are not solvable by means of purely syntactic tools at the level
of surface syntactic parsing. Basic information for building a tree representing the syntactic structure
of a sentence is encoded in the valency frames of verbs. Without them, it would be hardly possible to
achieve reasonable results in the course of parsing and thus to avoid a flood of syntactic structures as
the product of the analysis of any sentence. The valency information allows to attach inner participants
to the main verb and thus to build a backbone of the syntactic structure. According to the theory we
subscribe to ([Panevová 80], [Sgall et al. 86]), the participants are, with respect to the necessity of
their presence, divided into two basic groups, obligatory and optional. This division holds on the level
of tectogrammatical representation of the sentence. On the surface level we have to take into account
that in the textual context it is often the case that one or more obligatory inner participants are
explicitly expressed in the previous context and can be omitted in the surface form of the current
sentence. Especially in dialogues it is acceptable to use sentences like: Poslal Karel Mileně včera ten
dopis? Poslal. [Did Karel send that letter to Milena yesterday? lit.:Sent.]

For this reason it has no sense to check whether all valency slots are filled or not and to deal
with an input sentence as if it were ill�formed in case some of the obligatory participant is missing.
That also means, on the other hand, that even certain kinds of sentences considered by human native
speakers as clearly ill�formed are going to be accepted by our parser as well�formed. This is an
unavoidable consequence of the strategy chosen for the robust parser.

On the basis of syntactic rules we are also not able to distinguish between participants and free
modifiers in general, and also between obligatory and optional inner participants. The reason is that in
most cases the distinction between an inner participant and a free modifier is based solely on
extrasyntactic factors. Let us illustrate these facts by the following examples:

Shodli jsme se jen na jediném ře�ení[loc.].
[Agreed [we] ourselves only on one solution[loc.].]
(We agreed on a single solution only.)
Shodli jsme se jen na chvíli[acc.].
[Agreed [we] ourselves only for [a] while[acc.].]
(We agreed only for a while.)
*Shodli jsme se jen na sestru[acc.].
[Agreed [we] ourselves only for sister[acc.].]
(We agreed only on a sister.)
The asterisk in front of the third sentence means that a native speaker will probably mark this

sentence as unacceptable. From our point of view the third sentence is acceptable, because it cannot be
distinguished from the second sentence by means of surface syntax only. Slightly different is the
situation with nonprepositional inner participants.

Karel mu[dat.] představil Milenu[acc.].
[Karel him[dat.] introduced Milena[acc.].]

52

(Karel introduced Milena to him.)
Karel ho[acc.] představil Mileně[dat.].}
[Karel him[acc.] introduced [to] Milena[acc.].]
(Karel introduced him to Milena.)
*Karel ho[acc., gen.] představil Milenu[acc.].}
[Karel him[acc., gen.] introduced Milena[acc.].]
(Karel introduced him Milena.)
In this case the parser can mark the last sentence as ill�formed with respect to the fact that the

sentence either contains two objects in accusative or one of the objects is in a wrong case.
These examples show that the only category of participants which provides a sufficient clue

for the rejection or acceptance of certain sentences on the basis of surface syntax is the category of
inner participants in nonprepositional cases. We can not check the participants requiring a certain
preposition. Since every preposition may serve also as a prepositional case of free modifiers
(adjuncts), which are acceptable with the majority of verbs, it is impossible to check incorrect
prepositional cases of participants.

Unfortunately, the situation in Czech is not so straightforward. The nouns in prepositional
cases are not the only candidates for free modifiers. It is also quite common that a noun in
instrumental case is a free modifier (it typically expresses manner), much less frequent is a free
modifier in dative case and rare are free modifiers in other cases (for example free modifiers in the
accusative case may express temporality and measure). To draw a clear line capturing all subtleties of
the problem is really impossible. The classification of participants is too much influenced by
semantics that we had to choose a solution that is, according to our opinion, quite simple and works
with reasonable accuracy. This solution handles nouns in prepositional cases and nouns in
instrumental case as free modifiers while nouns in nonprepositional cases are listed in the valency
frames of our dictionary entries wherever they have a role of an inner participant. This is a substantial
simplification of the problem, but clearly necessary, if we want to make a clear borderline between
syntax and semantics.

 The simplification of valency frames has also one pleasant side effect � although it would be
almost impossible to automatically establish full valency frames (the major problem being how to
distinguish for a particular word whether a nominal group in prepositional case encountered in the
sentence belongs to the valency frame or whether it is a free modifier), we can try to identify
automatically at least participants for our reduced frame. The method of semiautomatic addition of
syntactic data into the dictionary might be an interesting topic of research for the future.

53

Chapter 9: Implementation of the metagrammar

This chapter contains the description of core elements of the metagrammar of the system. Not
all metarules are listed in the following paragraphs � only those which illustrate certain interesting
problems and demonstrate the solutions to these problems, as they were implemented in the system.
Since the order in which particular metarules are written in the grammar does not matter, it is possible
to introduce sample metarules dealing with particular grammatical phenomena in one block. They are
numbered differently than in the grammar in order to allow consistent references in this report. The
rules are taken directly from the source file PRAVIDLA.DAT (by default, the file containing the
current version of the metagrammar has to have this name). They are not simplified. All comments are
included in curly brackets {}. The symbol A always represents an item standing to the left from the
item B, the item X represents a newly created item (in case a particular rule succeeds). The metarules
use the syntax described in Chapter 7.

9.1 A nominal group
The first group of metarules presented here deals with the problem of congruent attributes. There are
three metarules in the metagrammar dealing with the attachment of congruent attributes from the left�
hand side. One metarule concerns proper adjectives, the other two deal with pronouns and numerals.
All three rules were written according to the results of linguistic research contained in [Bémová 96].
Let us introduce for example the metarule dealing with the attachment of pronouns that have syntactic
properties of adjectives to the noun governing the phrase.

Metarule (1)
A congruent pronominal attribute

A.syntcl = adj
{The item A represents a word with syntactic properties of an adjective}

IF B.syntcl = noun THEN ELSE
{According to the syntax introduced in Chapter 7 the omission of instructions between THEN

and ELSE means that if the condition is met, the processing of the metarule continues. Such a
construction is very frequent in our metagrammar.}

IF B.syntcl = select THEN ELSE FAIL ENDIF
ENDIF

{The item B either has syntactic properties of a noun or it represents a head of a selective
construction � cf. the section 10 of this chapter.}

 X := B
{If the rule succeeds, the resulting item will get all information from the item B. B will

therefore govern the item A in the syntactic representation. In the DR�tree representing the process of
deriving a syntactic structure this in fact means that there will be an oblique edge between the node (of
the DR�tree) representing the item A and the node (of the DR�tree) representing the item X and a
vertical edge between the node representing the item B and the node representing the item X, as shown
in Fig. 9.1.

54

Fig. 9.1. The scheme of a simplified DR�tree for this metarule

}
IF A.wcl = prn THEN
{The item A represents a pronoun. If not, then the rule fails.}

IF A.prn_type = poss THEN
{A is a possesive pronoun}

IF B.dep_poss = yes THEN
B.wcl ? nonsens SecondPossModNoun

ELSE X.dep_poss:=yes ENDIF
{This part of the metarule contains the first occurrence of a soft constraint in this chapter, let

us therefore remind that the soft constraints are marked by the question mark (?) in the position of the
operator. This soft constraint has the following function: If any already processed possessive pronoun
depends on B, the soft constraint blocks a successful application of this rule in the positive projective
or positive nonprojective phase. In negative phases this soft constraint marks a syntactic inconsistency
with the code SecondPossModNoun and the interpretation of this rule continues. The soft constraint
using the keyword nonsens is in fact a small trick, which allows to overcome the problem that the
syntax of metarules does not allow to use a soft constraint between IF and THEN. Would it be
possible, the syntax of the instruction could look like this:

IF B.dep_poss ? yes SecondPossModNoun ELSE X.dep_poss:=yes ENDIF}
 ELSE ENDIF

{If A is not a possesive pronoun, the processing continues.}
{The following lines handle the same problem of two adjectival modifiers of an identical type

depending on the same noun for personal, reflexive, demonstrative, relative pronouns and totalizers,
respectively.}

IF A.prn_type = pers THEN
IF B.dep_pers = yes THEN

B.wcl ? nonsens SecondPersModNoun
ELSE X.dep_pers:=yes ENDIF

ELSE ENDIF
IF A.prn_type = refl THEN

IF B.dep_refl = yes THEN
B.wcl ? nonsens SecondReflModNoun

ELSE X.dep_refl:=yes ENDIF
ELSE ENDIF

IF A.prn_type = dem THEN
IF B.dep_dem = yes THEN

B.wcl ? nonsens SecondDemModNoun
ELSE X.dep_dem:=yes ENDIF

ELSE ENDIF
IF A.prn_type = rel THEN

IF B.dep_rel = yes THEN
B.wcl ? nonsens SecondRelModNoun

ELSE X.dep_rel:=yes ENDIF
ELSE ENDIF

IF A.prn_type = tot THEN
IF B.dep_tot = yes THEN

B.wcl ? nonsens SecondTotModNoun
ELSE X.dep_tot:=yes ENDIF

55

ELSE ENDIF
{The interrogative, indefinite and negative pronouns have the same property of uniqueness

with respect to the governing noun as the above mentioned types of pronouns. Besides that they
exhibit certain requirements on the mutual order of dependent words. The requirements were taken
from the report [Bémová 96], where they are described in detail.

At this point it is necessary to stress that this set of conditions is in fact able to check the
mutual order of pronouns depending on the same nominal governor, but solely in the projective
constructions. In those phases where the general constraint on projectivity is relaxed, these conditions
have a different role � they no longer check the correct order of depending pronouns, they only reduce
the number of syntactic trees by imposing certain order of attaching pronouns of different types. To a
certain extent they thus help avoid the duplicity of subtrees representing the nominal group even
before the interpreter applies its inherent mechanism for pruning the duplicit structures (cf. the
description of the software environment in Chapter 7.}

IF A.prn_type = que THEN
IF B.dep_que = yes THEN

B.wcl ? nonsens SecondQueModNoun
ELSE X.dep_que:=yes

{The section handling the unacceptable order of dependent pronouns starts here. The
interrogative pronoun may not precede an indefinite or negative one in the same phrase.}

IF B.dep_indef = yes THEN
B.wcl ? nonsens IllegCombQueIndef

ELSE
IF B.dep_neg = yes THEN

B.wcl ? nonsens IllegCombQueNeg
ELSE ENDIF

ENDIF
{The end of the section of handling unacceptable word order of interrogative pronouns.}

ENDIF
ELSE ENDIF
IF A.prn_type = indef THEN

IF B.dep_indef = yes THEN
B.wcl ? nonsens SecondIndefModNoun

ELSE X.dep_indef:=yes
{The section handling the unacceptable order of dependent pronouns starts here. The

indefinite pronoun may not precede a totalizer or a demonstrative, negative or interrogative pronoun in
the same phrase.

Let us demonstrate how these conditions work in the projective phase. Let us take the
following set of items from the first sentence of our testbed:
nějaká [some/any]

lexf:
nějaký

wcl: prn
syntcl: adj
prn_type:

indef
gender:

fem
num: sg
case: nom
END

ka�dá [every]
lexf: ka�dý
wcl: prn
syntcl: adj
prn_type: tot
gender: fem
num: sg
case: nom
END

činnost [activity]
lexf: činnost
wcl: noun
syntcl: noun
gender: fem
num: sg
case: nom
END

56

The application of this metarule on the second and third item (ka�dá činnost) will result in
derivation of the following item:
činnost [activity]

lexf: činnost
wcl: noun
syntcl: noun
gender: fem
num: sg
case: nom
dep_tot: yes
END
This item is then subsequently combined with the first item (nějaká). It is an indefinite

pronoun, therefore the constraints in this section are being checked. Due to the fact that the modified
item representing the noun činnost with the already attached pronoun ka�dá contains an attribute
dep_tot, the condition IF B.dep_tot = yes THEN B.wcl ? nonsens IllegCombIndefTot either (in the
positive phase) does not allow the attachment of the indefinite pronoun and causes this metarule to fail
for this particular pair of items, or (in the negative phase), it will mark the syntactic inconsistency
IllegCombIndefTot caused by the violation of this soft constraint into the resulting structure.

All subsequent sections taking care of this problem have a similar meaning.}
IF B.dep_dem = yes THEN

B.wcl ? nonsens IllegCombIndefDem
ELSE

IF B.dep_neg = yes THEN
B.wcl ? nonsens IllegCombIndefNeg

ELSE
IF B.dep_tot = yes THEN

B.wcl ? nonsens IllegCombIndefTot
ELSE

IF B.dep_que = yes THEN
B.wcl ? nonsens IllegCombIndefQue

ELSE ENDIF
ENDIF

ENDIF
ENDIF

{The end of the section of handling unacceptable word order of indefinite pronouns.}
ENDIF

ELSE ENDIF
IF A.prn_type = neg THEN

IF B.dep_neg = yes THEN
B.wcl ? nonsens SecondNegModNoun

ELSE X.dep_neg:=yes
{The section handling the unacceptable order of dependent pronouns starts here. The negative

pronoun may not precede a totalizer, indefinite or interrogative pronoun in the same phrase.}
IF B.dep_indef = yes THEN

B.wcl ? nonsens IllegCombNegIndef
ELSE

IF B.dep_tot = yes THEN
B.wcl ? nonsens IllegCombNegTot

ELSE
IF B.dep_que = yes THEN

B.wcl ? nonsens IllegCombNegQue
ELSE ENDIF

ENDIF
ENDIF

57

{The end of the section processing unacceptable word order of negative pronouns.}
ENDIF

ELSE ENDIF
{The following ELSE branch belongs to the IF A.wcl = prn condition. If the item A is not a

pronoun, the rule fails.}
ELSE FAIL ENDIF
{The second branch of the main IF statement.}
A.gender ? B.gender errGender
A.num ? B.num errNum
A.case ? B.case errCase
{These soft constraints check the agreement in gender, number and case of the governing item

B and the dependent item A. It might be an issue of discussion whether these three constraints should
be here or whether they should immediately precede the assignment operator X:=B. In general the
placement of individual constraints should follow a simple rule � in case the metarule is not applicable
to a particular pair of items A and B, the processing of such a metarule should fail as soon as possible.
Thus those constraints which can block the greatest number of unacceptable items A or B should be
placed at the top of the metarule. In this case it is very difficult to decide on the proper place of these
three constraints.}

OK
{If the interpretation of the metarule reaches this point, the rule may be applied and the new

item X is created. At this point it is necessary to stress that even though the assignment X:=B was
processed quite early in this metarule, it was mainly for the purpose of reference in subsequent
statements. The actual item X is not created until the keyword OK is processed. Let us also repeat that
the item X in fact represents a node of a DR�tree (cf. Fig 9.1). }

END_P

Metarule (2)
Prepositional group

PROJECTIVE
{This rule may be applied only in a projective way. The inner structure of Czech prepositional

groups is generally projective, even though we may find several very complicated examples of
prepositional groups, e.g. s o hlavu vět�ím přítelem � (Lit.: with by head taller friend) � [with a friend
by a head taller].}

A.syntcl = prep
B.syntcl = noun
{The item on the left�hand side is a preposition, the item on the right�hand side has syntactic

properties of a noun}
A.case ? B.case Case_Dis_Prep_Noun
{This soft constraint checks the agreement of the case required by the preposition and that of

the nominal head of the group.}
IF B.wcl = prn THEN

B.pprep ? yes NonprepFormOfPronoun
ELSE ENDIF
{In case that the item B is a pronoun with syntactic properties of a noun it is necessary to

check whether it is in the correct (i.e. strong) form which allows the pronoun to be a head of a
prepositional group.}

X:=B
{The item X gets all information from the item B except for the following two attributes}
X.syntcl := prephr
{Item X is now marked as a prepositional group. The change of a syntactic class of the

governing item also blocks the possibility to attach a second preposition to the same noun.}

58

X.prep := A.lexf
{A "new attribute" (in fact it is not new, it is all the time virtually present in the data structure

of the noun) will preserve the lexical value of the preposition for a later use (if any). This rule is one of
many where it was necessary to decide which of the two items will be the governing one. This
decision must be made at any moment when, unlike in the previous rule, the resulting item inherits
data from both items A and B. Let us repeat the simple criterion applied in our system � whichever of
the two items contains more information which might be required later, it is chosen as the governing
one.}

OK
END_P

Metarule (3)
The attachment of a nominal modifier in the genitive case to the noun from the right hand side.

PROJECTIVE
{This metarule may be applied only in a projective way. The modifier may not be part of a

nonprojective construction.}
IF A.syntcl = noun THEN
{The item A has syntactic properties of a noun.}

IF B. syntcl = noun THEN
IF B.case = gen THEN

{The item B is in the genitive case and it has syntactic properties of a noun.}
{The following lines handle the collision of this metarule with the following one. In case both

the title (e.g. pan Novák � Mr. Novák) and the noun following the title are in the genitive case and
they also agree in gender and number, these items could be processed by both metarules. In such a
case the section below blocks the application of this metarule in favor of the following one.}

IF A.title = yes THEN
IF A.case = gen THEN

IF A.gender = B.gender THEN
IF A.num = B.num THEN FAIL
ELSE ENDIF

 ELSE ENDIF
 ELSE ENDIF

ELSE ENDIF
{End of the inserted block.}

ELSE FAIL ENDIF
ELSE FAIL ENDIF

ELSE FAIL ENDIF
{If the item A is not a noun and the item B either is not in the genitive case or it is not a noun,

the application of the rule fails.}
IF A.rightgen = no THEN FAIL ELSE ENDIF
{The result of the condition A.rightgen = no in this form provides the result FALSE not only

in case the value of the attribute rightgen is yes, but also in case the item A does not have any such
attribute. This property of the interpreter makes it possible to introduce the concept of "virtual"
attributes. It is possible to check the value of an attribute even if it is not part of a data structure in the
given moment. This concept has already been used in the first metarule and is very often used for the
same purpose in several other attributes.

This constraint is a hard constraint, although there is an alternative way of expressing this
constraint as a soft one:

IF A.rightgen = no THEN A.wcl ? nonsens SecondGenModNoun ELSE ENDIF
The decision whether we should use the first or the second form depends on the error

expectation. If we expect that the existence of the second noun in the genitive modifying the same
head is likely, we would use the second form. On the other hand, if this type of error is unlikely, we

59

had better use the first form since every soft constraint causes an increase of the number of derived
structures and thus negatively influences the phases of negative parsing (it allows a wider application
of the metarule and thus creates a larger number of new items).}

X:=A
X.rightgen := no
{The result of the application of this metarule is an item which corresponds to the item A (the

governing word is the first noun). This item cannot be further modified by another noun in the genitive
from the right�hand side.}

IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{Let us now point out that the following explanation holds only for the projective processing

of the metarule. The situation is completely different when the global projectivity constraint is relaxed.
In such a case this mechanism in fact imposes certain order of attachment and thus reduces the number
of derived items (cf. the comment to the first metarule).

The attributes eos and eoc indicate that the right end of the sentence or of the clause,
respectively, has already been processed (this is important to know, for example, in a nested clause).
The attribute end indicates that either the right end of a sentence or the right end of a clause has
already been processed. These attributes are very important for several reasons. They preserve the
information about commas and periods which had already been processed and thus disappeared from
the sentence. This is crucial for example if there is a multiple nesting of clauses and a single comma
serves as the right�end marker for several clauses. The information that everything between a head of
the clause and its right end has been processed also helps to reduce the number of items derived in the
process of parsing � some of the left�hand side modifiers (for example relative pronouns) are
processed only after the right�hand side modifiers of the head have already been attached. This block
of instructions is very common in those metarules, where the symbol A is the governing one. The
values must be copied into the item X, otherwise they would be lost, because the item B is not the
governing one.}

OK
END_P

Metarule (4)
Constructions of the type "pan Novák" (Mr. Novák)

PROJECTIVE
{This metarule may be applied only in a projective way.}
A.syntcl = noun
B. syntcl = noun
{Both items have syntactic properties of a noun.}
IF A.title = yes THEN

IF A.case = voc THEN
IF B.case = nom THEN
ELSE

IF B.case = voc THEN
{According to the official Czech grammar not only the address pane[voc.] Nováku[voc.], but

also the form pane[voc.] Novák[nom.] is acceptable.}
ELSE

A.case ? nonsens Improper_Case_Comb_Titl_Name
{Any other case than the nominative or the vocative (in combination of the vocative case of

the item A) is reported as a syntactic inconsistency.}
ENDIF

60

ENDIF
ELSE

A.case ? B.case Case_Disagr_Titl_Name
{The agreement in case is checked for all cases of the item A except for vocative, which is

handled by the set of conditions above.}
ENDIF

ELSE FAIL ENDIF
A.gender ? B.gender Gender_Disagr_Titl_Name
A.num ? B.num Num_Disagr_Titl_Name
{If the item A may be used as a title, it must agree not only in case, but also in gender and

number with the head of the group.}
X:=B
{The governing item is the item B.}
X.title := no
{This assignment operator blocks the combinatorial explosion of parses in case of

constructions where more than one title is involved � předseda pan dr. Novák (chairman mister
Dr.Novák).}

OK
END_P
{Note that this metarule does not deal in any specific way with constructions of the type

Novák autor je lep�í ne� Novák překladatel. [Lit.: Novák author is better than Novák translator.] �
(Novák is better as author than as translator.) This type of constructions could be dealt with purely on
the lexical level simply by adding the attribute title to every surname in the dictionary of the system.}

9.2 Verbal modifiers
The second group of metarules is the most important one. It allows to process filling valency slots with
nonprepositional inner participants and to attach free modifiers. The fifth metarule is the most
complicated metarule of the entire grammar.

Metarule (5)
Filling of a slot in the valency frame from the left�hand side
{This metarule has its counterpart in the metarule for filling a slot in the valency frame from

the right hand side. Since both rules are almost identical with the only difference that the item A from
this metarule is the item B in the other one and vice versa, we are going to describe only this rule as a
representative of both.}

{The first part of instructions handles the case when the governing word � item B � is an
auxiliary verb.}

IF B.syntcl = aux THEN
{The item B is an auxiliary verb.}

IF A. syntcl = v THEN
IF A.v_form = inf THEN ELSE

IF B.v_form = inf THEN FAIL ELSE ENDIF
{This condition blocks the attachment of one infinite verb as an inner participant of another

infinite verb. Such a construction (a chain of infinitive verbs) would be handled by a special metarule.
Let us at this point remind what does the keyword FAIL mean � when it is encountered in a particular
branch of an IF statement, the computation of the metarule immediately stops without success. In
other words, the keyword FAIL forces the processing of the whole metarule to stop without sucess, not
only of a particular statement where it is located.}

ELSE
IF A.v_form = passinf THEN ELSE FAIL ENDIF
ENDIF

61

{If the dependent word is a verb, it may be only an infinitive or a head of a chain of
infinitives.}

ELSE
IF A.syntcl = noun THEN ELSE FAIL ENDIF

ENDIF
{The dependent word may also be a noun but nothing else � at least in this metarule. The other

three types of candidates for frame slot fillers, namely adverbs, subordinated clauses and prepositional
groups, are handled elsewhere. The adverbs are handled by the metarules described in section 9.8,
subordinate clauses by metarules from the section 9.6. Let us remind that we have excluded
prepositional groups from valency frames for reasons mentioned at the end of the previous chapter.}

ELSE
{This is the end of the section handling auxiliary verbs. Next section is almost identical, it

handles main (autosemantic) verbs.}
IF B.syntcl = v THEN
{The item B is a main (autosemantic) verb.}

IF A.syntcl = v THEN
IF A.v_form = inf THEN ELSE

IF A.v_form = passinf THEN ELSE FAIL ENDIF
ENDIF

{If the dependent word is a verb, it may be only an infinitive or a head of a chain of infinitives
combined with the passive voice.}

ELSE
IF A.syntcl = noun THEN ELSE FAIL ENDIF

ENDIF
{In this part of the metarule only a noun may be a dependent word, but nothing else � the

same comment as above applies here.}
ELSE
{This is the end of the section handling main (autosemantic) verbs. Next section handles

nouns.}
IF B.syntcl = noun THEN

IF A.syntcl = noun THEN
IF A.syntcl = v THEN ELSE

IF A.v_form = inf THEN ELSE FAIL ENDIF
ENDIF

ENDIF
ELSE FAIL ENDIF
{If the item B has syntactic properties of a noun then the item A (dependent word) must also

have syntactic properties of a noun or it can be a verb in infinitive � cf. touha psát [the desire to write].
Nothing else may fill the frame of a noun in a nonprepositional case in this metarule � the same
comment as above applies here.}

ELSE
{The following section handles adverbs and adjectives as governing words. }

IF B.syntcl = adv THEN
ELSE

IF B. syntcl = adj THEN ELSE FAIL ENDIF
ENDIF

ENDIF
ENDIF
ENDIF
IF A.prn_type = rel THEN FAIL ELSE ENDIF
{The relative pronouns are handled by metarules in section 9.6.}
{The following section concerns the choice of a relevant slot in the valency frame of the

governing word � the item B.}

62

P in B.frameset
{A temporary item P is used for the identification of the chosen slot.}
P.prep = 0
{The slot represents a nonprepositional case.}
IF A. syntcl = v THEN P.case ? inf verbal_actant_not_inf
{If the item A is a verb, it may only be in an infinitive form.}
ELSE A.case ? P.case case_disagr_in_the_frame
{If the item A is not a verb, it must have the same value of the attribute case as the slot in the

valency frame which is represented by the temporary item P.}
ENDIF
{At this point it is necessary to check the subject�verb agreement. The constraint on case

(nominative) is not sufficient for the subject, the subject must agree with the verb in person, gender
and number.}

IF B. syntcl = v THEN
{The governing word � item B � is the main verb.}

 IF P.actant = act THEN
{The slot in the valency frame is a slot for an actor, an inner participant mostly corresponding

to a subject. This constraint is based on the value of the attribute actant (inner participant) and not on
the value of the attribute case (nominative) as a consequence of the fact that there are verbs in Czech
which do not have a subject in nominative case, cf. Kellyových[gen.] zpívali (The Kelly family sang).
In this case some types of nouns in genitive cases, citations, interjections etc. can have the role of the
�syntactic nominative�.}

IF B.v_form = inf THEN FAIL ELSE
IF B.v_form = passinf THEN FAIL ELSE

{The infinitive form of the verb must not have any subject. If the form of a governing verb is
infinitive, the metarule fails.}

IF A.gender = B.gender THEN
 IF A.num = B.num THEN

ELSE
A.WCL ? nonsens subj_verb_disagr_num

ENDIF
ELSE

A.WCL ? nonsens subj_verb_disagr_gend
ENDIF

{The subject must agree in gender and number with the verb}
ENDIF

ENDIF
ELSE
ENDIF

ELSE
ENDIF
{In case the passive voice contains an infinitive or a chain of infinitives (for example the

sentence Zasedání mohou začít být svolávána zítra. (The meetings can begin to be summoned
tomorrow.)), it is necessary to check the agreement between the subject and the only verb that is not in
the infinitive form.}

IF B.syntcl = v THEN
IF B.v_form = inf THEN ELSE

IF A.v_form = passinf THEN
A.gender ? B.gender Verb_pass_dissagr_gender
A.num ? B.num Verb_pass_dissagr_number

{If the item B is the main (autosemantic) verb and the item A is an infinitive taking part in a
passive construction, both verbs must agree in gender and number. The item A does not, of course,

63

have its own gender and number, this information is carried over from the verb in the passive voice
through the whole chain of infinitives which are parts of the passive construction. This transfer of
information is handled by instructions in this metarule below.}

ELSE ENDIF
ENDIF

ELSE ENDIF
X:=B
{If the metarule succeeds, the result gets all data from the item B.}
\ P from X.frameset
{This is the end of the section dealing with filling the slot in the valency frame of the item B.}
{The last block handles the transfer of the information about gender and number of a verb in

passive voice through the chain of infinitives which take part in a passive construction to the main
(autosemantic) verb � cf. the comments above.}

IF B.v_form = inf THEN
IF A.v_form = passinf THEN
X.gender := A.gender
X.num := A.num

{If the governing word is an infinitive and the dependent one is an infinitive taking part in a
passive construction then it is necessary to copy the information about the number and gender from the
dependent verb to the governing one.}

X.v_form := passinf
{It is also necessary to mark the fact that now also the governing verb takes part in a passive

construction.}
ELSE ENDIF

ELSE ENDIF
OK
END_P

Metarule (6)
Attachment of a free modifier (adjunct) from the right�hand side

CLOSEST
{This metarule should be applied only to adjacent input items A and B, in the sense of static

order of input words. This means that if the input items A' A" B' B" are in this order on the input and
the item A is the governing one, the metarule may be applied only to the pairs of items A"B' and
A"B".

In this metarule the keyword CLOSEST blocks the possibility of an attachment of a free
modifier from the subordinate clause to the main verb of the main clause or the spurious ambiguity of
an attachment of a free modifier to all preceding nouns etc.}

IF B.syntcl = prephr THEN ELSE
IF B.syntcl = noun THEN

IF B.case = ins THEN ELSE ENDIF
{The free modifier is either a prepositional group or a noun in the instrumental case. The

instrumental case is not the only nonprepositional case which may have the role of a free modifier. No
other cases are taken into account because it is impossible to distinguish when they are in a role of an
inner participant or a free modifier on the basis of purely syntactic clues (cf. the discussion at the end
of the previous chapter). Other nonprepositional cases are quite rare in the syntactic role of a free
modifier compared to instrumental case; thus it is possible to neglect them. Would all the other cases
be allowed as free modifiers we would get spurious ambiguities everywhere � all nonprepositional
cases would be taken both as filling the slot of an inner participant and of a free modifier. The
interpreter of our metarules does not allow to formulate a constraint "If there is a suitable valency slot
then the item under consideration is an inner participant, otherwise it is a free modifier."}

64

ELSE
IF B.syntcl = select THEN ELSE FAIL ENDIF

{A free modifier may also be a selective construction (čtyři z pěti zubních lékařů � four out of
five dentists.)}

ENDIF
ENDIF

IF A.syntcl = v THEN ELSE
{The free modifier may depend on a verb or on a noun.}

IF A.syntcl = noun THEN
{If the free modifier depends on a noun, it is necessary to block the spurious ambiguity of an

application of this metarule and of the metarule handling constructions of the type "chairman Mao"
(the metarule (4)). This situation is similar to that from the second metarule and the solution proposed
is identical � an introduction and testing of a special auxiliary attribute.}

IF A.titul = yes THEN
IF A.case = B.case THEN

IF A.gender = B.gender THEN
IF A.num = B.num THEN FAIL ELSE ENDIF

ELSE ENDIF
ELSE ENDIF

ELSE
IF B.wcl = num THEN FAIL ELSE ENDIF

{In the role of a free modifier a numeral may depend only on a verb.}
ENDIF

ELSE FAIL ENDIF
ENDIF

IF B.nofm = yes THEN FAIL ELSE ENDIF
{This condition blocks the attachment of free modifiers in case for some reason the item B

cannot be attached as a free modifier. }
X := A
{The item A is a governing word.}
IF A.syntcl = noun THEN X.rightgen := no ELSE ENDIF
{An attachment of a free modifier to the noun from the right�hand side blocks the possibility

of an attachment of a nominal modifier in the genitive case to the same noun.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{The information that the end of a clause or the end of the sentence has already been

processed is carried over from the dependent to the governing item � cf. the metarule (3).}
OK
END_P

9.3 Complex verbal forms
The third group of metarules concerns the complex verbal forms, namely the conditional and past
tense forms. The rules are much simpler than the rules of the previous group. These metarules
generally combine auxiliaries with main verbs and block the attachment of incorrect number of
auxiliaries to the main verb. They do not (and cannot) take care for a proper position of clitics in
clauses.

65

Metarule (7)
Conditional auxiliary to the left of the main verb
{This metarule handles the compound present and past conditional form of the verb composed

of the auxiliary in the conditional form followed by the main (autosemantic) verb with a possible
additional auxiliary verb in the past tense in between (for the past conditional). This metarule has its
counterpart (not presented here) in the metarule handling the same phenomenon with the reversed
order of words. Both metarules are almost identical, the difference is only in the order of words.}

A.syntcl = aux
B.syntcl = v
B.v_form ? pastp WrongVerbalFormofCondMood
{The item B has syntactic properties of a verb in the past participle.}
X := B
{The governing item is the item B.}
IF A.mode = cond THEN
{The item A is an auxiliary verb in the conditional mood.}

IF B.cond_aux = no THEN
B.wcl ? nonsens Two_cond_aux

{The value of an attribute cond_aux indicates whether the auxiliary verb in the conditional
mood has already been attached to the main verb.}

ELSE ENDIF
X.v_cl := cond

{The attribute v_cl of the item X receives the value indicating that the item represents a
compound verb in conditional}

X.cond_aux := no
{This statement blocks the attachment of another auxiliary in the conditional mood to the

same main verb.}
ELSE IF A.v_form = pastp THEN
{The auxiliary verb is in the past form � it is a part of the past conditional.}

X.past_aux := yes
ELSE FAIL ENDIF

{If the auxiliary verb is not in the conditional or past form, the metarule is not applied.}
OK
END_P

Metarule (8)
Nominal predicate with the copula

A.syntcl = aux
{The item A represents an auxiliary verb.}
IF B.syntcl = adj THEN
ELSE IF B.syntcl = noun THEN ELSE FAIL ENDIF
ENDIF
{The item B has either syntactic properties of an adjective or of a noun.}
IF B.case = nom THEN
ELSE B.case ? ins Wrong_case_by_copula
ENDIF
{The nominal predicate may be only in the nominative or instrumental case.}
X := A
{The governing item is the copula.}
X.syntcl := v

66

{This assignment of the new value to the attribute syntcl has two functions. The first function
is to avoid the attachment of another noun or adjective as a nominal predicate to the same copula. The
second function is to indicate that the predicate is complete and the processing of the rest of the
sentence may continue (as in the previous cases, this comment concerns the projective phases).}

OK
END_P

Metarule (9)
Complex past tense
{This metarule handles the combination of the auxiliary verb and the main (autosemantic)

verb in the past tense. The grammar contains also the metarule handling the same combination of
words in the reversed order.}

A.syntcl = aux
A.tense = pres
{The item A represents an auxiliary verb in the present tense (dělal jsem � I was doing).}
B.v_form = pastp
{The item B represents a verb in the past tense.}
IF B.depaux = yes THEN

B.depaux ? nonsens Second_aux
{The item B cannot have one auxiliary already attached.}
ELSE ENDIF
X := B
{The governing item is the main (autosemantic) verb.}
X.depaux := yes
{This technical attribute blocks the attachment of the second auxiliary.}
OK
END_P

Metarule (10)
Verb in a passive voice combined with a copula from the left�hand side
{This metarule has its counterpart which differs only in the mutual position of items � the

copula is on the right�hand side.}
A.lexf = být
{The lexical value of the lemma of the copula is checked.}
A.syntcl = aux
{The item A is an auxiliary verb. It may seem that this test is not necessary due to the previous

condition, but it is necessary to take into account that the auxiliary verb být [to be] may play several
roles. It is therefore represented by several unambiguous items, out of which only those with a
syntactic role of an auxiliary verb are to be used here.}

IF A.mode = cond THEN FAIL ELSE ENDIF
{Conditional mood will be handled by a special metarule.}
B.syntcl = v
B.pass = per
{The item B is a verb in the passive form.}
X := B
{The governing item is the passive verb.}
X.v_form := passinf
{The newly created item is marked as being in the passive voice.}
OK
END_P

67

Metarule (11)
Unattached single verb in the infinitive form being dangling in the clause

NEGATIVE
{This metarule is a first example of an error anticipation metarule. It is applied only in

negative phases, otherwise it is ignored by the interpreter. The item derived as a result of the
application of this metarule is marked as containing a syntactic inconsistency.}

A.syntcl = v
B.syntcl = v
A.v_form = fin
B.v_form = inf
{Both input items are verbs, one in the finite and the other in the infinite form}
X := A
{The verb in the finite form is the governing item.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{The information that the end of the sentence or clause has already been processed is carried

over from the dependent to the governing item � cf. the comments on the metarule (3).}
OK
END_P

9.4 Coordination
The fourth group of metarules handles some examples of coordination, namely the coordination of
nouns and verbs in the infinite form and the coordination of clauses. It is interesting for at least two
reasons. First, it contains a section handling the coordination of nouns in the nominative case, which is
very important for a correct analysis of sentences with coordinated subjects where individual members
of the coordination are of a different gender. In Czech this phenomenon requires very complicated
rules. Second, this group of rules contains a second example of an error anticipating metarule, which is
applied only in case the positive projective phase fails to build a complete tree.

Metarule (12)
Coordination of nouns, first part
{This metarule represents the first example of how complex problems of interaction of more

than two items may be handled in the metagrammar. The interaction is achieved through the use of a
special (unique) value of the attribute syntcl assigned to the item representing the result of the first rule
of the sequence (cf. the comments inside the metarule).

This metarule is the first part of a sequence of two metarules handling the coordination of
nouns. This type of coordination is handled separately from other types of coordination because it has
to follow a complex set of agreement rules when it becomes a subject.}

A.syntcl = conj
A.conjtype = coord
{The item A is a coordinate conjuction.}
B.syntcl = noun
{The item B has syntactic properties of a noun.}
X := B
{The item B contains more information necessary for the future processing, therefore it is

taken as the governing word.}
X.syntcl:= koordn

68

{The value of the attribute syntcl is changed. The new value is unique � it is used only in this
metarule and in the following one � and thus serves as a connection between the metarules handling
the same problem. This technique is used in all cases where more than one metarule is necessary for
handling a certain syntactic phenomenon.}

OK
END_P

Metarule (13)
Coordination of nouns, second part
{This metarule is the second metarule of the pair handling nominal coordination. It is an open

question if the metarule should not be applied with the keyword CLOSEST in a similar manner as the
attachment of free modifiers. If a more complicated nominal groups are coordinated, it is in many
cases impossible to distinguish syntactically which items should be coordinated. This results in
spurious ambiguities as for example in the third sample sentence of our testbed. The question whether
it is acceptable to apply this metarule only for the nearest possible candidates, would probably require
a deeper linguistic research. For the time being we prefer deriving all variants.}

A.syntcl = noun
{The item A has syntactic properties of a noun.}
B.syntcl = koordn
{The item B was created as a result of an application of the previous metarule.}
A.case ? B.case Wrong_case_in_coord
{The coordination of nouns is applicable only when both are in the same case.}
X := A
{The item A is copied into X. This assignment instruction has to precede the following section

because the item X must be defined before its attributes may be assigned a value.}
X.num := pl
{The value of an attribute num of the item representing the whole coordination is set to plural.

Unfortunately, in Czech it is possible in this case to assign also a singular number to the coordination
of this type. That is very inconvenient for our system, because the interpreter does not make it possible
to create two variants of output items for a single metarule. For this reason it was necessary to add
another metarule into the metagrammar, differing only in this place � the assignment is replaced by the
following nested condition:

IF A.num = sg THEN
IF B.num = sg THEN ELSE FAIL ENDIF

ELSE FAIL ENDIF
which blocks the application of this rule in case either of items A and B is in plural and thus it

is fully covered by this rule and no variant is necessary.}
IF A.case = nom THEN
{This is a slight simplification exploiting the fact that the vast majority of subjects is in the

nominative case. Due to the fact that this metarule handles only the coordination of nouns, no other
possible types of subjects (infinitives, subordinated clauses) are taken into account here.}

IF A.gender = anim THEN ELSE
{If the gender of the item on the left�hand side is masculine animate, it is not necessary to do

anything since the value is copied by default by the assignment X := A.}
IF B.gender = anim THEN

X.gender:= anim
{If either of the items A and B is masculine animate, then the result should also be masculine

animate.}
ELSE
IF A.gender = neut THEN

IF B.gender = neut THEN

69

IF A.num = sg THEN
X.gender := fem

ELSE IF B.num = sg THEN
X.gender := fem

ELSE X.gender := B.gender
ENDIF

ENDIF
ELSE X.gender:= B.gender
{If both items A and B are neuter and at least one of them is in singular, then the whole

coordination receives the feminine gender, otherwise it receives the same gender as the item B. (In this
branch of the IF statement neither item may be masculine animate.) If only A is in neuter, then the
whole coordination retains the gender of the item B.}

ENDIF
ELSE ENDIF
ENDIF

ENDIF
ELSE ENDIF
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{Standard way of the transfer of the information that the end of a clause has already been

processed from the dependent to the governing item � cf. the comments on the third metarule.}
OK
END_P

Metarule (14)
Coordination with ill�placed comma
{This is another example of an error anticipation metarule. }
NEGATIVE
{This keyword marks an error anticipation metarule.}
A.syntcl = comma
{The item A is a comma.}
IF B.syntcl = koordinf THEN ELSE

IF B.syntcl = koordn THEN ELSE FAIL ENDIF
ENDIF
{The item B is a coordination of nouns or verbs in infinite form. This is the place where also

other types of coordination may be handled in future by means of adding other nested conditions.}
X := B
OK
END_P

Metarule (15)
Coordination of infinitive verbs, the first part

A.wcl = conj
A.conjtype = coord
{The item A is a coordinate conjuction.}
B.syntcl = v
B.v_form = inf
{The item B is a verb in the infinitive form.}
X := B

70

{B is the governing item.}
X.syntcl:= koordinf
{The result is assigned a unique value for its syntactic class, allowing to use the item solely in

the next metarule.}
OK
END_P

Metarule (16)
Coordination of infinitive verbs, the second part
A.syntcl = v
A.v_form = inf
{The item A is a verb in the infinitive form.}
B.syntcl = koordinf
{The item B was derived as a result of an application of the previous metarule.}
X := A
{A is the governing item.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
{Standard way of the transfer of the information that the end of a clause has already been

processed from the dependent to the governing item � cf. the comments to the metarule (3).}
OK
END_P

Metarule (17)
Coordination of clauses, first part
{This is the first metarule from the pair of metarules handling the coordination of clauses. It

combines the conjunction with the clause on its right�hand side.}
A.syntcl = conj
A.conjtype = coord
{The item A represents a coordinate conjunction.}
IF B.syntcl = v THEN ELSE

IF B.syntcl = aux THEN ELSE FAIL ENDIF
ENDIF
{The item B is either a main (autosemantic) or an auxiliary verb.}
B.eos = yes
{It is necessary to combine both items only in case the rest of the clause has already been

processed.}
X := B
{The item B is the governing item. This is again an arbitrary decision because the only

information required in the further processing is contained in the new value of the attribute syntcl.}
X.syntcl := clcoord
{The value of the attribute syntcl of the newly created item is set to a unique value marking

the fact that the item represents the combination of the coordinate conjunction and the second clause
of the coordination � cf. the comments to the metarule (12).}

OK
END_P

Metarule (18)
Coordination of clauses, second part

71

{This is the second metarule from the pair of metarules handling the coordination of clauses. It
combines the first clause with the rest of the coordination.}

A.syntcl = v
{The item A is a verb.}
IF A.v_form = inf THEN FAIL ELSE ENDIF
IF B.v_form = inf THEN FAIL ELSE ENDIF
{This metarule should not be applied for the coordination of infinite verbs, this phenomenon is

handled by the metarules (15) and (16).}
IF B.wcl = vb THEN

IF B.syntcl = clcoord THEN ELSE
IF B.syntcl = comv THEN

{It is necessary to handle the coordination with a comma (cf. the following metarule, in which
the item with syntcl=comv is created) in the same manner as the coordination with a coordinate
conjunction due to the possibility of more than two clauses being coordinated.}

IF B.rel_clause = yes THEN FAIL ELSE ENDIF
{The relative clauses cannot be handled by this metarule, relative clauses are treated

separately due to the necessity to check the agreement of the relative pronoun and the noun it is
referring to.}

ELSE FAIL ENDIF
ENDIF

ELSE FAIL ENDIF
X := A
{The item A is the governing item.}
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
{The information that the end of the clause has already been processed is transferred � cf. the

comments to the third metarule.}
OK
END_P

9.5 Embedded nominal groups and clauses
This section contains four metarules handling the problem of embedded nominal groups and clauses.
At this point it is necessary to stress that we are using the term �embedded� in a slightly different
manner than the traditional terminology. We distinguish between a general term of a subordinated
clause (phrase, group) and a more specific term of an embedded clause (phrase, group). The latter
term, as we understand it, represents subordinated clauses (phrases, groups) which are inserted into the
main clause in such a manner that there is a non�empty tail of the main clause following the embedded
clause (phrase, group). In other words, the embedded section of a sentence divides the main clause
into two non�empty parts.

Metarule (19)
Embedded nominal group depending on a noun, first part
{The construction described by the metarules in this section consists of four words �

a governing noun, comma, a nominal (or verbal) head of the embedded group (clause) and the comma
following the embedded group (clause). This metarule handles the left comma and the head of the
embedded nominal group. The main problem is that it is not possible to restrict the use of this
particular metarule only to the construction indicated above. The pair comma � noun may also be a
part of other constructions, for example a coordination of more than two nominal elements, where
usually the first n�1 elements are separated by commas and only the last pair of nouns has a
conjunction in between.}

72

A.syntcl = comma
IF B.syntcl = noun THEN ELSE

IF B.syntcl = v THEN ELSE FAIL ENDIF
ENDIF
{The item A is a comma and the item B has syntactic properties of a noun or of a verb.}
IF B.prn_type = rel THEN FAIL ELSE ENDIF
{Relative clauses are handled by the metarules in section 9.6. }
X := B
IF B.syntcl = noun THEN X.syntcl := comn ELSE ENDIF
IF B.syntcl = v THEN X.syntcl := comv ELSE ENDIF
{The item B is the governing one. The item X is assigned a special syntactic class, which

keeps track of the fact that the comma to the left has already been processed.}
OK
END_P

Metarule (20)
Embedded noun or clause depending on a noun, second part
{Similarly as the first metarule of this set, this metarule is applicable not only to embedded

nominal groups, but also to embedded clauses, because there is no particular reason to handle the two
types separately.}

IF A.syntcl = comn THEN ELSE
IF A.syntcl = comv THEN ELSE FAIL ENDIF

ENDIF
{The item A represents either a comma and a noun, or a comma and a clause.}
B.syntcl = comma
{The item B is a comma following a noun phrase or a clause. This comma must be processed

before the noun phrase or a clause is attached to the preceding noun, otherwise it might happen that
the words belonging to the embedded phrase or clause will interact with the words of the governing
clause (e.g. fill the slots in the frame etc.). This remark of course applies only to the projective
interpretation of the metagrammar, in the nonprojective one this simple restriction does not work, cf.
the comments on the first and third metarules.}

X := A
X.syntcl := comncom
{Since the item A contains more information than the item B (comma), it is chosen as the

governing item. Its attribute syntcl is assigned a special value indicating that it represents an embedded
phrase or clause.}

X.eoc := yes
X.end := yes
{The information that the comma following the nominal group or the clause has already been

processed is stored in the attribute eoc and end. The attribute eos is not used, because its role is to
indicate that the final period, question mark or exclamation mark have already been processed, i.e. it
indicates that the end of the whole sentence has already been reached � cf. the comments on the third
metarule.}

OK
END_P

Metarule (21)
Embedded noun or clause depending on a noun, third part
{This is the last part of the section handling embedded phrases or clauses. This rule has to take

into account both possibilities � that the comma following the phrase or the clause has either already

73

been processed or not, the latter in case it belongs, for example, also to another subordinate clause in
case of multiple embedding etc.}

A.syntcl = noun
{The item A has syntactic properties of a noun.}
IF B.syntcl = comncom THEN ELSE
{If the item B was created as a result of the previous metarule, then everything is OK.}

IF B.syntcl = comn THEN
B.end ? yes Incomplete_clause

ELSE FAIL ENDIF
ENDIF
{If the item B has not been created by the previous metarule, then it is OK only in case its

attribute end indicates that the comma following the phrase or the clause has for some reason been
already processed.}

X := A
{The antecedent is the governing item.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
{The information that the comma following the embedded nominal group or clause has

already been processed is transferred � cf. the comments on the third metarule.}
X.rightgen := no
{The embedded clause or phrase blocks the possibility of an attachment of the noun in the

genitive case in apposition � cf. the comments on the relevant part of the third metarule.}
OK
END_P

9.6 Subordinate clauses
This section contains metarules handling subordinate clauses, including relative ones.

Metarule (21)
Filling the slot in the valency frame by a relative pronoun from the left�hand side
{This metarule does not have a counterpart handling the same problem from the right�hand

side because the relative pronoun in a relative clause must precede the verb.}
IF B.syntcl = v THEN

B.end ? yes Unf_rel_cl
ELSE FAIL ENDIF
 {The item B is a main (autosemantic) verb with a complete set of right�hand side modifiers

already attached. }
A.syntcl = noun
A.prn_type = rel
{The item A is a relative pronoun. Since relative pronouns are the only words having the value

of the attribute prn_type equal to rel, it is not necessary to check any other attribute.}
P in B.frameset
{A temporary item P represents one slot of the frame of the item B (verb).}
P.prep = 0
{The slot must not require a preposition.}
A.case ? P.case Case_disagr_in_the_frame
{The pronoun must agree with the item P in case. This is a standard constraint for a filler of

the slot in valency frame.}

74

{The following block of constraints takes care of the subject�predicate agreement similarly as
in the fourth metarule.}

IF P.actant = act THEN
IF B.v_form = inf THEN FAIL ELSE

IF B.v_form = passinf THEN FAIL ELSE
{If the chosen slot is a slot for an actor and the item B (verb) is in the infinitive form, this

metarule may not be applied � it fails because the verb in an infinitive form does not have a
subject(actor).}

{If the item B is not a verb in the infinitive form then it is necessary to check the agreement in
gender and number of both items.}

IF A.gender = B. gender THEN
IF A.num = B.num THEN ELSE

A.wcl ? nonsens subject_verb_disagr
{Soft constraint handling the syntactic inconsistency in number between the predicate and

subject (actor).}
ENDIF

ELSE
A.WCL ? nonsens subject_verb_disagr

{Soft constraint handling the syntactic inconsistency in gender between the predicate and
subject (actor).}

ENDIF
ENDIF

ENDIF
ELSE
{If the chosen slot is not a slot for an actor, the processing of the metarule continues.}
ENDIF
X := B
{The item B is a dominant item.}
\ P from X.frameset
{The section dealing with slots in the verbal frame ends here.}
X.syntcl := rel_clause
{The newly created item X is marked as the item representing the relative clause.}
X.relgender := A.gender
X.relnum := A.num
{The gender and number of the relative pronoun is kept for future use. In the syntactic tree

representing the input sentence it means that both gender and number of the relative pronoun are
propagated bottom up through the tree.}

OK
END_P

Metarule (23)
The attachment of a relative subordinate clause � first part
{This part of the metarule attaches the comma preceding the relative clause to its governing

verb.}
A.syntcl = comma
B.syntcl = rel_clause
{The item A is a comma, the item B is a relative clause. The use of a special value rel_clause

is necessary in order to avoid the processing of general embedded or subordinate clauses by this
metarule.}

X := B
{The item B is dominant}

75

X.syntcl := com_rel_clause
{This special value of the attribute syntcl of the result contains the information that the comma

preceding the relative clause has already been processed.}
OK
END_P

Metarule (24)
The attachment of a relative subordinate clause � second part
{This part of the metarule handles the attachment of the relative clause to the preceding noun.}
A.syntcl = noun
{The item A has syntactic properties of a noun}
IF B.syntcl = com_rel_clause THEN
ELSE IF B.syntcl = rel_clause THEN

B.syntcl ? nonsens Missing_comma_prec_rel_cl
{This branch handles the situation where there is no comma preceding the relative clause.}

ELSE FAIL ENDIF
ENDIF
B.relgender ? A.gender Wrong_relgender
B.relnum ? A.num Wrong_relnum
{The gender and number of the item A and the gender and number of the relative pronoun

must agree. The attributes relnum and relgender refer to the properties of a relative pronoun while
B.num and B.gender refer to properties of a main (autosemantic) verb of the relative clause and they
are irrelevant here.}

X := A
{The item A is dominant.}
X.rightgen := no
{The attached relative clause blocks the possibility of the modification by a noun in genitive

case.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
{The whole relative clause has already been processed � the value of the attributes eos, eoc

and end was set when the (possible) end of the clause was processed � cf. the comments on the third
metarule.}

OK
END_P

Metarule (25)
The attachment of a subordinate clause by a subordinate conjunction (the first part).
{This is the first metarule from the set of three metarules handling this type of construction. It

combines the head of the subordinate clause with the subordinate conjunction.}
A.syntcl = conj
A.conjtype = subord
{The item A represents a subordinate conjunction.}
A.conjcl = cls
{The conjunction may be used for connecting the clauses.}
IF B.syntcl = v THEN
ELSE IF B.syntcl = aux THEN ELSE FAIL ENDIF
ENDIF
{The item B represents either a verb or an auxiliary verb. It is supposed to be the head of the

subordinate clause.}

76

X := A
{The governing item is the conjunction. This is an arbitrary choice since the only information

necessary for further processing is contained in the new value of the syntcl attribute. No other
information is being propagated through the tree.}

X.syntcl := clsub
{This value indicates that the newly created item represents the subordinate clause together

with the subordinate conjunction.}
IF B.eos = yes THEN X.eos:=yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc:=yes ELSE ENDIF
IF B.end = yes THEN X.end:=yes ELSE ENDIF
{Standard propagation of the information that the end of the sentence (clause) has already

been processed � cf. the comments to the metarule (3).}
OK
END_P

Metarule (26)
The attachment of a subordinate clause by a subordinate conjunction (the second part).
{This is the second metarule from the set of three metarules handling this type of construction.

It combines a comma and the subordinate conjunction from the previous metarule.}
A.syntcl = comma
{The item A represents a comma.}
B.syntcl = clsub
{The item B was created as a result of the application of the previous metarule.}
B.end ? yes Missing_end
{Soft constraint checking whether the end of the sentence (clause) has already been

processed.}
X := A
{The comma is the governing item of this metarule. This is again an arbitrary choice.

Similarly as in the previous metarule, no other information than that contained in the new value of the
attribute syntcl is necessary for further processing.}

X.syntcl := clscomm
{This value indicates that the newly created item represents the subordinate clause combined

with the conjunction and the comma.}
IF B.eos = yes THEN X.eos:=yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc:=yes ELSE ENDIF
IF B.end = yes THEN X.end:=yes ELSE ENDIF
{Standard propagation of the information that the end of the sentence (clause) has already

been processed � cf. the comments on the metarule (3).}
OK
END_P

Metarule (27)
The attachment of a subordinate clause by a subordinate conjunction (the third part).
{This is the last metarule from the set of three metarules handling this type of construction. It

combines a verb (head of the main clause) with the subordinate conjunction from the previous
metarule.}

A.syntcl = v
{The item A represents a verb.}
IF B.syntcl = clscomm THEN
{If the item B represents an item created by the previous metarule then everything is O.K.}

77

ELSE IF B.syntcl = clsub THEN
B.syntcl ? nonsens Missing_comma_prec_subcl

{If the item B represents an item created by the metarule (24) then there is a missing comma
between the verb in the main clause and the subordinate clause.}

ELSE FAIL ENDIF
ENDIF
B.end = yes
{Only the items representing a complete subordinate clause may be used.}
X := A
{The verb is the governing item of the whole construction.}
IF B.eos = yes THEN X.eos:=yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc:=yes ELSE ENDIF
IF B.end = yes THEN X.end:=yes ELSE ENDIF
{Standard propagation of the information that the end of the sentence (clause) has already

been processed � cf. the comments on the metarule (3). In this metarule it might seem that the value of
eoc (indicating the end of the clause) should not be propagated further due to fact that the complete
subordinated clause has already been attached to the main clause. Unfortunately, the situation may not
be as easy as that because the comma following the subordinated clause may serve as the final comma
for several clauses; therefore it is necessary to preserve also the value of the attribute eoc.}

OK
END_P

9.7 Brackets
This section contains very simple metarules handling brackets and their content. The treatment is
similar to the treatment of embedded clauses, with some simplifications. Generally, the problem of
brackets is much simpler due to the fact that in syntactically correct sentences they appear in pairs and
they clearly indicate which member of the pair is the opening bracket and which is the closing one.
Unlike with commas, even if brackets are nested, the number of the opening ones equals the number
of the closing ones. On the other hand, there is no restriction on what the content of the brackets may
be. It may be anything from a single character to several sentences. For this reason we have decided
not to parse the content of brackets and only to attach every single item to the opening bracket. We are
fully aware of the fact that this solution is definitely not the ideal one. It would be much better to
extract the content of brackets before parsing. The content could then be parsed in a standard manner
and the result included into the syntactic structure of the parsed sentence without brackets, if
necessary.

Metarule (28)
The attachment of the content and the closing bracket to the opening bracket

PROJECTIVE
{Due to the simplification of parsing the content of brackets it has no sense to apply this

metarule in a nonprojective manner.}
A.syntcl = opening
{The item A is an opening bracket, the item B may be anything.}
X := A
{The opening bracket is the governing item.}
IF B.syntcl = closing THEN X.syntcl:=bracket ELSE ENDIF
{Temporary value of syntcl is used as a marker that a complete content followed by a closing

bracket has already been processed.}
OK
END_P

78

Metarule (29)
The attachment of the opening bracket to the immediately preceding item

CLOSEST
{This keyword takes care of the attachment to the immediately preceding item as the only

candidate.}
B.syntcl = bracket
{No constraints on A, while the item B is a result of the application of the previous metarule.}
X := A
{Quite naturally, the item A is the governing one.}
OK
END_P

9.8 Adverbs
There are two simple metarules in this section, representing two ways of attachment of adverbs.

Metarule (30)
An attachment of the adverb from the left
{The metagrammar contains also a counterpart of this metarule, namely the metarule for the

attachment of an adverb to a governing item from the right�hand side. Due to its similarity with this
metarule we do not describe it here.}

A.syntcl = adv
{The item A is an adverb.}
{The following set of constraints handles an attachment of the adverb to the word of the

correct type according to the value of the attribute addep.}
IF B.syntcl = v THEN

A.addep ? advb WrongTypeOfAdverbWithVerb
ELSE

IF B.syntcl = adj THEN
A.addep ? ada WrongTypeOfAdverbWithAdjective

ELSE
IF B.syntcl = adv THEN

A.addep ? add WrongTypeOfAdverbWithAdverb
ELSE

IF B.syntcl = noun THEN
A.addep ? adnl WrongTypeOfAdverbWithNoun

ELSE
IF B.syntcl = prephr THEN

A.addep ? adnl WrongTypeOfAdverbWithNoun
ELSE FAIL ENDIF

ENDIF
ENDIF

ENDIF
 ENDIF
X:=B
{The item B is the governing word.}
IF A.pair = left THEN X.pair := left ELSE ENDIF

79

{The attribute pair indicates that the adverb may belong to an expression like nejen � ale i [not
only � but also]. Its value is propagated through the syntactic tree until it is needed for the completion
of the expression � cf. the comments in section 9.12.}

OK
END_P

Metarule (31)
The attachment of an adverb to a conjunction from the right�hand side
{The raison d`être for this metarule is the construction i nadále [and henceforth] and other

similar constructions.}
B.syntcl = adv
{The item B represents an adverb.}
A.syntcl = conj
{The item A is a conjunction.}
X := B
{The item B is the governing one.}
OK
END_P

9.9 Composition of numerals
The metarule in this section handles the composition of basic numerals in the text. There are no
semantic constraints applied, so the number three thousand five hundred twenty one will be parsed in
the same manner as a chain of numbers one three five thousand hundred twenty.

Metarule (32)
Composition of basic numerals (numbers)

A.wcl = num
A.numtype = dig
A.numcl = ord
{The item A represents a basic numeral.}
B.wcl = num
B.numtype = dig
B.numcl = ord
{The item B represents a basic numeral too.}
A.gender ? B.gender Disagr_gender
A.num ? B.num Disagr_num
A.case ? B.case Disagr_case
{Both numerals must agree in gender, number and case.}
X := B
{The second numeral is the governing item. This is necessary because the case of the noun

following the number (composed of basic numerals expressing digits) depends in the nominative and
accusative case on the last digit in the number (cf. dvacet jeden den vs. dvacet pět dnů [twenty one
days[nom.] vs. twenty five days[gen.]]) Let us stress that this metarule deals with the composition of
numerals, it does not deal with attaching the noun following the numeral to the numeral, therefore it is
not necessary to include here handling the special cases of small Czech numerals (1,2,3 and 4) which
behave in a different manner than the remaining numerals.}.

OK
END_P

80

9.10 Selective construction
The selective constructions are the first example of metarules which cover less frequent and rather
specialized constructions of the language. The range of phenomena covered by subsequent sections is
definitely not complete from the point of view of the coverage of all subtle properties, special
constructions and exceptions present in the language. On the other hand, we have tried to demonstrate
on this limited set of examples various modes of how our interpreter makes it possible to solve even
rather infrequent constructions of various types; we also want to demonstrate some constructions
which definitely require alternative approaches.

Metarule (33)
The selective construction containing adjectives in superlative or comparative and numerals.

There is one more group of words (certain pronouns, e.g. ka�dý [every], �ádný, někdo [somebody],
nikdo [nobody] etc.) which may take part in this type of construction, but this metarule does not cover
them. The reason is that these words do not establish a compact group, it would either be necessary to
enumerate them here or to assign them a special attribute with a value indicating that the particular
word may take part in this construction.

{This metarule handles the constructions of the type nejmlad�í z dětí (the youngest among the
children) or čtvrtý z deseti (the fourth from ten).}

A.syntcl = adj
{The item A has syntactic properties of an adjective}
B.syntcl = prephr
B.prep = z
{The item B represents a prepositional group with the preposition z [from].}
IF A.wcl = adj THEN

IF A.deg = sup THEN ELSE
IF A.deg = comp THEN ELSE FAIL ENDIF

ENDIF
{If the item A is an adjective then its degree must be superlative or comparative.}
ELSE

IF A.wcl = num THEN ELSE FAIL ENDIF
{If the item A is a numeral then no other constraints are required.}
ENDIF
X := A
{The item A is a governing item.}
X.syntcl := select
{The newly created item is assigned a special value of the attribute syntcl, which indicates that

the item represents a selective construction.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{The information that the end of the clause (sentence) has already been processed is further

transferred � cf. the comments in the metarule (3).}
OK
END_P

9.11 Comparison by means of the conjunction než (than)
This section contains only three metarules. The first one is more complicated, since it has to
distinguish between two different types of comparative constructions with the conjunction ne� (than),
namely the comparison with a noun or with a clause. This distinction is important for the second
metarule of the pair.

81

Metarule (34)
Comparison by means of a conjunction ne� (than), first part
{This metarule handles a conjunction and a noun or a clause.}
A.syntcl = conj
A.compar = yes
{The item A is a comparative conjunction. The attribute compar is used instead of the attribute

lexf in order to avoid problems with coding Czech characters (in the constraint A.lexf = ne�). The
conjunction ne� is, at the moment, the only word in the dictionary having this attribute.}

IF B.syntcl = noun THEN
{The item B has syntactic properties of a noun. Since the comparative expressions such as

�ir�í ne� del�í (wider than longer) are considered idiomatic, they should be handled by one of the
phases of preprocessing, which is not yet implemented in the system.}

B.case ? nom Non_nominativ_compared
{The noun should be in the nominative case.}
ELSE IF B.syntcl = v THEN ELSE

IF B.syntcl = aux THEN ELSE FAIL ENDIF
ENDIF

{The item B represents the governing word of the subordinate clause. It may be either the
main (autosemantic) verb or the auxiliary verb.}

ENDIF
X := B
{The noun is a governing word.}
IF B.syntcl = noun THEN X.syntcl := compar ELSE

X.syntcl := comparcl
ENDIF
{The new value of the attribute syntcl of the newly created item indicates that the item

represents a comparative expression.}
OK
END_P

Metarule (35)
Comparison by means of a conjunction ne� (than) and the subordinate clause
{This is the second metarule from the set of metarules handling the comma and the

conjunctive expression. The difference between this metarule and the following one consists in the
presence of the comma. It is not allowed if the comparison does not involve a clause.}

A.syntcl = comma
{The item A represents a comma.}
IF B.syntcl = comparcl THEN
{If the item B represents the combination of a conjunction ne� and a subordinate clause

(according to the previous metarule), then everything is O.K.}
ELSE IF B.syntcl = compar THEN

B.syntcl ? nonsens Extra_comma_preceding_NEZ
{If the item B represents a noun combined with the conjunction ne�, it may not be preceded by

a comma.}
ELSE FAIL ENDIF

ENDIF
X := B
{The item B is a governing item of this metarule.}
X.syntcl := compar
{When the comma preceding the conjunction has already been processed the newly created

item is assigned the same value of the attribute syntcl as in the case of the nominal comparison

82

(metarule (34)). From the point of view of further processing both types of comparative expressions
may be handled identically.}

OK
END_P

Metarule (36)
Comparison by means of a conjunction ne� (than) and the adjective in the comparative degree
{This is a final metarule of the set of metarules handling comparative expressions.}
IF A.syntcl = adj THEN

A.deg ? comp Wrong_grade
{The item A is an adjective in the comparative degree.}
IF B.syntcl = compar THEN
ELSE IF B.syntcl = comparcl THEN

B.syntcl ? nonsens Missing_comma_preced_NEZ
{If the item B represents a subordinated clause and it has not been processed by the previous

metarule (35), then there is a missing comma between the adjective and the conjunction ne�. Since the
comma is obligatory in Czech in this case, the soft constraint marks a syntactic inconsistency.}

ELSE FAIL ENDIF
ENDIF
X := A
{The governing item is the adjective.}
IF B.eos = yes THEN X.eos := yes ELSE ENDIF
IF B.end = yes THEN X.end := yes ELSE ENDIF
IF B.eoc = yes THEN X.eoc := yes ELSE ENDIF
{The information that the end of the clause (sentence) has already been processed is

transferred further � cf. the comments on the metarule (3).}
OK
END_P

9.12 Pairs of expressions
This group of metarules handles expressions which may appear in pairs (nejen � ale i, ani � ani, buď �
anebo, jednak � jednak, jak � tak etc.) [not only � but also; neither � nor; either � or, partly � partly,
both � and]. They are usually classified as belonging to the class of coordinating conjunctions. The
key to their processing is a special attribute pair containing two values (right, left). The �right half � is
processed first and attached to the left expression. The left expression is attached to the rest of the
sentence in a standard manner. The solution presented here is not ideal, it has to cope with natural
restrictions of the approach to parsing used in the system (bottom�up propagation of data). It would be
much more natural to use a certain kind of preprocessing module capable to locate and mark the
presence of certain idiomatic pairs of expressions immediately after the morphological analysis is
completed. Let us take the solution presented here as a clue supporting the argument that such a
preprocessor could substantially improve the quality of the system.

Metarule (37)
The section following the right expression is being attached to the expression
A.pair = right
{The special attribute is tested. If the item A does not have this attribute, the processing of this

metarule immediately stops.}
IF A.right = completed THEN

A.right ? nonsens Right_side_already_completed
ELSE ENDIF

83

{This condition blocks all attempts to use this metarule several times for the same item.}
IF B.syntcl = noun THEN ELSE

IF B.syntcl = v THEN ELSE
IF B.syntcl = prephr THEN ELSE FAIL ENDIF

ENDIF
ENDIF
{The item B may be either a nominal or a prepositional group or a clause.}
X := B
{Item B carries more information, therefore it was chosen as the governing item.}
X.pair := right
{The information that the resulting item is the right element of the pair is necessary for a

proper attachment to the left element of the pair.}
X.right := completed
{This attribute blocks another application of this metarule to the item X later on.}
IF B.syntcl = v THEN ELSE X.nofm := yes ENDIF
{This condition blocks the attachment of a free modifier to the complete right section � any

such attachment should be completed before this metarule is applied. This condition is, of course,
valid only for a projective interpretation of this metarule.}

OK
END_P

Metarule (38)
Comma and the second half of the expression are being joined together
{This is the first of the pair of metarules handling the attachment of the right half to the left

one.}
A.syntcl = comma
{The item A is a comma.}
IF B.pair = right THEN

IF B.syntcl = conj THEN FAIL ELSE ENDIF
ELSE FAIL ENDIF
{The item B represents the complete right half of the expression. If B is a conjunction, it

indicates that the previous metarule has not been yet applied.}
X := B
{The item B is the governing one.}
X.syntcl := rhalf
{New temporary value of the attribute syntcl is being introduced. It will be used in the next

metarule.}
OK
END_P

Metarule (39)
The left and the right half of the expression are being joined together
{This is the second of the pair of metarules handling the attachment of the right half to the left

one.}
A.pair = left
{The item A is an expression, which might become the left member of the pair.}
B.syntcl = rhalf
{The item B was derived as the result of the application of the previous metarule.}
X := A
{The item A is the governing one.}

84

X.pair := both
{The derived item receives a special value of the attribute pair marking the fact that the

expression is complete.}
OK
END_P

9.13 Emphasis
Similarly as in the previous section the metarules introduced here handle a kind of a very specific
construction. This construction, a special kind of apposition, typically emphasizes (repeats or
specifies) a property of the governing word (cf. Byl to hráč, a to hráč zatraceně dobrý! (He was a
gambler, namely a damned good gambler!))

Metarule (40)
{This metarule is the first member of a group handling the emphasis expressed by a

coordinating conjunction and a demonstrative pronoun.}
A.syntcl = conj
A.conjtype = coord
{The item A represents the coordinating conjunction.}
B.prn_type = dem
{B stands for the demonstrative pronoun.}
X := B
{The pronoun is the governing item.}
X.syntcl:=stress
{Standard method of binding both metarules together through a unique value of the attribute

syntcl.}
OK
END_P

Metarule (41)
{The second metarule combines comma and the item derived by the previous metarule.}
A.syntcl = comma
{The item A represents a comma.}
B.syntcl = stress
{The item B was derived by the previous metarule.}
X := B
{The item B is the governing one.}
X.syntcl := cstress
{The attribute syntcl receives the value necessary for the following metarule.}
OK
END_P

Metarule (42)
{The last member of this group of metarules attaches the emphasis to its governor

(antecedent). Similarly as with free modifiers it is necessary to restrict the attachment to the first
candidate preceding the emphasis.}

CLOSEST
{This keyword restricts the attachment to the nearest possible candidate.}
IF A.syntcl = v THEN ELSE

85

IF A.syntcl = noun THEN ELSE
IF A.syntcl = prepfr THEN ELSE FAIL ENDIF

ENDIF
ENDIF
{The item A is either a verb or a noun (or a noun in the prepositional case).}
IF B.syntcl = cstress THEN ELSE

IF B.syntcl = stress THEN B.syntcl ? cstress Missing_comma
ELSE FAIL ENDIF

ENDIF
{If the item B was derived by the previous metarule, then the processing may continue. If it

was derived by the metarule (40), it is necessary to point out the syntactic inconsistency (missing
comma).}

X := A
{The item A should be the governing item.}
OK
END_P

9.14 Beginning and end of the sentence
The last pair of metarules handles the attachment of the final sentential marker and the left sentinel.
The left sentinel serves as the root of the syntactic tree.

Metarule (43)
Attachment of the full stop, the question mark, the exclamation mark or the comma to the

main verb of the clause (sentence).

PROJECTIVE
{This metarule may be applied only in a projective way.}
A.syntcl = v
{The item A represents a verb}
IF B.SYNTCL = int THEN

ELSE IF B.SYNTCL = comma THEN ELSE FAIL ENDIF
ENDIF
{The item B is either a full stop, a question mark or an exclamation mark. It may also be a

comma.}
X:=A
{The governing item is the item A.}
IF B.syntcl = int THEN X.eos := yes ELSE

X.eoc := yes
ENDIF
X.end := yes
{It is necessary to store the information about the type of punctuation mark following the

sentence (clause).}
OK
END_P

Metarule (44)
Left sentinel combined with the rest of the sentence.

A.wcl = sent
{The item A is the left sentinel.}

86

IF B.syntcl = v THEN
IF B.eos = yes THEN ELSE FAIL ENDIF

ELSE B.syntcl ? nonsens Sentence_not_completed
ENDIF
{If the item B does not contain information that the final punctuation mark has already been

processed, it means that the sentence as not yet been properly parsed. The soft condition makes it
possible to attach all isolated subtrees to the left sentinel in the negative parsing phases and thus to
create at least a partial result even in case the grammar is not able for some reason to parse the
sentence completely.}

X:=A
{The governing item is the item A � the left sentinel is thus a root of each syntactic tree.}
OK
END_P

9.15 General remarks
It is necessary to stress that our metagrammar does not aim at a complete coverage of the language, it
rather contains a wide selection of phenomena illustrating that the task of building a metagrammar for
a robust parser is very complex. It goes without question that our approach dividing the parsing
process into several phases is a step in the right direction. The description of the metagrammar and,
even more, the description of sentences from the testbed and discussion of results obtained in
Chapter 11 show that we should pursue this strategy even further and to try to implement even more
phases.

Each of these phases should exploit to the full extent the information available in the given
moment and it also should concentrate on a single problem. Only the combination of methods may
lead to a real success.

There is another important point. The experiments with the metagrammar described in this
chapter helped both with the development of the software environment (and some of the grammatical
problems encountered in this process influenced to a large extent the properties of the environment)
and also stimulated the theoretical considerations introduced in previous chapters.

The experimental nature of the metagrammar is also one of the reasons why the parser is not
yet connected directly to the module of the morphological analysis and the (complete) syntactic
dictionary of Czech.

87

Chapter 10: Testing and debugging

One of the greatest problems of building a large scale non-deterministic grammar for
automatic natural language parsing is the problem of adding new grammar rules (in the form of
metarules representing sets of rules of the formal grammar) and improving or updating the old ones.

The same problem appeared also in our system. It was even more important to develop a
method of testing and debugging the metagrammar because we have decided to build the
metagrammar incrementally. It was no problem to keep track of changes when the grammar contained
only metarules covering the most frequent syntactic phenomena of Czech, as for example the
metarules for filling slots in valency frames or metarules dealing with prepositional, adjective or
nominal groups. At the beginning of the process these metarules covered distinct areas of language,
therefore there was no overlap between them. When other less frequent phenomena appeared among
the sentences from the testbed, it was necessary to add new metarules and modify the existing ones.

These modifications represented in most cases a more subtle treatment of some phenomena.
For example, when the problem of dealing with titles appeared, it turned out that the addition of a new
metarule did not solve the problem, because in some cases it overlaped with the already existing
metarules (3) and (5). That implied modifications of those metarules, namely an insertion of a block
which more exactly defines the area of applicability of all three metarules within already existing
metarules (3) and (5).

Similar problems appeared during the whole period of development of the metagrammar. For
this reason it was necessary to develop a method of checking the consistency of the metagrammar in
the process of testing and debugging.

The method used relies on a set of samples of input sentences (a testbed). The sentences
contained in the testbed are divided into two groups � the first group consists of well-formed
sentences, the second group contains ill-formed sentences. Each well-formed sentence from the first
group has its counterpart in the second group, which is composed basically of the same words. The
sentences in the testbed cover not only the syntactic phenomena which are already implemented in the
grammar, but also some syntactic constructions which either were not yet implemented or which
contain elements that cannot be captured by a metagrammar based solely on syntactic rules. The
testbed thus demonstrates not only the phenomena which are parsable by our metagrammar, but also
points out the limits of the approach we have chosen. The sentences were chosen for the testbed on the
basis of a very simple rule � each new pair of sentences (the well-formed and the ill-formed version)
added into the testbed should contain at least one interesting phenomenon which was not present in the
testbed until then. Some of the sentences are described in a more detail in the next chapter.

The interpreter of the grammar was implemented by Tomá� Holan primarily for the
LATESLAV project [Holan et al. 97] and it was later modified according to the requirements of our
robust parser. It has a wide variety of switches allowing to influence its behavior and to debug the
grammar more easily. For example, one of the switches (t) makes it possible to minimize the size of
the output by suppressing the messages about the application of individual metarules. The output then
looks as follows (the sentence Tehdy jsem byl ministrem financí. � Then I was a minister of finances.):

 LEFT_SENTINEL:1..1

 TEHDY:2..2

 JSEM:3..32

 BYL:33..92

88

 MINISTREM:93..93

 FINANCÍ:94..95

 ".:96..96
 ======= CYK parser ========

 #
 #
 # TEHDY JSEM BYL MINISTREM FINANCÍ ".
 # sample11.dat ==>> 0.66s OK 2 (Best) trees
 Minimal trees = 2
 0.66
The first part of the output contains the information about individual input words and about

the number of unambiguous items created from each word. The last four lines then contain the
information about the input sentence and about the results of parsing, namely the name of the file
containing the input sentence, the processing time, the actual result of parsing and the number of
syntactic trees created. The quotation mark preceding the full stop in the input sentence was inserted
for purely technical reasons � the full stop, similarly as some other characters (i.e. question mark,
comma, exclamation mark, the characters a, b, x, p, A, B, X and P etc.), is reserved and may not be
used for any other purpose.

The shortened form of the output of all sentences from the testbed is combined in one file and
everything except the text and the actual results of the parsing of all sentences is filtered out. The file
then looks as follows (this sample of the file contains the results of the first four sentences of the
testbed):

 #
 #
 # JAK JE TO S KA�DOU TOUTO NĚJAKOU JEHO VLASTNÍ SPORTOVNÍ ČINNOSTÍ "?
 # sample1.dat ==>> 0.72s OK 1 (Best) trees
 #
 #
 # KDS NEPŘEDPOKLÁDÁ SPOLUPRÁCI SE STRANOU PANA SLÁDKA "A NENÍ PRAVDOU

", �E PŘEDSEDA KŘESŤANSKÝCH DEMOKRATŮ PAN BENDA PROSADIL V TELEFONICKÉM
ROZHOVORU S PETREM PITHARTEM ING. DEJMALA DO FUNKCE MINISTRA �IVOTNÍHO
PROSTŘEDÍ ".

 # sample2.dat ==>> 4.12s OK 16 (Best) trees
 #
 #
 # KA�DÝ MÁ HÁJIT PRÁVO ", PŘEDEV�ÍM PRÁVO OBČANA NA OCHRANU CTI A

DŮSTOJNOSTI ", NA KTERÉ MÁ KA�DÝ OBČAN NÁROK PODLE LISTINY ZÁKLADNÍCH PRÁV
A SVOBOD ".

 # sample3.dat ==>> 2.08s OK 20 (Best)
trees

 #
 #
 # HORNICKÁ ZDRAVOTNÍ ZAMĚSTNANECKÁ POJI�ŤOVNA (HZZP) SE VČERA

ODVOLALA PROTI ROZSUDKU KRAJSKÉHO SOUDU ", KTERÝ VYHLÁSIL NAD TOUTO
POJI�ŤOVNOU KONKURSNÍ ŘÍZENÍ ".

 # sample4.dat ==>> 0.60s OK 2 (Best) trees
The listing contains several characters preceded by quotation marks (�?, �A, �,, �.). All these

symbols are reserved characters used in grammar metarules (cf. Chapter 7), the quotation marks are
necessary in order to distinguish normal input characters from those used in metarules as special
reserved symbols.

89

The file containing the listing, called SAMPLE, is then manually compared with the master
file, called MASTER, which contains the same type of results, the only difference being the fact that
the file MASTER had been created before the changes in the grammar were made. Because an
important role in the comparison is attributed to the processing time (a sudden substantial increase of
processing time may indicate serious troubles), it is necessary to perform all tests on the same
computer. All tests presented here were carried on a Mobile Pentium III 600MHz with 128MB of
memory, running Windows 98 operating system.

During the manual comparison of both files it is necessary to concentrate on the number of
best trees and also on the processing time. If either of these figures changes, it is necessary to parse a
particular sentence once more in order to receive the full listing of results. In a standard setting (no
switches applied) the interpreter provides the parsing information in the following form:

 97/97 3:6 [8] 2..3 C(B)
 98/98 3:6 [8] 2..3 C(B)
 99/99 3:7 [8] 2..3 C(B)
 100/100 3:8 [8] 2..3 C(B)
 …
 714/1 1:666 [49] 1..7 A(D(C(B)E(F)G))
 715/1 1:690 [49] 1..7 A(D(C(B)EFG))
 716/1 1:698 [49] 1..7 A(D(BCE(F)G))
 717/1 1:712 [49] 1..7 A(D(BCEFG))

The sample of the result shows the first and the last four lines of data describing the
application of individual metarules. Each line represents an application of one metarule. The data in
each line are organized in the following way:

a/b c:d [e] f..g h
where
a is the number of the item created during the application of a rule e on already existing items

number c and d.
b is the number of the physical slot where the item a is stored.
f is the number of the leftmost word (the input words are numbered from left to right) and g is

the number of the rightmost word of the interval of words covered by the item a (in case of
discontinuous coverage in nonprojective phases numbers of all words covered by the item a are listed
here instead of the interval.

h is a linearized syntactic tree corresponding to the item a. The content of each pair of brackets
represents a list of daughters of the node preceding the left bracket. The letters correspond to the
numbers of words, for example A represents the word No. 1, B is the word No. 2 etc.

The parsing information provided by the interpreter in this form is usually sufficient for the
localization of any problem which might be caused by the modification of the grammar. If this
information is not sufficient, it is possible to run the interpretation of a sentence once more with a
switch ? which makes it possible` to display individual items accompanied by the information about
numbers of their parents and the number of the rule according to which the given item was created.

When all the problems encountered during the comparison of MASTER and SAMPLE files
are solved, the SAMPLE is taken as a new MASTER. This procedure is repeated after every update of
the grammar or after every addition of a new sentence into the testbed. In this way it is possible to
maintain the system simply and efficiently in a consistent way.

90

Chapter 11: The testbed

As has been already mentioned in previous chapters, a well-balanced testbed is a very
important part of the system, which may save a lot of troubles during the process of testing and
debugging the system. In this chapter we would like to present and comment on a set of sentences
which at the moment serve as the testbed for the system of a robust parser of Czech. Let us take the
sentences one by one discussing the syntactic phenomena they contain. All sentences have a
counterpart � an ill-formed sentence containing identical or nearly identical words. All input sentences
contain also a symbol of the left sentinel, the leftmost input item indicating the beginning of each
sentence. In the syntactic representation the left sentinel always serves as the root of the syntactic tree.

All data about processing times of particular sentences are measured on the computer with
Mobile Pentium III processor running at 600 MHz with 128MB of memory. The interpreter of the
grammar runs under the MS-DOS operating system in the minimal output mode, the results are sent to
a file and are not displayed on the screen (these specifications are important for the processing time
listed by each metarule, if the results are displayed on the screen, the parsing is slower). The trees
representing ill-formed sentences display in the black and white mode negative symbols as dashed
lines starting in the node with the negative symbol and going down towards the dependent node
involved in the application of the rule that created the negative node. The alternative way of displaying
the results on the computer screen uses on the black background red lines instead of dashed ones,
while the lines representing the positive applications of rules are yellow. The figures used in this
chapter always show an actual screenshot of a result in a black and white mode. In this way some of
the trees, especially those belonging to longer sentences, may be slightly unreadable in some places
due to the fact that the placement of nodes in the tree is done automatically and the program uses only
very simple rules for the tree design. In case that the system provides more than two results we list
only two of them as an illustration. In such a case we always try to list the results which are more
interesting than the others from some point of view.

Sentence (1)
Jak je to s ka�dou touto nějakou jeho vlastní sportovní činností?
[Lit.: How is it with every this some his own sporting activity?]

This is an artificially created sentence which was designed with the purpose of testing the complex
rules for the attachment of a congruent adjectival attribute from the left-hand side. The sentence is
well formed even though it is slightly unnatural. The parser provides one result (Fig.11.1.).

The form of the tree is influenced by the use of the keyword CLOSEST in the metarule
dealing with the attachment of free modifiers. Would that keyword not be present, the result would
contain one more tree in which the subtree headed by the noun činností (activity) would depend
directly on the verb je (is). This situation is quite typical not only for Czech � the decision about the
governing node of a free modifier is performed with respect to the meaning of the sentence; from the
purely syntactic point of view it is always ambiguous. Such an ambiguity is, of course, very expensive
from the computational point of view since as we can see e.g. in the second sentence, a combination of
more free modifiers in one clause has a disastrous effect on the number of results even with this
keyword applied, the more so without it.

The chosen restriction on the attachment of free modifiers is regular in the sense that it is
always attached to the closest possible node in the tree, but it may depend also on all verbal (infinitive)

91

Fig. 11.1. The tree representing a syntactically correct variant of the sentence (1)

and nominal nodes on the branch which is incidental with the main verb and ends in the node
governing the free modifier. This regularity makes it possible to reconstruct all readings if needed.
The processing time was 0,72s. There were 280 items created during the parsing process.

An ill-formed counterpart of this sentence is the sentence:
Jak je to s ka�dou touto nějakou jeho jakoukoliv vlastní sportovní činností?
[Word for word translation: How is it with every this some his any own sporting activity?]

The parser provides two results. The first one contains four syntactic inconsistencies (negative
symbols) and after a comparison with the second syntactic tree (one syntactic inconsistency) it can be
filtered out without doubts. The syntactic inconsistency contained in the second tree indicates that the
word nějakou (some) can not depend on the noun činností (activity), because there is a word
jakoukoliv (any) already depending on the same noun and it is not possible to combine two indefinite
pronouns as attributes of the same noun.

The processing time was 0,98s. There were 708 items created during the parsing process.

Fig. 11.2. One of the trees representing the syntactically ill-formed variant of the sentence (1)

92

Fig. 11.3. The second tree representing the syntactically ill-formed variant of the sentence one

(the syntactic inconsistency is marked between the words nějakou and činností)

Sentence (2)
KDS nepředpokládá spolupráci se stranou pana Sládka a není pravdou, �e předseda

křesťanských demokratů pan Benda prosadil v telefonickém rozhovoru s Petrem Pithartem
ing. Dejmala do funkce ministra �ivotního prostředí.

[Lit.: CDP [does] not_suppose cooperation with party [of] Mister Sládek and [it] isn�t true that
chairman [of] Christian Democrats Mister Benda promoted in phone discussion with Petr Pithart ing.
Dejmal to function [of] minister [of] environment]

(The CDP does not suppose the cooperation with the party of Mister Sládek and it is not true
that the chairman of Christian Democrats Mister Benda was promoting in phone discussion with Petr
Pithart engineer Dejmal into the position of the minister of environment.)

Fig. 11.4. One of the trees representing the syntactically correct variant of the sentence (2)

This sentence is an unchanged newspaper sentence (from Lidové noviny). It was included into the
testbed for the following reasons:
• It allows to test how the system will react to long sentences.

93

• It contains a number of words which serve as a title and therefore allows to test the interaction
between the metarule (4) and other metarules.

• It is a good illustration of difficulties connected with the presence of a higher number of free
modifiers in one clause,

• It is complex and therefore provides a good ground for testing a wide variety of metarules in
addition to those already mentioned above.

The system provides 16 syntactic trees, the differences between them are concentrated to the lower
right corner of screenshots, the main difference being in the attachment of free modifiers and the
existence of two candidates for an object of prosadil [promoted], namely the words Dejmala and
ministra [minister (acc.)]. Even though the restriction on the attachment of free modifiers to the
immediately preceding antecedent is applied, the number of possible combinations is quite high.

The processing time was 4,12s. There were 2330 items created during the parsing process.

Fig. 11.5. Another tree representing the syntactically correct variant of the sentence (2)

An ill-formed variant of this sentence lacks the comma preceding the subordinate conjunction
�e (that). According to the research carried in the frame of the LATESLAV project [Petkevič 95]
punctuation errors are among the most frequent types of errors in Czech. The majority of native
speakers are not sure about the proper placement of commas in more complicated sentences. Many of
these errors are automatically undistinguishable, on the other hand some types of errors are easily
recognizable and can be handled automatically even in long and complicated sentences.

The missing comma preceding �e belongs to the latter group due to the fact that in Czech the
isolated subordinated conjunction �e should always be preceded by a comma. Only in case that the
subordinated conjunction is accompanied (preceded) for example by an adverb, pronoun or another
conjunction (a [and]) the situation is not so straightforward.

The claim that this type of syntactic errors is not complicated is supported by the number of
derived items � 2599 is only slightly more than in the previous case � and by the number of trees � 16
� the same number as in the previous case. On the other hand, the processing time is almost twice as
long � 7,25s. This disproportion is caused by the pruning mechanism � the number of derived items
reflects only those items which were not discarded during the parsing process immediately after they
were created (mostly because "better" items had already been created before). The process of creation
of these items takes time.

The graph representing one of the 16 trees shows that the system is really capable to locate a
syntactic inconsistency and to create proper syntactic trees corresponding to the trees representing the
syntactically correct variant of this sentence. For the purpose of the demonstration of variants of an
attachment of noun phrases other than in the two trees above the following tree was selected:

94

Fig. 11.6. One of the trees representing the syntactically ill-formed variant of the sentence (2)

Sentence (3)
Ka�dý má hájit právo, předev�ím právo občana na ochranu cti a důstojnosti, na které má

ka�dý občan nárok podle listiny základních práv a svobod.
[Lit.: Everyone should defend right, above_all right [of] citizen on protection [of] honor and

dignity, on which has every citizen claim according_to declaration [of] basic rights and liberties.]
(Everyone should defend rights, above all the citizen's right of protection of his honor and

dignity, which is granted to every citizen according to the declaration of basic rights and liberties.)

This is again a newspaper sentence. It contains four new phenomena, not contained in the previous
two sentences:
• A modal verb followed by a verb in the infinitive form
• An inserted parenthetical noun phrase "above all the citizen's right of protection of his honor and

dignity"
• Two examples of nominal coordination � "honor and dignity" and "rights and liberties"
• A subordinate relative clause containing the relative pronoun který (which) in the prepositional

case as a connector between the main and the subordinated clause
The problem of modal verbs can be handled by standard methods � the valency frame of the modal
verb contains slots for subject (noun in the nominative case) and object (verb in the infinite form). The
metarule for filling the valency slots (the metarule (5)) does not make it possible to fill the subject slot
in the valency frame of the verb in the infinitive form. This simple mechanism makes it possible to
handle even more complicated structures as for example: Petr měl chtít začít pracovat dříve. [Lit.: Petr
should to_want to_begin to_work earlier.] (Petr should have wanted to start working earlier.).

The inserted phrases and sentences (typically in apposition to a word from the main sentence)
can in fact be handled separately from the main sentence, the sentence itself does not change its
syntactic structure if we omit the inserted phrase. A substantial problem of inserted phrases is to find
what belongs to the phrase and what does not. We have to take into account that in the moment of
processing the items (words) belonging to the inserted noun phrase there is no information that the
particular items actually are parts of an inserted noun phrase. That does not matter for example in
attaching attributes or free modifiers, but the decision whether the final comma is really the final
character of the insertion cannot be done at the moment when the comma is processed. We can easily
modify the sentence for example as follows:

95

Ka�dý má hájit právo, předev�ím právo občana na ochranu cti a důstojnosti, svobody projevu
a pohybu a jiných základních lidských práv, na které má ka�dý občan nárok podle listiny základních
práv a svobod.

[Everyone should defend rights, above all the citizen's right of protection of his honor and
dignity, the freedom of speech and movement and other basic human rights, which is granted to
every citizen according to the declaration of basic rights and liberties.]

The modified sentence shows that even the inserted phrase may have quite a complicated syntax and
that it is really impossible to decide on the basis of the local context whether the comma following the
word dignity is the final comma of the inserted phrase or not. For such a decision it is necessary to
take into account a broader context. The following chapter introduces a mechanism, which might help
to solve this problem on the basis of identification of syntactically unambiguous items delimiting
individual segments of a sentence and building a graph roughly describing the structure of clauses in
complex sentences.

The problem of coordination is also very complex and it is again very difficult to determine
the proper syntactic representation on the basis of local context only even if we take into account only
the projective readings. The sample syntactic trees of this sentence show that even the simple nominal
coordination Listiny základních práv a svobod ([of the] Declaration of basic rights and liberties) has
three parses. Two of them are more or less obvious, in one of them the adjective základní [basic]
modifies both nouns, in the other it modifies only the closest noun. The third reading sounds strange to
most human readers, it is marked in the relevant tree by an inserted rectangular frame (Fig. 11.9). The
coordination concerns the nouns listiny [document, genitive sing.] and svobod [freedoms, genitive pl.].
These readings may be described by means of the following set of DR-trees:

Fig. 11.7a The adjective modifies the closest noun

Fig. 11.7b The adjective modifies the whole coordination

96

The symbols Ni in Fig.11.7a stand for: N1=[T1, 3, 2,53], N2=[T2, 5, 2,53], N3=[T3, 5, 3,14],
N4=[T4, 1, 4, 0]. In all nodes of all three DR-trees from Fig. 11.7a-c the symbols Ti stand for relevant
nonterminal symbols actually used in the grammar. We do not use actual nonterminal symbols here
due to the considerably higher complexity of grammar rules necessary for a proper derivation of these
DR-trees compared for example to the grammar used in the Example 5.1.

The symbols Ni in Fig.11.7b stand for: N1=[T1, 5, 2,53], N2=[T2, 5, 3,54], N3=[T3, 5, 4,15],
N4=[T4, 1, 5, 0].

Fig. 11.7c The adjective modifies the closest noun and the coordination concerns the nouns

Listiny [document] and svobod [freedoms].

The symbols Ni in Fig.11.7c stand for: N1=[T1, 3, 2,13], N2=[T2, 5, 2,54], N3=[T3, 1, 3,54],
N4=[T4, 5, 4, 0].

Even more complicated is the coordination cti a důstojnosti (honor and dignity). The
complicated structure of the inserted nominal group předev�ím právo občana na ochranu cti a
důstojnosti also allows multiple variants of coordination � on the basis of purely syntactic rules the
noun důstojnosti (dignity) may be coordinated also with nouns ochranu, občana and právo
(protection, citizen and right, respectively). Such a high number of variants is responsible for the high
number of results obtained � 20.

Fig. 11.8. One of the trees representing the syntactically correct variant of the sentence (3)

It is quite clear that this situation is very similar to the attachment of free modifiers in a sense that
these variants differ only locally, they are beyond the scope of the pure surface syntax and they burden
the parsing process with a high number of unnecessary items, all of which may be safely generated
later (from some kind of �canonical representation� of the coordination, describing probably the

97

coordination of the closest pair of candidates). The problem of coordination thus calls for an analogous
solution (the reduction of the number of parses by means of a keyword CLOSEST in the relevant
metarule).

When we have applied the keyword CLOSEST to the metarule handling coordination of nouns
in the process of testing and debugging our metagrammar, we have got only 2 syntactic trees and 525
derived items. That represents a substantial difference against 20 trees and 1269 derived items
obtained without the application of the keyword CLOSEST to the nominal coordination. The reason
why we have finally decided not to use the keyword is our feeling that it would need a detailed
linguistic observation to be sure that this manner of handling coordination is adequate and that there is
no danger of losing important information in the process of analysis.

Fig. 11.9. Second tree representing the syntactically correct variant of the sentence (3)

Fig. 11.10. The third tree representing the syntactically correct variant of the sentence (3)

The relative clauses are simpler from the point of view of the treatment in this system, although in
general it is the other way round. The agreement in gender and number of the antecedent and the
pronoun provides enough information for automatic processing. The problem is that in case there are
more competing antecedents (five in this case � twice právo, then ochranu, cti and důstojnosti) the
decision which possible antecedent the relative pronoun refers to is usually semantically based. The
sample syntactic trees of the sentence in Fig. 11.8 and 11.9 show the ambiguity of the relative clause

98

attachment. The edge between words OCHRANU and CTI is not displayed in Fig.11.9, it is
overwritten by the latter word. This sometimes happens due to the automatic way of preparing the
layout of the trees and the simplicity of the relevant subroutine.

The combined ambiguities of coordination and attachment of the relative clause are
responsible for the number of syntactic trees of the sentence. The processing time was 2,08s.

There is one more interesting feature in this sentence � from the syntactic point of view it is
also possible to attach the relative clause to the noun právo (right) from the main sentence (cf.
Fig.11.10). The reason for this attachment is the fact that the comma following the parenthetical
inserted complex nominal group has two roles. It not only divides the inserted nominal group and the
relative clause depending on the noun právo (right) from the inserted group, but it also serves as a
final comma of the inserted nominal group. This is a very good illustration of the complexity of the
problem of �virtual commas�, the commas which are represented by a single comma even though they
have more than one syntactic role (in the sense of formal syntax, not in the sense of the natural
language syntax � single comma in fact functions instead of several commas).

Fig.11.11. One of the trees representing the syntactically ill-formed variant of the sentence (3)

Fig. 11.12. Second tree representing the syntactically ill-formed variant of the sentence (3)

The ill-formed variant of the sentence differs from the original one only in the form of the relative
pronoun které, which is substituted by an inappropriate form který. The problem is that for this form

99

there is no possible antecedent. The robust parser is able to locate the inconsistency and to reconstruct
all possible variants of the attachment of the relative clause, as shown on the trees representing the
sentence in 11.11 and 11.12. The greater number of possible antecedents than in the previous case
leads to 104 parses obtained after 9,29s, with 2889 derived items.

Sentence (4)
Hornická zdravotní zaměstnanecká poji�ťovna (HZZP) se včera odvolala proti rozsudku

krajského soudu, který vyhlásil nad touto poji�ťovnou konkursní řízení.
[Miner health employee's insurance (HZZP) itself yesterday appealed against verdict [of]

regional court, which declared over this insurance bankrupt trial.]
(The Employee's health insurance company of miners (EHICM) appealed yesterday against

the verdict of the regional court which had declared over this insurance company a trial of
bankruptcy.)

The interesting phenomena contained in this sentence are the following:
• Parentheses
• Reflexive verb
• The presence of an adverb modifying a verb
• Relative clause containing the relative pronoun in a nonprepositional case
The treatment of parentheses is similar to the treatment of inserted phrases with one substantial
difference � the right parenthesis is unambiguous and thus the parsing of the content of parentheses
does not create so many structures as in the case of inserted clauses. Reflexive verbs are treated by the
grammar only to a certain extent � only the actual presence of a reflexive particle is checked, not its
position. The treatment of positions is not, according to our strategy, a task to be handled by the
metagrammar, it is a matter of application of global constraints imposed on structures created during
the parsing process. This treatment is identical e.g. to the treatment of nonprojective constructions, as
has already been mentioned in previous chapters.

The adverbs are parsed according to the value of the attribute addep indicating the kind of the
word the adverb depends on.

Fig. 11.13. One of the trees representing the syntactically correct variant of the sentence (4)

The treatment of relative clauses containing the relative pronoun in a nonprepositional case is similar
to the treatment of sentences with the pronoun in a prepositional case with one exception � the relative
pronoun in a nonprepositional case usually represents an inner participant of the main verb of the

100

subordinate clause. Let us remind here that we have simplified valency frames of verbs in our
metagrammar to the extent that they do not contain any inner participants in prepositional cases (cf.
the discussion in Chapter 8.4). For this reason it is necessary to check whether a relative pronoun in
nonprepositional case can fill one of the slots in the verbal valency frame of the main verb of a
particular relative clause.

As shown in the figures of syntactic trees of the sentence, another important problem of
parsing relative clauses is the difficulty to find the antecedent of the relative pronoun. When no
semantic filters are applied, all possible candidates must be taken into account. This might be another
area, where the use of the keyword CLOSEST would substantially reduce the number of parsing
results. We have decided not to use it in metarules taking care about relative pronouns, because we
feel that a detailed linguistic investigation should also be done for this phenomenon before any
simplifications can be applied.

The parser provides 2 syntactic trees, the parsing takes 0,60s and 446 items are derived.

Fig. 11.14. Second tree representing the syntactically correct variant of the sentence (4)

A variant of this sentence was created by removing the reflexive particle se from the original sentence
(poji�ťovna odvolala instead of poji�ťovna se odvolala). Since the verb odvolat is not a reflexive
tantum, the parser accepts the sentence as syntactically correct and creates its syntactic trees almost
identical to those belonging to the original variant of the sentence. This result might be a topic for
further discussion, because this sentence is in fact ill-formed, due to the missing obligatory direct
object. Even though this situation is not so regular and frequent in Czech as an omission of the subject
of the sentence, the robust parser in general cannot dare to mark the sentence with the missing direct
object as syntactically ill-formed. There are several examples of sentences where the obligatory inner
participants are not present in sentences even though they were not explicitly mentioned in the
previous context, mainly in those sentences where the obligatory inner participant is a part of the
�common knowledge� and as such it mustn�t be explicitly mentioned (Cf. the sentence Galileo
nakonec odvolal. (Galileo finally recanted.)). On the other hand, our system allows a very simple
treatment of sentences with too many non-prepositional participants � once a slot is filled, it is
removed from the frame and cannot be filled again.

At this point it is important to mention one very important fact. Even though the system does
not consider sentences with missing obligatory inner participants as being ill-formed, the fact that an
inner participant is missing is marked inside the syntactic structure. As we have already mentioned in
the previous paragraph, whenever a slot of the frame is filled, it is removed. All slots remaining in the
frames after the analysis is completed, represent missing participants. This information can be easily
retrieved from syntactic trees. Let us remind that the obligatory inner participants are really obligatory
on the tectogrammatical level, not on the surface level, where the presence (or absence) of inner
participants is substantially influenced by the context. Due to our general strategy which considers

101

individual sentences (not paragraph or documents) to be main input units it is impossible to open the
problem of incorrectly omitted inner participants.

Fig. 11.15. One of the trees representing the modified variant of the sentence (4)

The parsing of the modified sentence takes 0,50s, 467 items are derived and 2 trees are created.

Sentence (5)
Tento úřad by podle jeho návrhu neměl podléhat vládě ani být orgánem výkonné moci.
[This office Cond. according_to his proposal shouldn�t be_liable to_government nor to_be

body of_executive power]
(According to his proposal, this office should not be liable to the government nor to be a body

of executive power.)

There are three reasons why this sentence is included into the testbed:
• Conditional form of the verb
• Coordination expressed by means of the conjunction ani [nor]
• The ambiguous word form moci [to be able/power(genitive, dative or locative case)]
The first phenomenon does not constitute a difficult problem from the point of view of automatic
parsing. The auxiliary verb in the conditional form behaves to a great extent similarly to the reflexive
particle se. Its treatment is therefore similar. It is necessary to ensure that only one auxiliary may be
connected to a particular main (meaningful) verb and that the main (autosemantic) verb is in the past
participle. The conditional form of verbs is processed by the metarule (7) (and its counterpart dealing
with the reversed order of main and auxiliary verbs) described in section 9.3.

The second phenomenon is more complicated. In this sentence the conjunction ani [nor] is
used as a gradation coordination where comma is not used, while in conjunctive coordination (where a
pair ani � ani usually occurs � cf. sentence (13)) the comma before the latter ani is obligatory. The
main problem is that the conjunction ani (nor) may be generally used both in the conjunctive and in
the adversative. If it is used in the conjunctive, there is no comma preceding this conjunction, while in
adversative the presence of a comma preceding the conjunction is necessary. The difference between
these two cases is mostly purely semantic, therefore it is outside the scope of our robust parser. There
are no means how to distinguish syntactically in which manner the conjunction ani is used.

The last problem is the ambiguous word moci. It illustrates very well the danger of using the
parameter CLOSEST in metarules. As is shown in Fig. 11.16 and Fig. 11.17, one of the differences

102

responsible for the number of syntactic structures we obtain as the result of parsing this sentence is the
attachment of the final period to one of the verbs present in the sentence.

Fig. 11.16. One of the trees representing the sentence (5)

Fig. 11.17. Another tree representing the sentence (5)

It would be natural to attach the period to the closest verb and thus to reduce the number of trees from
6 to 2, but unfortunately it can not be done. The problem is the ambiguity of the word form moci,
which is both an infinite modal verb [to be able] and the form of the noun moc [power, might] in
several cases of both singular and plural (gen., dat., voc. and loc sg; nom., acc. and voc. pl.) The word
form is then represented by eight unambiguous items, one representing the verb and seven describing a
noun in one of the applicable combinations of cases and numbers. The verbal item then blocks the
attachment of the period to any other verb in the sentence � it is the closest one to the period and the
system is not able to take into account that there are alternative nominal items that are used in the
�right� syntactic trees. This is to a certain extent a weak point of the software used for the
interpretation of the metagrammar � once the unambiguous items are created, they become
independent and there is not a way how to get any information about their �brothers�. The fact that a
modal verb cannot be combined with the auxiliary verb být (to be) in the order být moci (the other way

103

round, moci být is possible, cf. moci být dobrý (to be able to be good)) in one clause does not help,
because at the moment when the final period is being attached to the modal verb, no other context is
being taken into account (due to the nature of the interpreter, which does not make it possible to work
with any other item than just the two which appear on the left-hand side of a particular metarule).

The problem of the ambiguity of the form moci clearly indicates that a really reliable
disambiguation of input word forms might help tremendously even in case that it would not be able to
disambiguate all ambiguous word forms. The stochastic disambiguation of Czech (cf. [Hajič, Hladká
98]) is not yet able (and it is really questionable whether it ever will) to work reliably enough for our
needs.

There are of course ways of overcoming the weaknesses of the interpreter even without the
application of any kind of morphological disambiguation (at least in some specific cases). For
example, we may assign a special attribute, called AlternativePOS, to each item representing a word
form which is assigned more than one part of speech, even before the unambiguous items are created.
In this manner the author of the metagrammar will be able to formulate constraints and conditions
taking into account also the fact whether there is an alternative for a part of speech of a given
(unambiguous) item or not.

This solution may be useful in some cases, but it would not solve the problem of the
attachment of the period to the closest verbal item. The information about the existence of a �related�
item with different part of speech is not sufficient here. Even if we had an access to this information,
we can not forbid the period being attached to the verb with an alternative part of speech. Such a
simple solution would not work in sentences containing only ambiguous verbs. If every verb in the
sentence will have also an alternative part of speech, the system would never attach the final period to
any of the verbs (cf. the sentence Pastevci �enou[verb/noun] stáda na pastvu. (The shepherds drive the
herds to the pasture.)). We need the information whether the verbal item was actually used in any
syntactic structure covering the whole sentence, i.e. whether there is at least one plausible reading of
the sentence with the relevant item being a verb. That is unfortunately far too complicated
information.

It is quite clear that on the level of the metagrammar it is very difficult to find a flawless
solution. It would be much better to aim at a definition of some kind of general constraint determining
the candidates for period attachment. Such a constraint could take into account a broader context and
thus it also could avoid the trap of the restrictions of the context in metarules.

Fig. 11.18 One of the trees representing the variant of the sentence (5)
The above mentioned facts have led us to the decision not to use the keyword CLOSEST in the
metarule handling the attachment of the final period to any suitable verb in the sentence and thus we
have obtained 6 syntactic trees (differing in the attachment of the period and also in the attachment of
the nominal group výkonné moci, which may either be an incongruent attribute of the noun orgánem or

104

an inner participant of the verb být. The sentence was parsed in 0,28s and 383 items were created in
the process.

The second variant of the sentence contains a comma preceding the conjunction ani (nor). As
we have already mentioned, the presence of comma in this sentence is a matter of understanding or
interpretation of the sentence (the difference between adversative and conjunctive use of the
conjunction ani is purely semantical), therefore our robust parser accepts it as syntactically well-
formed, too, and we get also 6 trees as in the previous case. The presence of the comma slightly
increases both the number of items derived (438) and the processing time 0,44s.

Sentence (6)
Ministerstvo zdravotnictví jako její zřizovatel by mělo během víkendu rozhodnout o případné

urychlené likvidaci této jedné z největ�ích zdravotních poji�ťoven u nás.
[Ministry [of] healthcare as her establisher should have in_the_course_of weekend to_decide

about contingent accelerated liquidation [of] this one from biggest health insurance_companies at us.]
(The ministry of healthcare as its establisher should decide in the course of the weekend about

the contingent accelerated liquidation of one of the biggest health insurance companies in our
country.)

This sentence contains further interesting phenomena we have not met yet:
• A complement ministerstvo jako zřizovatel, (ministry as establisher) which is syntactically

indistinguishable from the comparative construction of the type pes jako slon (a dog like an
elephant)

• Selective construction jedné z největ�ích (one of the biggest)
The comparative construction represents a large group of phenomena, which must be treated by
special metarules applicable to individual lexical entries or small groups of words. The only problem
is to restrict the application of these metarules only to the relevant group of words. Sometimes it is
difficult to draw a borderline between constructions which should be handled by a full-scale parser
and idioms which are simple enough to be parsed by means of some kind of a preprocessing
automaton.

Fig. 11.19. One of the trees representing the syntactically correct variant of the sentence (6)

Although the selective construction looks at first sight similar to the comparative construction or to the
complement, it is different. The problem is the agreement in gender of the numeral and the head of the
prepositional phrase (cf. jedné[fem.] z největ�ích poji�ťoven[fem] � *jednoho[anim., inan., neut.] z
největ�ích poji�ťoven) very often the agreement is not a pure syntactic phenomenon, but it is

105

semantically based (cf. jeden[inan.,anim.] ze třídy (one from the class) � jedna[fem.] ze třídy). This
distinction may not be captured by a surface syntactic parser. In order to avoid the problem of marking
the syntactically correct sentences as ill-formed (in case the agreement is not required) our parser does
not treat the selective construction of this type differently from the attachment of ordinary
prepositional phrases and no agreement is checked here.

There are 12 parses with 515 derived items. The processing takes 0,50s. The areas marked on
the displayed syntactic trees show that the number of parses is caused by the ambiguity of attachment
of the comparative construction and by the ambiguity of the word během[prep./noun] (in the course
of/by running). If the word během is taken as a secondary preposition, then the prepositional phrase
během víkendu may be attached to both verbs. There is also the same problem of period attachment
present in this sentence as in the previous one.

Fig. 11.20. Second tree representing the syntactically correct variant of the sentence (6)

A modified variant of the sentence contains one error which is quite common in texts written by the
help of word processors � the conditional form of the auxiliary verb by is incorrectly used twice. This
type of errors (missing or redundant words) is caused by changes made by the author of the text when
(s)he copies or deletes whole parts of sentences.

Fig. 11.21. One of the trees representing the syntactically ill-formed variant of the sentence (6)

The modified sentence then looks like this:

106

Ministerstvo zdravotnictví by jako její zřizovatel by mělo během víkendu rozhodnout o
případné urychlené likvidaci této jedné z největ�ích zdravotních poji�ťoven u nás.

[Ministry [of] healthcare should as her establisher should have in_the_course_of weekend
to_decide about contingent accelerated liquidation [of] this one from biggest health
insurance_companies at us.]

(The ministry of healthcare should as its establisher should decide in the course of the
weekend about the contingent accelerated liquidation of one of the biggest health insurance companies
in our country.)

The tree representing the syntactic structure of the ill-formed variant of the sentence is one of the six
results the parser issues. The smaller number of trees is caused by the fact that the inserted auxiliary
verb by blocks the attachment of the comparative construction to the nouns ministerstvo and
zdravotnictví in the projective phase. The parsing process took 1,16s and 844 items were derived.

Sentence (7)
Na první pohled hrůzostra�ný sjezd není nebezpečněj�í ne� jiné ly�ařské disciplíny.
[On first sight horrific downhill_run isn't more_dangerous than other ski disciplines.]
(The downhill run, horrific at first sight, is not more dangerous than other ski disciplines.)

This sentence contains a different type of comparative construction than the previous sentence �
second degree (comparative) of an adjective combined with the conjunction ne� (than) and a nominal
group. The sentence is quite simple, it has only one syntactic tree. The processing time is 0,50s and
307 items were created.

It might be argued that the attachment of the nominal group Na první pohled (at first sight)
should be attached rather to the immediately following adjective hrůzostra�ný (horrific) than to the
verb (cf. Fig.11.22). Let us therefore repeat at this point that for the reason of reduction of the number
of parses the nominal groups in prepositional cases are being attached solely to verbs and nouns due to
the high degree of ambiguity of free modifier attachment. Any correction of the syntactic tree based on
the actual content of valency frames of words from the sentence and on the result of parsing by our
parser is possible later, in a special module or phase following the robust parser. For a very detailed
discussion of problems of attachment of nominal groups in prepositional cases see [Straňáková 01].

Fig. 11.22. The tree representing the syntactically correct variant of the sentence (7)

The second remark concerns the comparative construction containing the word ne�. This conjunction
may appear also in different types of constructions, not only in the type presented in this sentence.

107

Another possibility of using and analyzing the construction containing this conjunction is being
discussed in the comments concerning the sentence (14).

The ill-formed variant of the sentence contains the adjective nebezpečný (dangerous) instead
of nebezpečněj�í (more dangerous). The system is able to identify the syntactic inconsistency (there is
neither the comparative adjective nor a verb present in the clause � cf. the sentence (14)) and it creates
an unambiguous syntactic representation of the sentence corresponding to the structure of the original
sentence. The processing takes 0,39s and 332 items were created.

Fig. 11.23. The tree representing the syntactically ill-formed variant of the sentence (7)

Sentence (8)
Tehdy jsem byl ministrem financí.
[Then I_am was minister [of] finances.]
(Then I was a minister of finances.)

Fig. 11.24. The first tree representing the syntactically correct variant of the sentence (8)

Even though this newspaper sentence is very short, it contains two interesting phenomena:

108

• Past participle in the 1st person sg.
• Nominal predicate in instrumental case
The main problem of this sentence is the combination of the past participle and the nominal predicate
� this means that the predicate is in fact composed of three individual words, two of them being
auxiliaries derived from the same basic form být (to be).

The metagrammar provides two syntactic structures for this sentence. The trees differ in the
attachment of the noun ministrem. Fig. 11.24 shows this word as a part of the nominal predicate, the
Fig. 11.25 on the other hand shows this word as a free modifier (nouns in the instrumental case often
have in Czech a role of the free modifier), while the word financí is attached as a nominal predicate.
Both trees are created after 0,66s. 382 items are derived during the parsing process.

Fig. 11.25. The second tree representing the syntactically correct variant of the sentence (8)

Modification:
Tehdy jsme byl ministrem financí.
[Then we_are was minister [of] finances.]
(Then we was a minister of finances.)

Fig. 11.26. The first tree representing the syntactically ill-formed variant of the sentence (8)

109

The ill-formed variant of the sentence contains one very common error undistinguishable by a spelling
checker. It is a quite common mistake to invert the order of characters e and m when fast typing the
auxiliary verb jsem [1st pers.sg] and to type jsme [1st pers.pl] instead (or vice versa). Since both forms
exist in the language, the spell checkers are not able to mark any of them as erroneous. The syntactic
analysis of the sentence results in the right solution � the disagreement in number between jsme [pl.]
and byl [sg.] is marked in both syntactic trees representing the sentence. Both trees are otherwise
identical to the syntactic trees representing the correct variant of the sentence.

Fig. 11.27. The first tree representing the syntactically ill-formed variant of the sentence (8)

The processing of the ill-formed variant took 1,49s and 818 items were derived.

Sentence (9)
Za nejlep�í způsob, jak dosáhnout trvalého rozvoje Slovenska, pova�uje SNS i nadále

samostatnou Slovenskou republiku..
[For best way, how to_achieve permanent development [of] Slovakia, considers SNP [Slovak

National Party] hereafter independent Slovak republic.]
(As a best way of achieving a permanent development of Slovakia SNP further considers an

independent Slovak republic.)

Fig. 11.28. First tree representing the syntactically correct variant of the sentence (9)

110

This sentence contains one new phenomenon, the inserted clause in the role of an attribute of the
immediately preceding noun. There is one basic difference between this sentence and the sentence
three � in this case the inserted part is not only a noun phrase, but it includes a verb. The inserted part
is connected to the governing noun by means of a pronominal adverb jak (how). No agreement is
required. The treatment of this construction is thus very similar to the treatment of inserted noun
phrases, the difference being only in the type of the head of the inserted clause. The relevant metarule
handling this construction contains a special constraint blocking its application to those types of
inserted relative clauses where the agreement is required in order to avoid the situation that the
inserted relative clause is not processed by a �proper� metarule (because there is a disagreement
between the relative pronoun and the governing noun), but it is incorrectly processed by the metarule
handling inserted clauses in general.

The figures represent two variants of syntactic trees out of the three results obtained. The
processing took 0, 27s and 265 items were derived.

The result shown in Fig. 11.28 is interesting, it reflects the fact that i (and) is a coordinating
conjunction and that it may coordinate the nouns SNS (Slovak National Party) and republiku
(republic). The problem is that our system does not apply any preference for parsing compound
expressions (as i nadále), in this case it allows to parse both parts of the compound expression as
independent words, with the adverb nadále depending on the adjective samostatnou (independent).
Fig. 11.29 then describes the reading which would be probably preferred by human readers.

Fig. 11.29. Second tree representing the syntactically correct variant of the sentence (9)

The ill-formed variant of this sentence does not contain any commas. In the syntactic tree this fact is
reflected by the system through a syntactic inconsistency between the verb pova�uje and the infinitive
form of the verb dosáhnout. The system, of course, is not able to decide if there are missing commas
or if the error is caused by an improper verbal participant as a filling of the nonexistent slot in the
frame of the main verb � in both cases the syntactic structure obtained would be the same. The
processing of the ill-formed variant of the sentence took 0,71s, 3 trees were created and 666 items
were derived. There is one more difference between the trees representing the ill-formed variant of the
sentence and the trees describing the original well-formed sentence. It is the difference in the
attachment of the free modifier Za nejlep�í způsob (As the best way). It is caused by the application of
the keyword CLOSEST in the metarule describing the free modifier attachment from the left-hand side
of the governing word. This keyword blocks the attachment of the free modifier to the main verb of
the sentence and thus effectively reduces the number of results obtained for the ill-formed variant of
this sentence.

111

Fig. 11.30. One of the trees representing the syntactically ill-formed variant of the sentence (9)

Sentence (10)
Zasedání mohou začít být svolávána prostřednictvím generálního tajemníka.
[Meetings can begin to_be summoned through_the_mediation of_general secretary.]
(Meetings can begin to be summoned through the mediation of the general secretary.)

Fig. 11.31. One of the trees representing the syntactically correct variant of the sentence (10)

This sentence contains in principle two phenomena not contained in the previous sentences. The more
obvious of these two is a passive construction combined with a "chain" of modal and phase denotative
verbs in the infinitive form. At first sight this construction may seem to be a bit artificial, even though
it is grammatical, but similar constructions sometimes appear in all kinds of texts. The main problem
of this construction is that the number of embedded infinitive verbs in the "chain" is theoretically not
limited (cf. Alena se chtěla pokusit začít být vá�ná (Alena wanted to try to start to be serious)) and that
the agreement in number and gender between the subject and the passive verb form or adjective in
verbo-nominal predicate must be preserved. The relevant metarules handling the attachment of infinite

112

verbs to the valency frame of the governing verb take care of the propagation of the gender and
number of the passive verb up through the whole chain of infinitive verbs to the node(root) where it is
possible to check the subject-predicate agreement.

The second interesting phenomenon is a secondary preposition prostřednictvím (through the
mediation of, by means of) which is in this sentence ambiguous and it is partially responsible for the
number of parses (6), as demonstrated in the figures (Fig.11.31 and Fig.11.32) showing sample
syntactic trees of this sentence. The problem of differentiating between noun and its conversion into
secondary prepositions is not a syntactic problem. The morphological analysis must be able to
recognize certain nominal forms as ambiguous and provide the relevant data allowing to treat these
forms as prepositions. The second factor increasing the number of trees is the attachment of the period
to all verbs in the sentence except for the auxiliary verb být [to be]� cf. the sentence (5). The
processing took 0,11s and 153 items were created.

Fig. 11.32. Second tree representing the syntactically correct variant of the sentence (10)

The ill-formed variant of the sentence:
Zasedání mohou začít být svolávány[fem.,inan. pl.] prostřednictvím generálního tajemníka.
[Meetings can begin to_be summoned through_the_mediation_of general secretary.]
(Meetings can begin to be summoned through the mediation of the general secretary.)

Fig. 11.33. One of the trees representing the syntactically ill-formed variant of the sentence (10)

113

The gender of the passive verb was changed in order to check the main phenomenon (from our point
of view) contained in this sentence: the subject � predicate agreement spanning across the "chain" of
infinitive verbs. As it is shown in the figures displaying the syntactic representation of the ill-formed
sentence, the agreement error is manifested by syntactic inconsistencies on both sides of the root of the
tree. That is a correct (acceptable) result because the system is not able, of course, to decide where the
source of the error is without a subsequent evaluation of all syntactic inconsistencies in all trees.

The presented syntactic trees represent a sample of 12 trees provided by the system. The
processing time of this variant of the sentence is 0,50s {0,22} and 137 items were derived.

Fig. 11.34. Another tree representing the syntactically ill-formed variant of the sentence (10)

Sentence (11)
Ka�dá vysoká smluvní strana mů�e předlo�it prostřednictvím generálního tajemníka Rady

Evropy komisi ka�dé údajné poru�ení ustanovení této úmluvy jinou vysokou smluvní stranou.
[Each high signatory party can submit through_the_mediation_of general secretary [of]

Council [of] Europe [to] commission each alleged violation [of] enactment [of] this declaration [by]
other high signatory party.]

(Each high signatory party can submit to the commission through the mediation of the general
secretary of the Council of Europe each alleged violation of the enactment of this declaration by any
other high signatory party.)

The sentence was taken from the Czech translation of an official document of the Council of Europe.
The main problem with this sentence is a high number of ambiguous words in the long chain of nouns,
which results in a high number of possible parses even though the sentence seems to be quite
unambiguous from the point of view of the human reader. The ambiguity concerns the words ka�dá
(each � this pronoun may also play a syntactic role of a noun) and vysoká (high � this adjective can be
also used as a noun in the sense of a forest game such as a deer or, slightly colloquially, in the same
sense as university). The situation is complicated by the fact that the ambiguous noun phrase is used
twice and thus the number of parses is doubled. The parser provides 112 trees, the processing takes
6,53s and 3413 items are derived.

There is no effective solution to this problem in our metagrammar. The best way of dealing
with ambiguities of this type is to insert a kind of preprocessing containing certain heuristics capable
to suppress less probable readings using different kinds of information (empirical or probabilistic).
This preprocessing phase would filter out spurious readings and provide the parser with the best
estimation of which variants should be used. If the parser fails in the positive projective phase, then
instead of invoking the second phase (positive nonprojective and negative projective) it will take into

114

account all variants of the input words (including those previously discarded) and it will try to parse in
a positive projective way once more. It is clear that this strategy would help only in case the sentence
is syntactically well-formed, but even that would be an improvement.

Fig. 11.35. One of the trees representing the syntactically correct variant of the sentence (10)

Fig. 11.36. Another tree representing the syntactically correct variant of the sentence (10)

The ill-formed variant of the sentence contains a plural form mohou instead of the singular mů�e and
thus the subject-predicate agreement is violated in a similar way as in the previous sentence:

Ka�dá vysoká smluvní strana mohou předlo�it prostřednictvím generálního tajemníka Rady
Evropy komisi ka�dé údajné poru�ení ustanovení této úmluvy jinou vysokou smluvní stranou.

 (Each high signatory party can[pl.] submit to the commission through the mediation of the
general secretary of the Council of Europe each alleged violation of the enactment of this declaration
by any other high signatory party.)

 There are two reasons for checking this type of disagreement once more in this sentence. The first
reason is the high frequency of agreement errors in texts written by native speakers, the second is the
necessity to demonstrate how the system handles the situation when the subject is a slightly more
complex nominal group. As it is shown in Fig.11.37, the system is able to find the agreement

115

inconsistency and to reconstruct the syntactic tree of the sentence. This tree is one of 112 trees and
7076 items derived. The processing takes 28,72s.

Fig. 11.37. One of the trees representing the syntactically ill-formed variant of the sentence (10)

Sentence (12)
Funkční období soudců, která trvají �est let, nelze měnit.
[Functional periods [of] judges, which last six years, it_is_impossible [to] change.]
(The functional periods in office for judges, lasting six years, are not a subject of change.)

The twelfth sentence of the testbed is the first one containing a nonprojective construction. Apart from
that it also contains a noun phrase with a basic numeral and a predicative adverb nelze (it is not
possible) which has similar syntactic properties as a verb.

One of the unpleasant effects of the mechanism dealing with nonprojective constructions is the number
of parses we get even when we apply a very strong constraint on the number of holes � if we limit the
nonprojective constructions only to those containing at most one hole.

Fig. 11.38. One of the two trees representing the syntactically correct, but nonprojective
variant of the sentence (11)

116

The problem of acceptance of noun phrases containing basic numerals is another very important
problem. The acceptance of semantically incorrect phrases (třicet sto pět tisíc stromů (thirty hundred
five thousands trees) instead of pět tisíc sto třicet stromů (five thousand one hundred thirty trees))
cannot be avoided at the level of surface syntax (cf. the examples: Bylo sedm dvacet. (The time was
seven twenty.); Stojí to pět padesát. (It costs five fifty.); Vyhráli jsme sedm jedna. (We have won
seven one.))

The only phenomenon worth checking at this level is the case required by the last numeral
preceding the noun (in the nominative or accusative case there is a difference in cases required by
numerals 1, 2, 3 and 4 and all others � nom.sg for 1, nom.pl. for 2,3,4 and gen.pl. for all others).

The predicative adverb nelze is handled as a verb, its specific syntactic properties are reflected
in its valency frame.

The sentence has 2 parses, the processing takes 4,07s and 1240 items are derived.
The second syntactic tree differs only in the attachment of a period; it is attached to the infinite

verb měnit (to change).
The ill-formed variant of this sentence does not contain the comma following the relative

clause:
Funkční období soudců, která trvají �est let nelze měnit.
[Functional periods [of] judges, which last six years it_is_impossible [to] change.]
(The functional periods in office for judges lasting six years are not a subject of change.)

Since the predicative adverb nelze is treated as the verb, the parser ends up with two main verbs (trvají
and nelze) not separated by any delimiter (conjunction, comma etc.). This error is quite difficult to
locate and classify, even though there is a soft condition checking the presence of a comma or period
following the relative clause. The syntactic inconsistencies reported by the system concern the
disagreement in case between the noun and the relative pronoun and the relevant slots of the valency
frame of their governing words (období � nelze and která � trvají). This is caused by the presence of
the nonprojective construction in the sentence. The positive projective phase fails to create any tree for
the sentence. The second phase is looking for either a projective tree containing syntactic
inconsistencies or for a nonprojective tree without syntactic inconsistencies. Unfortunately, this phase
succeeds and it creates four projective trees with inconsistencies. It is quite natural that these trees
contain more than one inconsistency, because a nonprojective construction in a projective tree is
typically a source of false inconsistencies.

Fig. 11.39. One of the trees representing the syntactically ill-formed variant of the sentence (12)

This sentence is very interesting, because it shows that in order to get a more accurate representation
of ill-formed sentences it is really necessary to include an evaluation phase, whose task would be to

117

provide a more accurate tree based on the evaluation of all kinds of syntactic inconsistencies achieved
as a result of parsing the sentence. This sentence shows very well that this task is not easy and that it
will require a very extensive research in future.

The processing of the ill-formed variant takes 1,27s, 4 trees and 652 items are created.

Fig. 11.40. Other tree representing the syntactically ill-formed variant of the sentence (12)

Sentence (13)
Mám pocit, �e to bylo malou osvětou mezi poslanci, a to nejen v parlamentu, ale i v tisku.
[I_have feeling, that it was by_small enlightenment among deputies, and that not_only in

parliament, but also in press.]
(I have a feeling that it was caused by a neglected enlightenment among MP�s, not only in the

parliament but even in the press.)

This sentence contains two new phenomena. The first one is the construction with a to (and that,
namely) which modifies the preceding nominal group. The problem is that the conjunction a (and) is
used here in the gradation sense. In order to be able to parse this construction correctly, we have to
make sure that a coordinating conjunction is followed by a demonstrative pronoun and preceded by a
comma. This is handled by a series of three metarules (cf. the description of the metagrammar in the
previous chapter).

The second interesting construction is the pair nejen � ale i (not only � but also). It represents
a whole class of constructions, where two words form a pair, the component parts of which are
mutually related but quite distant from each other in the sentence. This class contains among others
also the pairs nejen � ale ani (not only � nor), buď � a nebo (either � either), ani � ani (neither � nor)
etc. It is very difficult, if not impossible, to parse these pairs on the basis of local context only. It
would be much easier if we could check the presence of these pairs in the sentence globally and to
parse the respective part of the sentence separately.

This type of constructions is another reason for our advocating the idea of a preprocessing
module which would be capable to look for certain phenomena in the morphologically processed input
sentence and to mark them in such a way that would make the syntactic parsing easier. In our system
we have decided to solve the problem of these constructions by introducing a special attribute pair
with the values left or right. Let us suppose that this attribute is inherited from the lemma from the
syntactic dictionary of the system and that the value left means that a particular word may appear as
the first member of some of the pairs mentioned above and the value right is used for a word in the
position of the second member of one of the pairs.

118

It is evident that this solution is inferior to the solution proposed above, namely the
involvement of a special preprocessing module. The module would not only be capable to check the
presence of �suspicious� words in the sentence, but it also should check whether they really constitute
a pair or not. The solution used in our system is a compromise between adequacy and simplicity of the
metagrammar. It will parse not only the pairs really existing in the language, but also the incorrect
pairs like nejen � a nebo [not only � either]. This solution would be unacceptable if we were
concerned with checking the syntactical correctness of the sentence in the grammar checker, while for
the robust parser it in fact means only a small imprecision. Let us remind that our ultimate goal is a
robust parser, we would have to accept the incorrect sentence anyway, the only difference is that with
our solution we are not able to point out the inconsistency or to correct it. If we liked to avoid this
inadequacy, we would have to introduce a very complicated metarule (or even a set of metarules)
listing all possible pairs. Such a solution would go against our initial decision that metarules should
describe the interaction of groups or classes of words, not among individual words.

The processing of the sentence takes 1,10s, 2 trees and 1351 items are created.

Fig. 11.41. One of the two trees representing the sentence (13)

Fig. 11.42. The second tree representing the sentence (13)

The ill-formed variant of this sentence lacks the comma preceding the conjunction a (and). As we
have already mentioned above, this kind of error is very common in Czech. The metarules handling

119

the construction with a to (and that, namely) are also able to cope with this error (cf. the description of
the metagrammar), as shown in the following two figures. The processing of this variant of the
sentence (13) took 5,93s, 8 trees and 3298 items were created. Fig.11.43 shows the tree corresponding
to that from Fig.11.41.

Fig. 11.43. One of the trees representing the syntactically ill-formed variant of the sentence (13)

On the other hand, Fig.11.43 contains a tree with syntactic inconsistency between the preposition mezi
(among) and the noun poslanci (deputies). This was caused by a locally acceptable analysis of the
coordinating conjunction a [and] in its proper role (coordinating the noun poslanci (deputies) with the
pronoun to (it)). Due to the soft constraint requiring the case agreement of coordinated words the noun
poslanci is considered to be in the nominative case, which conflicts with the case required by the
preposition mezi (between). This tree represents another clue for the claim that for proper error
localization and classification it is necessary to take into account the full set of results provided by
negative phases of our parser due to the fact that some inconsistencies may really be very misleading.

Fig. 11.44. Another tree representing the syntactically ill-formed variant of the sentence (13)

Sentence (14)
Přes to v�ak je postup konkrétních kontraktů pomalej�í, ne� bychom chtěli.

120

[In_spite_of that however is process [of] concrete contracts slower, than we_would want.]
(In spite of that, however, the process of concrete contracts is slower than we would like it to

be.)

The reason why this sentence was included into the testbed is the comparison by means of the
construction with an adverb ne� (than). This construction should be preceded by a comma in case it
forms a clause, as is the case in our sample sentence. In other cases there should be no comma
preceding ne� (than) � cf. the sentence (7).

The processing of our sample sentence took 1,98s, 900 items were derived and only a single
tree was created.

Fig. 11.45. The result of parsing the sentence (14)

In order to be able to demonstrate the difference between a single nominal group with the meaning of
comparison and a subordinated clause we had to modify the sample sentence slightly more than in
other cases. The modified sentence (14) with incorrectly inserted comma looks like this:

Přes to v�ak je postup konkrétních kontraktů pomalej�í, ne� v minulém roce.
[In_spite_of that however is process [of] concrete contracts slower, than in previous year.]
(In spite of that, however, the process of concrete contracts is slower than in the previous year.)

Fig. 11.46. One of the trees representing the variant of the sentence (14)

121

The Fig.11.46 shows a tree containing not only the expected syntactic inconsistency of a comma
preceding the adverb ne� [than], but also another inconsistency. The number of syntactic
inconsistencies in one tree is not limited, so the system has found a solution, which is clearly inferior
to that shown on Fig.11.47. Similarly as with the previous sentence, the syntactic error should be
identified by an evaluation module on the basis of both trees obtained as a result of parsing. 1043
items were derived in 2,31s during the parsing of this sentence.

Fig. 11.47. The second tree representing the variant of the sentence (14)

Sentence (15)
Tuto knihu jsem se mu rozhodl dát k vánocům.
[This book I_am Refl. decided to_give him to Christmas.]
(This book I have decided to give him to Christmas.)

Fig. 11.48. One of the trees obtained as a result of parsing of the sentence (15)

This sentence is very interesting due to its complexity. Not only is it nonprojective, but the number of
holes in it equals two and thus it exceeds the limit (one hole) set as a parameter of the interpreter in
our system. It is then no wonder that the system is not able to parse the sentence with this limit without
reporting syntactic inconsistencies. The system creates 11 trees. It derives 1347 items in 3,46s. The

122

two examples of trees in Fig. 11.48 and 11.49 illustrate the fact that the inadequate limit on the
nonprojectivity of the sentence leads to inadequate trees.

Fig. 11.49. Another tree obtained as a result of parsing of the sentence (15)

If we raise the limit of holes allowed to two, the results will change. In order to do this, we have to use
a newer version of the interpreter, namely the version currently being developed by Tomá� Holan in
his thesis [Holan 01]. The question might arise why we didn�t use the newer version as a basic testing
and development tool for our metagrammar. The answer is very simple � the process of building and
testing a metagrammar for natural language parsing is very long and complicated. During the work on
the LATESLAV project the process of creating and testing a metagrammar to a large extent influenced
also the process of the implementation of the software environment. In LATESLAV we have at the
same time tested the method, the software environment and, last but not least, also individual
metarules of the metagrammar. For the robust parser it was necessary to use more stable environment
and to concentrate on the development and testing of the metagrammar only � therefore we had to
stick to the version of the software environment we had at our disposal when we have started the
work. The development of the software environment and also the development of the theory
underlying it went on a slightly independent track (cf. [Holan 01]). That is the reason why we did not
mention the new version of the software environment until we had to cope with a general constraint
(dNg <= 1) which was set too low in the version of the interpreter we are using. Fig. 11.50 shows the
result of parsing with the new version of the software environment. The new software environment
uses also different font, therefore Fig. 11.50 slightly differs from all previous figures in this chapter.

Fig. 11.50. The result of parsing with a current version of the interpreter

123

The fact that the interpreter we are using for our metagrammar is not able to parse the sentence (15) in
an adequate manner is also a reason why we did not include an ill-formed variant of this sentence into
the testbed. The total number of sentences in the testbed thus currently remains equal to 29 (fifteen
syntactically well-formed sample sentences and fourteen of their ill-formed variants, as they were
presented in this chapter).

124

Chapter 12: A Method for Analyzing Clause Complexity

In the previous chapters we have described an attempt to handle robust parsing of Czech in a
consistent way (both linguistically substantiated and computationally effective) which will account for
typical features of the language (a high degree of word-order freedom, a relatively high frequency of
nonprojective constructions etc.). The main idea of this approach is a separation of individual steps
(phases) of the parsing, where the power of each phase (except the last one) is to some degree
constrained. The constraints allow for a more efficient processing and also to some extent block the
creation of superfluous (and computationally expensive) results of parsing (for example, a projective
reading without syntactic inconsistencies is preferred).

This general approach has proved to be useful and it seems that it is a good idea to pursue this
direction even further and to continue dividing the parsing process into even more phases. This
strategy may help to overcome some problems, which have been mentioned in the section describing
the results of parsing individual sentences from the testbed. Those problems are to some extent coped
with in the metagrammar (cf. the description of individual metarules in Chapter 9), but it is clear that
the software environment used in this project does not provide sufficient means for their solution. It is
also clear that they might be solved in a more efficient and elegant way. One of the weak points is the
inability of our interpreter (quite intentional, allowing to write less complicated metarules which are
easy to interpret and apply) to take into account a broader context inside the sentence than just two
items. Even the possibility to apply a metarule to two items which are not immediately adjacent does
not provide the power necessary for a fast and smooth parsing of certain sentences. In this chapter we
would like to describe an outline of a method, which could bring a significant improvement to the
approach described in previous chapters. The main idea is to divide the sentence into clauses before
the start of the syntactic parsing. This method would substantially simplify the parsing process, in fact
it will greatly reduce the complexity connected with the high degree of word-order freedom in Czech
due to the fact that it would make it possible to process individual clauses more or less independently.

The endeavor to divide the parsing process into a cascade of smaller steps is not new. These
strategies became quite popular recently, very interesting approaches were presented for example in
[Abney 96], [Ciravegna, Lavelli 99] or in [Brants 99]. The advantage of working with a cascade of
specialized parsers instead of having one very complex general parser is quite obvious � the
complexity of the task is substantially reduced and the parsing process is speeded up. The major
problem is how to divide such a complex task into individual steps of the cascade so that the division
would not negatively affect the quality of parsing results.

12.1 Motivation
One of the serious issues of parsing is the problem of parsing embedded subordinate clauses. In the
literature these two terms (embedded and subordinated) are often used as synonymous. As we have
already mentioned, in this thesis we would like to use the term �embedded� in a slightly different
manner than the term subordinated. For the sake of more precise explanation we have decided to
distinguish between subordinate and embedded clauses. Subordinate clause is a clause the head verb
of which �depends� on a word contained in another clause. The embedded clauses are those
subordinate clauses which are inserted into the middle of another clause and which thus are at the
surface level followed by a nonempty tail of the governing clause.

The parsing of embedded clauses has to deal with many problems specific to each type of
embedded clauses (for example the problem of determining the antecedent of an embedded relative
clause), but there are also some difficulties common to all kinds of embedded clauses.

125

The first one is the problem of determining where the clause actually ends. Without a reliable
information about the end of the clause it is usually necessary to take into account all possible variants
(of parsing of a local subsequence of input words), at least until the moment when the parser has at its
disposal enough information, which allows to discard irrelevant variants. The problem of our approach
is that the relevant information, which flows from leafs to the root of the syntactic tree (bottom up),
may be available quite late and thus the parsing process is burdened by a large number of variants,
some of which are definitely irrelevant for a given sentence since the moment of their creation.

The problem of determining the end of the clause is also related to the second serious problem
of embedded clauses, the task of finding an initial part of the governing clause to which the part
following the embedded clause belongs. In less complicated sentences containing one main and one
embedded clause this question is in fact a transformation of the previous one � the section following
the embedded clause is either a part of the governing clause or a part of the embedded one (in this case
it would, in fact, not be an embedded clause at all, in the sense we understand the term �embedded�).
If the parser is capable to determine where the embedded clause ends, it is also able to analyze the
section following the embedded clause together with the governing clause. Slightly different is the
situation in the case where several subordinated clauses are embedded (nested) into each other. Let us
demonstrate it by means of the following scheme:

M S1 S2 �Sn T? ,
where M represents (an initial part of) the main clause, Si (1<=i<=n) are (initial parts of)

subordinate clauses and T? is the remaining part (tail) of the clause. For each number i (0<=i<n) the
sentence Si+1 is subordinated to the clause Si. The variable ? in the index of T stands for either the
letter M (in case the tail belongs to the main clause) or an integer from the interval <1;n>.

Let us, for example, consider the sentence (12) from the testbed:
Funkční období soudců, která trvají �est let, nelze měnit.
(Functional periods of judges which last six years may not be changed.)

This sentence has the form of M S1 TM , where the index M represents the fact that the remaining part
(tail) of the complex sentence constitutes a part of the main clause. Let us now look more closely at
the process of parsing this sentence.

Fig. 12.1. One of the sets of DR-subtrees created during parsing

Fig. 12.1 displays one possible combination of subtrees of a DR-tree created in the process of parsing
our sample sentence. The subtrees more or less cover individual segments of the sentence separated by
the two commas (both commas block the analysis of longer sequences at the beginning and at the end
of the sentence). This is, of course, not the only possible set of subtrees created during parsing, but this
one is best suited for our purposes. Notice that the words nelze měnit [it_is_not_possible to_change]
are not yet connected � the reason is that the initial part of the sentence in fact depends on the
infinitive měnit [to_change] and thus (in a �correct� DR-tree) this infinitive cannot be attached by
means of an oblique edge to the word nelze [it_is_not_possible] until the object is attached to it. The
parsing may then continue as is shown on Fig 12.2:

126

Fig. 12.2. The DR-subtrees after the attachment of both commas

Fig 12.2 displays the situation in which the whole embedded clause including the two commas (at its
beginning and at its end) has already been parsed. The parsing process then continues with the
attachment of the subordinated clause to the governing noun (období � periods). At this point the
subordinate clause no longer plays any role in the parsing of the sentence. There is no difference
whether there is (or is not) any subordinate clause in the sentence � the subsequent analysis of the
nonprojective construction období nelze měnit (periods may not be changed) is independent of this
fact.

Fig. 12.3. One of the DR-trees representing the syntactic structure of the whole sentence

127

This sentence may serve as an example that uncomplicated complex sentences may be parsed
successfully (and efficiently) even without using information about the broader (sentential) context.

Let us now slightly modify this sentence (and make it more complex):
Funkční období soudců, která trvají �est let, z nich� jeden rok soudce vykonává funkci

předsedy soudu, nelze měnit.
(The functional periods of judges, which last six years, one of which each judge serves in the

function of the court president, may not be changed.)

This sentence has the form of M S1 S2 TM . It is more difficult to analyze than the previous one. The
local analysis of segments separated by commas is similar as in the previous case, also the analysis of
the embedded clauses is quite smooth and uncomplicated. The difficulties begin when the parser
creates the DR-subtree for the relative clause S1. This in fact corresponds to the situation from Fig 12.2
The DR-subtree of the clause S1 may now be parsed as a dependent item of its antecedent noun
(období � periods) and thus it may no longer be used in the parsing process. In this case, from now on
everything what the parser will combine with this DR-subtree represents an invalid structure. A
similar problem will appear later on when the parser creates DR-subtrees representing the clause S2.
This clause will also be attached to its antecedent and the parser will try to combine the relative clause
S1 with the remaining part of the main clause (TM). Thus it will create several more invalid items,
making the parsing process unnecessarily more complicated and increasing the risk of a parsing failure
(due to the potential lack of available resources).

In the metagrammar described in Chapter 9 we have introduced one possible (partial) solution
of, at least, the problem of determining the end of the subordinate clause. We are using a special kind
of auxiliary "technical" attributes storing the necessary information about a (possible) end of a clause
for later use (cf. the attribute EOS etc.). Although the sample sentences show that such an approach
may solve certain problems, it is definitely not the most elegant and effective solution. There are at
least two weak points, which motivate us to try to find an alternative way.

The first one is connected with the fact that from the point of view of a narrow local context it
is often impossible to rule out the creation of subtrees representing �dead ends� of parsing a particular
sentence. It is necessary to keep (and to process further) all subtrees representing all possible variants
of parsing a particular piece of the sentence, even though it is clear that some of them must be
superfluous.

These subtrees are being tested for the application of grammar rules and, even worse, in case
all subtrees representing a particular section of the sentence are acceptable in the narrow local context,
they are combined with other subtrees until it is possible to decide which of the candidates is
appropriate in the given broader context. In the discussion of our sample sentence above we have
already mentioned a disastrous effect on parsing efficiency, which sometimes even results in a failure
of the parser due to the lack of free resources available.

The second important problem caused by the insertion of special auxiliary technical attributes
is the necessity to propagate these attributes bottom up through the DR-trees. This propagation is
handled automatically on vertical edges of DR-trees due to the fact that the governing node inherits all
attributes and their values along the vertical edges by default.

More complicated is the case of transferring the important information along oblique edges of
DR-trees. This transfer must be explicitly stated in the grammar for each separate attribute whose
value should be transferred. If the grammar is being built incrementally, it is very often the case that
adding a new rule to the already existing grammar means (for the author of the grammar) to go
through all existing rules and modify them accordingly. This process of thorough checking of an
existing grammar becomes very often a major source of inconsistencies and errors that then have a
negative effect on the quality of parsing. The more auxiliary attributes and metarules the metagrammar
contains, the higher is the risk associated with any new metarule added to the grammar. The sections
handling the problem of transfer of values of technical attributes may be found in our grammar for
example in the third, sixth, elevenths, thirteenth, sixteenth, eighteenth etc. metarules. In all these
metarules it is the value of the attributes eos, eoc and end (indicating that the end of a clause or
sentence has already been processed) which is being transferred along the oblique edge of the DR-tree.

128

The approach we are going to propose in this chapter is structurally different in a sense that it
tries to separate the important information in an earlier stage of parsing so that the metagrammar is not
bothered with its transfer at all, it only uses it whenever necessary. This way is of course more natural
and also more effective than the solution mentioned above, which is implemented in the current
version of the metagrammar.

The main reason why our framework is not able to cope in a natural and transparent way with
the problem of identification of the end of an embedded clause (or with other problems unsolvable on
the basis of the local context) is the strict constraint on the general format of each metarule (AB->X,
cf. Chapter 5) which makes it possible to apply metarules in a very restricted local context.

12.2 Motivating example
One possible alternative to the solution of the above-mentioned problems may extend the original idea
of our robust parser (namely the idea of introducing a kind of a cascaded parser) also to some kind of
preprocessing of the input sentence before the start of the main parsing phases. The preprocessing
would consist of one or more phases which would process data achieved as a result of morphological
analysis (in the form of lemmas accompanied by sets of morphological tags) [see Hajič 94] and lexico-
syntactic data contained in the syntactic dictionary of the system.

The basic idea behind these initial phases is an assumption that every morphologically tagged
sentence already contains a lot of more or less reliable information that may be directly used for the
benefit of more effective and precise syntactic parsing. In some cases it is even possible to identify a
grammatical error only on the basis of morphemic data supported by a set of metarules expressing
certain syntactic rules which do not require a real "deep" syntactic parsing. As an example of such a
construction in Czech we may use the syntactic rule saying that it is not allowed to use two verbs in
finite form inside a single clause � they must be separated either by a punctuation mark or by a
conjunction. If they are not separated, it is possible to issue an error message.

The most important information we are looking for in the initial phases is the information
about the structure of a complex input sentence in the sense of the mutual relationships between
individual clauses, the span of embedded clauses etc. We may use the fact that in Czech there are quite
strict rules how clauses are separated (by means of conjunctions, punctuation marks etc.). Let us call
this type of structural information a clause structure of the (complex) sentence. At the beginning it is
important to stress that we suppose neither that the preparsing will be able to provide an unambiguous
clause structure for every sentence nor that an unambiguous clause structure exists for every sentence.
The aim is to create as precise an approximation of the clause structure as possible. Let us illustrate the
basic idea of our method on a complex Czech sentence taken from the newspaper Mladá Fronta Dnes:

Example 12.1.
Za předpokladu, �e se �avrda, úspě�ný kapitán, psycholog a kouč v jedné osobě, dočká

prodlou�ení smlouvy, jak doufá nejen on, měl by �anci co nejdříve dostat Novák, pova�ovaný za
nejslibněj�í domácí talent.

[Under assumption, that <Refl.> �avrda, successful captain, psychologist and couch in one
person, will_live_to_see prolongation of_contract, as hopes not_only he, should <Cond.>
chance[accus] as earliest to_get Novák, considered as most_promising domestic talent.]

(Under an assumption that �avrda, a successful captain, psychologist and couch in one, will
live to see a prolongation of the contract, as not only he hopes, should Novák, considered to be the
most promising domestic talent, get his chance as soon as possible.)

The morphological analysis of Czech uses a positional system of tags, each tag consists of 15
positions, some of which may be empty. The analysis assigns each word form all relevant lemmas
accompanied by a full set of morphological tags, no disambiguation is involved at this stage. The first
position of the tag always represents a part of speech of a given lemma (R=preposition, N=noun,
J=conjunction, A=adjective, V=verb, Z=punctuation, C=numeral etc.), the second position identifies a
subgroup of a given POS (e.g. J is a subordinating conjunction while J^ is a coordinating conjunction).

129

The complete description of the system of tags for Czech can be found for example in [Hajič, Hladká
98]. The words of our sample sentence have got the following tags in the morphological analysis.
Za: za RR--2---------- RR--4---------- RR--7----------
předpokladu: předpoklad NNIS2-----A---- NNIS3-----A---- NNIS6-----A----
,: , Z:-------------
�e: �e J,-------------
se: s RV--7----------

se P7-X4----------
�avrda: �avrda NNMS1-----A----
,: , Z:-------------
úspě�ný: úspě�ný AAFP1----1A---6 AAFP4----1A---6 AAFP5----1A---6

AAFS2----1A---6 AAFS3----1A---6 AAFS6----1A---6
AAIP1----1A---6 AAIP4----1A---6 AAIP5----1A---6
AAIS1----1A---- AAIS4----1A---- AAIS5----1A----
AAMP1----1A---6 AAMP4----1A---6 AAMP5----1A---6
AAMS1----1A---- AAMS5----1A---- AANP1----1A---6
AANP4----1A---6 AANP5----1A---6 AANS1----1A---6
AANS4----1A---6 AANS5----1A---6

trenér: trenér NNMS1-----A----
,: , Z:-------------
psycholog: psycholog NNMS1-----A----
a: a J^-------------
kouč: kouč NNMS1-----A---- NNIS1-----A---- NNIS4-----A----
v: v RR--4---------- RR--6----------

v NNNXX-----A----
jedné: jeden ClFS2---------- ClFS3---------- ClFS6----------
osobě: osoba NNFS3-----A---- NNFS6-----A----
,: , Z:-------------
dočká: dočkat VB-S---3P-AA---
prodlou�ení: prodlou�ení NNNP1-----A---- NNNP2-----A---- NNNP4-----A----

NNNP5-----A---- NNNS1-----A---- NNNS2-----A---- NNNS3-----A----
NNNS4-----A---- NNNS5-----A---- NNNS6-----A----
prodlou�ený AAMP1----1A---- AAMP5----1A----

smlouvy: smlouva NNFP1-----A---- NNFP4-----A---- NNFP5-----A----
NNFS2-----A----

,: , Z:-------------
jak: jak NNMS1-----A----

jak J,-------------
jak Db-------------

doufá: doufat VB-S---3P-AA---
nejen: nejen TT-------------
on: on PPYS1--3-------
,: , Z:-------------
měl: mít VpYS---XR-AA---
by: být Vc-X---3-------
�anci: �ance NNFS3-----A---- NNFS4-----A---- NNFS6-----A----
co: co PQ--1---------- PQ--4----------

co TT-------------
co J,-------------
co Db-------------

nejdříve: brzy Dg-------3A----
dostat: dostat Vf--------A----
Novák: Novák NNMS1-----A----
,: , Z:-------------
pova�ovaný:pova�ovaný AAFP1----1A---6 AAFP4----1A---6 AAFP5----1A---6

130

AAFS2----1A---6 AAFS3----1A---6 AAFS6----1A---6 AAIP1----1A---6
AAIP4----1A---6 AAIP5----1A---6 AAIS1----1A---- AAIS4----1A----
AAIS5----1A---- AAMP1----1A---6 AAMP4----1A---6 AAMP5----1A---6
AAMS1----1A---- AAMS5----1A---- AANP1----1A---6 AANP4----1A---6
AANP5----1A---6 AANS1----1A---6 AANS4----1A---6 AANS5----1A---6

za: za RR--2---------- RR--4---------- RR--7----------
nejslibněj�í: slibný AAFP1----3A---- AAFP4----3A---- AAFP5----3A----

AAFS1----3A---- AAFS2----3A---- AAFS3----3A---- AAFS4----3A----
AAFS5----3A---- AAFS6----3A---- AAFS7----3A---- AAIP1----3A----
AAIP4----3A---- AAIP5----3A---- AAIS1----3A---- AAIS4----3A----
AAIS5----3A---- AAMP1----3A---- AAMP4----3A---- AAMP5----3A----
AAMS1----3A---- AAMS5----3A---- AANP1----3A---- AANP4----3A----
AANP5----3A---- AANS1----3A---- AANS4----3A---- AANS5----3A----

domácí:domácí AAFP1----1A---- AAFP4----1A---- AAFP5----1A---- AAFS1----1A----
AAFS2----1A---- AAFS3----1A---- AAFS4----1A---- AAFS5----1A----
AAFS6----1A---- AAFS7----1A---- AAIP1----1A---- AAIP4----1A----
AAIP5----1A---- AAIS1----1A---- AAIS4----1A---- AAIS5----1A----
AAMP1----1A---- AAMP4----1A---- AAMP5----1A---- AAMS1----1A----
AAMS5----1A---- AANP1----1A---- AANP4----1A---- AANP5----1A----
AANS1----1A---- AANS4----1A---- AANS5----1A----

talent: talent NNIS1-----A---- NNIS4-----A----
talent NNMS1-----A----
.: . Z:-------------

The morphemic information is combined with the lexico-syntactic information contained in the
syntactic dictionary of the system. The syntactic dictionary provides for example the information that
the verb dočkat should be combined with a reflexive pronoun se. It also provides data about the
valency frames of all relevant words.

Let us now look at the sentence more closely.
1. Za předpokladu {The sentence does not start with a subordinate conjunction, therefore the first

part of the sentence (till the first comma) belongs to the main clause. It might of course be the case
that the main clause is not complete (it does not contain a verb), but that is not apparent here, it is
necessary to wait until a broader context is analyzed.}

2. , �e se �avrda {Beginning of the subordinate clause. The fact that the morphological analysis did
not recognize the proper name should not be a problem, if we take into account that an isolated
unrecognized word beginning with a capital letter in Czech almost certainly represents a name.
With this assumption it is possible to solve the ambiguity of se � in this context it is a reflexive
particle, rather than a preposition.}

3. , úspě�ný kapitán {This comma may not end the subordinate clause, for between the subordinate
conjunction and this comma there is no finite verb. It is either a comma separating individual
nominal groups in coordination, or a comma starting an inserted clause or a noun phrase in
apposition to the preceding word.}

4. , psycholog {Same situation as in the previous case.}
5. a kouč v jedné osobě {The coordinate conjunction a [and] does not coordinate here whole

sentences � due to the absence of a finite verb to the left of this conjunction it is only possible that
it coordinates individual noun groups.}

6. , dočká prodlou�ení smlouvy {This is the final comma of the inserted coordination of attributes in
apposition. The information from the syntactic dictionary also indicates that the verb dočkat is the
most likely candidate to be combined with the reflexive particle in 2. That also means that sections
6. and 2. are on the same level, lower than section 1.}

7. , jak doufá nejen on {The comma followed by the subordinate conjunction jak indicates clearly
that this clause (in fact at this moment we can't be sure that this section of the input sentence is a

131

complete clause, this will be clarified after the rest of the sentence is processed) is a modifier of
one of the previous clauses.}

8. , měl by �anci co nejdříve dostat Novák {This clause does not contain any conjunction indicating
its status as a subordinate clause. If we look towards the end of the input sentence, we will notice
that this clause is also the last possible candidate (due to the presence of the last finite verb of the
sentence) likely to be the (second part of the) main clause of the whole complex sentence. That
also means that section 1, which is on the top level too, is an integral part of this clause and
sections 2-7 are embedded, modifying the noun předpokladu.}

9. , pova�ovaný za nejslibněj�í domácí talent. {The agreement in gender, number and case indicates
that this section is a post-modifier (in apposition) of the name Novák.}

The comments to individual sections of the complex input sentence give us a clue to the problem of
what kind of information may support our hypothesis about the mutual relationship of sections in the
sentence. In this respect the most reliable information is that about the number and position of finite
verbs, conjunctions and punctuation marks in individual sections. Let us now sum up the available
information:
a) Sections 1 and 8 constitute the main clause of the sentence
b) Section 9 directly modifies the proper name from Section 8
c) Sections 2 and 6 constitute one subordinated clause
d) Section 2 directly modifies Section 1
e) Section 7 directly modifies Section 6
f) Sections 3, 4 and 5 are located on the same level, modifying (as appositions �avrda in Section 2
g) The comma preceding Section 6 indicates that Sections 2,3,4 and 5 need not be on the same level

(in the same clause) as Section 6
This knowledge, acquired on the basis of simple considerations presented above, leads to the
following schemata, which capture the structural relationships of individual sections of the sample
sentence by means of horizontal edges (expressing the fact that the nodes are either coordinated or
belonging to a single clause) and oblique edges (expressing the relation of subordination). The
numbers in circles correspond to the numbers of sections discussed above:

1 8

3 4 5

62 9

7

Fig. 12.4. This variant represents a coordination of sections 3, 4 and 5.

1

3

2

8

6 9

7

4 5

Fig. 12.5. This is also a possible variant of the structure, where only sections 4 and 5 are coordinated.

132

The structure of sections in the sentence is very important from the point of view of parsing adequacy
and effectiveness. It allows to formulate additional constraints (to the constraints already used in all
phases of the parsing) preventing a derivation of superfluous items. In certain cases these constraints
may for example block an application of a metarule to items from different levels of the structure of a
particular sentence etc.

The example presented above might suggest a false impression that the clause structure
contains only horizontal edges combined with top-down and left-to-right oriented edges (representing
the relation between the subordinate section following the governing one). The edges oriented left-to-
right and bottom up (the subordinate section preceding the governing one) are also quite common in
sentences where a subordinate clause precedes the governing one, as in the following example:

Example 12.2.
Aby dorazil k cíli a vyře�il po dlouhém bloudění Fermatovu větu, potřeboval Andrew Wiles jen

pero, papír a obyčejnou logiku.
[In_order_to [he]_arrived towards goal and [he]_solved after long wandering Fermat's

theorem, needed Andrew Wiles only pen, paper and ordinary logic.]
(In order to reach the goal and to solve the theorem of Fermat, Andrew Wiles needed only a

pen, a paper and an ordinary logic.)

The sentence may be divided into following sections:
1. Aby dorazil k cíli {The subordinate conjunction (aby) at the beginning of the section indicates that

this section does not belong to the main clause of the sentence. It also contains a finite verb,
therefore this section might be a complete (subordinate) clause.}

2. a vyře�il po dlouhém bloudění Fermatovu větu {The coordinate conjunction and the presence of a
finite verb suggest that this is also a subordinate clause, coordinated with the clause from
Section 1.}

3. , potřeboval Andrew Wiles jen pero {This section contains the last finite verb of the whole
sentence, therefore it must be the main clause (there are only three finite verbs in the sentence and
the first two of them are coordinated on the �subordinate level�). The section does not contain any
hint that it is not a (part of the) main clause.}

4. , papír {A comma followed by a noun does not itself provide a sufficient information. In this
particular case it is possible to use the additional information that no finite verb follows this
section. If it did and if there were a subordinate conjunction between the verb and this noun, it
would be necessary to take into account the possibility that the whole complex sentence is in fact
only a large nominal group governed by the noun papír. Without the verb following the noun it is
possible to place this section at the same (or even higher) level as the previous one.}

5. a obyčejnou logiku. {The coordinating conjunction indicates that this section belongs to the same
level as the previous one.}

These facts lead to a single possible graph:

1

3

2

4 5

Fig. 12.6. The graph of sections of the sentence from Example 2.

Let us now define the structure of sections in a complex sentence in a more precise way. We would
also like to show the connection between the structure of sections and D-trees.

Let us first define some important notions used throughout this section:

133

The term safe verb (SV) describes a word form that in the process of morphological analysis
gets only tags containing the symbol for a verb (these tags begin with the letter V in the system of
morphological tags used for Czech).

The term unsafe verb (UV) describes a word form which in the process of morphological
analysis gets at least one tag containing the symbol for a verb and at least one tag containing a symbol
for some other part of speech.

The term delimiter list describes a list of words, punctuation marks and other symbols that
may connect individual clauses in a complex sentence in a coordinate or subordinate manner.

The term delimiter describes a member of a delimiter list.

Examples
safe verbs: byl ([he] was), jda (going), pí�e (writes/writing) etc.
unsafe verbs: �ena {Noun(woman)/Verb(chasing)}, tři {Numeral(three)/Verb(rub[imperative])}, pila

{Noun(a saw)/Verb([she] drank)} etc.
delimiters: a (and), který (which), �e (that), comma etc.

Remark
It is often the case that two clauses are separated by more than one delimiter (e.g. comma followed by
�e (that)). In such a case it would be more convenient to consider the whole sequence of delimiters as a
single item � let us call it a delimiter sequence. The introduction of this more general notion is
justified also by other reasons. One of them is the fact that the sequence of words and/or punctuation
marks separating two clauses sometimes does not consist only of delimiters (especially when
delimiters separate the governing clause from a subordinate one). In case a delimiter is a word that
may be inflected (e.g. a relative pronoun) and this word is in prepositional case, the preposition should
also belong to the delimiter sequence. Another example justifying the necessity to use the broader
notion of a delimiter sequence is an emphasizing adverb standing between a comma and a subordinate
conjunction (cf. , právě �e (just that)). In this context it is natural to handle the adverb as a member of
the delimiter sequence.

The class of elements of the delimiter sequence which themselves are not delimiters is
severely restricted in Czech and it is closely bound to the lexical value of the rightmost delimiter. For
this reason it seems that the best solution would be to work with a list of word categories or individual
words which may precede a certain delimiter. This list would be attached to a particular delimiter in
the delimiter list.

12.3 Definitions
In the sequel an input sentence is understood to be a sequence of lexical items (word forms) w1w2....
wn. Each item wi (1<=i<=n) represents either a certain lexical form of a given natural language, or a
punctuation mark, quotation mark, parenthesis, dash, colon, semicolon or any other special symbol
which may appear in the written form of a sentence of the natural language under consideration. All
items are disjunctively divided into two groups � ordinary words and members of delimiter sequences.

Definition 12.1 (Segmentation of a sentence)
Let S = w1w2 ... wn be a sentence of a natural language. A segmentation of a sentence S is a sequence
of sections D0W1D1 ... WkDk` where section Wi (1<=i<=k) represents a sequence of lexical items
wjwj+1 ... wj+m not containing any delimiter and section Di (0<=i<=k) represents a delimiter sequence
composed of items wLwL+1 ... wL+p. The section D0 may be empty, all other sections Di (0<=i<=k) are
non-empty. Each item wi for 1<=i<=n belongs to exactly one section Dj if it is a member of a delimiter
sequence or else Wj in the opposite case.

Remarks
Dk represents the final punctuation mark at the end of a sentence.

134

The section D0 is usually empty in case the sentence starts with a main clause. If a complex
sentence starts with a delimiter, it is usually the case when a complex sentence starts with a
subordinate clause as e.g. in the sentence Kdy� jsem se probudil, zavolal jsem policii. (When I woke
up, I called the police.)).

Example 12.3.
Let us illustrate the notion of a segmentation by the following sentence:

V zemi, kde ka�dá věc má svůj řád, v�echno funguje a vlaky jezdí na sekundu přesně.
[In country, where each thing has its rules, everything works and trains go on second exactly.]
(In a country in which each matter has its rules, everything works and trains go with a

precision of seconds.)

[Mladá fronta DNES, 9.7.98; this sentence directly follows the sentence: Je to ultramoderní leti�tě u
mnohamilionové metropole technologické supervelmoci. (It is an ultra-modern airport close to a
megamillion metropolis of a technological superpower.)]

The segmentation of this sample sentence looks as follows:
W1 : V zemi [In country]
D1 : , kde [, where]
W2 : ka�dá věc má svůj řád [each thing has its rules]
D2 : ,
W3 : v�echno funguje [everything works]
D3 : a [and]
W4 : vlaky jezdí na sekundu přesně [trains go on second exactly]
D4 : .

It is clear that the segmentation is simply a direct consequence of the division of words into the class
of delimiter sequences and that of ordinary words. The application of this division to individual words
immediately provides the segmentation of a sentence.

For the purpose of further processing of input sentences it is necessary to try to transform the
segmentation into some kind of a proto-structure (graph) reflecting the mutual relationship of
individual segments. Nodes of the graph represent the segments. Such a structure has one basic
function � to identify segments which may belong to the same clause (for example if a particular
delimiter is a conjunction coordinating words or groups of words) and thus to help to create a graph
describing the structure of clauses in a complex sentence. The first step in this transformation is the
creation of joint segments Sq by concatenation of the sequence of segments DiWi+1Di+1 ... Wi+rDi+r
(0<=r, 2(i+r)<=n), where Di or Di+r may be empty. The joint segments Sq should more precisely reflect
the division of a complex sentence into individual clauses or sections of clauses (in the case of non-
continuous clauses). The joint segments should be created by a special set of rules reflecting the
syntactic properties of a natural language under consideration. Roughly speaking, these rules should
operate on the basis of similar syntactic relations as the relations mentioned in the discussion of our
motivating example above.

For a given sentence, the joint segments may be created in several ways.

Definition 12.2 (of an S-node)
An S-node Nq is a 6-tuple [Q,W,VU,VA,D,C], where:
• Q is an index q of a particular segment Sq represented by the node;
• W is a sequence of pairs (wi,i), where the symbol wi represents an input symbol located on the i-th

position in an input sentence and i is the index expressing this position. The sequence W contains
only the pairs representing the lexical items belonging to the segment Sq. It is contained in curly
brackets and it is called a span of the S-node;

• VU is a number indicating how many symbols from W are unambiguously morphologically
identified as verbs;

135

• VA is a number indicating how many symbols from W have at least one tag marking a different
part of speech among its tags and at least one tag marking a verb;

• D is a so called subordination index; this index either corresponds to the index of the node
representing the segment governing the segment Sq, or it equals 0 (if no segment governs the
segment Sq);

• C is a so called index of vicinity. It is a number corresponding to the index of the node with a
lower index, to which the given segment Sq is connected by other than subordinating delimiter
sequence (e.g. a coordinating conjunction etc.). In case no such node with a lower index exists,
this number equals 0.

The following definition specifies how the S-nodes are organized into a graph expressing the mutual
relationship between individual segments.

Definition 12.3 (of an S-graph)
An S-graph is a continuous acyclic graph consisting of a set of S-nodes and a set of edges. The edges
are divided into the following two groups:
a) horizontal edges � these edges express the fact that the S-nodes are either coordinated or they

belong to the same clause;
b) oblique edges � these edges correspond to a subordinate relation of S-nodes; the lower end of an

oblique edge points towards the S-node representing a dependent segment and the upper node
points towards the S-node representing the governing segment.

The set of nodes of an S-graph St is sufficient to fully represent St.

Remark
In each S-graph there is exactly one S-node with a value of D = C = 0. It is the node representing the
leftmost segment of the main clause. All other nodes have at least one of these indices different from
zero.

The node N1 has the value of D = C = 0 if and only if the sentence does not start with a
subordinate clause.

Let us now apply the definitions presented above to the sample sentence from Example 3:
There are the following joint segments Sq:

S1 = W1

S2 = D1W2

S3 = D2W3

S4 = D3W4D4

This sentence allows for two S-graphs:
N1

N2

N3 N4

Fig. 12.7. The first variant of the S-graph for the sentence from Example 3

N1 stands for the node [1,{(V,1), (zemi,2)}, 0, 0, 0, 0]
N2 stands for the node [2,{(,,3), (kde,4), (ka�dá,5), (věc,6), (má,7), (svůj,8), (řád,9)},0,1,1,0]
N3 stands for the node [3,{(,,10), (v�echno,11), (funguje,12)}, 1, 0, 0, 1]
N4 stands for the node[4,{(a,13), (vlaky,14), (jezdí,15), (na,16), (sekundu,17), (přesně,18), (.,19)}, 1,
0, 0, 3]

136

N1

N2 N3 N4

Fig. 12.8. The second variant of the S-graph for the sentence from Example 3

Nodes N1, N2 and N4 are the same as in the previous case,
N3 stands for the node [3,{(,,10), (v�echno,11), (funguje,12)}, 1, 0, 0, 2]

The creation of an S-graph is only the first step towards our ultimate goal � the creation of a
clause structure for a given sentence. The problem is that the coverage of individual nodes need not
correspond to a set of words belonging to single clause. The coverage of a particular S-node is always
continuous, while clauses may contain discontinuous elements (nonprojective constructions whose
elements are located in different segments) or they may be divided into several discontinuous parts
(for example when the main clause contains an embedded subordinate clause). In order to overcome
this obstacle it is necessary to try to identify segments belonging to one particular clause and to join
them together.

This joining of course cannot be done solely on the basis of morphological analysis of the
input. One of the reasons why the morphological information is insufficient is the presence of unsafe
verbs. They not only do not allow for a precise estimation of the number of clauses in a particular
complex sentence, but they also substantially complicate the task of determining the ends of individual
clauses in a complex sentence. Another serious problem is the ambiguity of some delimiters,
especially commas. In some cases it is very difficult (if not impossible) to decide whether a certain
delimiter is used in a coordinate relation inside a certain clause or whether it coordinates something
else in a complex sentence. (As has been already mentioned in the point 3 of the discussion of
Example 1, the comma following the name �avrda in �avrda, úspě�ný kapitán, psycholog a kouč may
have either the role of a delimiter between a noun and its attribute (in apposition) or the role of a
delimiter in the coordination of nouns �avrda, kapitán, psycholog and kouč).

A consequence of these facts is the necessity to allow for the ambiguity of structures
representing joint segments. The disambiguation will then be done by later stages of parsing.

Definition 12.4 (of a CS-graph)
A CS-graph (a contracted S-graph) is a modified S-graph. The modification consists in a contraction
of some horizontal edges of an S-tree and in joining nodes from both ends of the contracted edges. The
nodes have the following form:
A node of a CS-graph Nr (a CS-node) is a 6-tuple [L,W,VU,VA,D,C], where:
• the index r is a list of indices of all nodes of an original S-graph Sq, which were joined by

contraction into the node Nr;
• L is an index of the node Nr; it is the lowest index from the list of all indices from r;
• W is a sequence of spans of S-nodes joined into a node Nr;
• VU is a number indicating how many symbols from W were unambiguously morphologically

identified as verbs;
• VA is a number indicating how many symbols from W have at least one tag marking a verb and at

least one tag marking a different part of speech among its tags;
• D is a subordination index. This number corresponds to the index L of a node to which is the

given node Nr connected by an oblique edge in the bottom-up direction. In case such an oblique
edge does not exist, this number equals 0;

• C is an index of vicinity. This number corresponds to the index L of a node with a lower index to
which is the given node Nr connected to by a horizontal edge. If such a node does not exist, this
number equals 0.

137

Remark
For the sake of an easier explanation of mutual relationships of individual nodes of a CS-graph (not
necessarily immediately connected by an edge) in vertical direction we introduce the notion of layers
of a CS-graph. In informal terms, a layer is composed of all nodes which are mutually connected by
horizontal edges only.

Definition 12.5 (of layers of a CS-graph)
Let the notion of a layer of a CS-graph be defined inductively according to the following steps:
1. The CS-node with D = 0 and C = 0 belongs to the layer 1 of the CS-graph.
2. Each CS-node connected to a CS-node belonging to a certain layer by a horizontal edge also

belongs to the same layer.
3. Each CS-node Nr connected by an oblique edge to a CS-node Np belonging to a layer i belongs to:

a) the layer i+1 if the CS-node Nr is located on the lower end of the edge
b) the layer i-1 if the CS-node Nr is located on the upper end of the edge

Remark
Let us point out that the topmost layer of a CS-graph is assigned the number 1 and the numbers of
layers increase in the top-down direction.

Example 12.4.
Let us now present the CS-graphs corresponding to S-graphs from Fig. 12.7 and Fig. 12.8. The three
variants of CS-graphs are based solely on the information about the number of safe and unsafe verbs
(VU and VA) located in S-nodes.
a)

S1,3

S2

S4

S1,3 = [1, {(V,1), (zemi,2)}{(,,10), (v�echno,11), (funguje,12)}, 1, 0, 0, 0]
S2 = [2, {(,,3), (kde,4), (ka�dá,5), (věc,6), (má,7), (svůj,8), (řád,9)},0,1,1,0]
S4 = [3, {(a,13), (vlaky,14), (jezdí,15), (na,16), (sekundu,17), (přesně,18), (.,19)}, 1, 0, 0,1]

This variant is based on the S-graph from Fig. 12.7. It does not allow for any other kind of
contraction, there is just one safe verb funguje (it works) in nodes S1 and S3 indicating that on the
topmost horizontal layer the first two nodes of the original S-graph belong to a single clause. They are
separated by an embedded clause (or a noun phrase if the ambiguous form má (it has/my) is a
pronoun). No other contraction is possible because the node S4 contains a safe verb and thus represents
the second main clause (coordinated with the first one). The node S2 is the only node on the bottom
horizontal layer (layer 2), therefore no contraction is possible on this layer.
b)

S1

S2,3 S4

S1 = [1, ,{(V,1), (zemi,2)}, 0, 0, 0, 0]
S2,3 = [2, {(,,3), (kde,4), (ka�dá,5), (věc,6), (má,7), (svůj,8), (řád,9)} {(,,10), (v�echno,11),
(funguje,12)},1,0,1,0]
S4 = [3, {(a,13), (vlaky,14), (jezdí,15), (na,16), (sekundu,17), (přesně,18), (.,19)}, 1, 0, 0, 2]

138

This is the first of the two CS-graphs based on the Fig. 12.8. The ambiguous form of má [it
has/my] is considered to be a pronoun in this variant (notice that VA = 0 in S2,3 even though VA = 1 in
the node S2 of the original S-graph) thus allowing for the contraction of nodes S2 and S3 (of the
original S-graph) into S2,3 according to the same rule as in the previous case. The edge leading towards
S4 cannot be contracted (it contains an unambiguous verb). It is easy to see that this variant is
irrelevant from the point of view of the real syntactic structure of the input sentence and that the later
stages of syntactic analysis should discard it.
c)

S1

S2 S3 S4

S1 = [1, ,{(V,1), (zemi,2)}, 0, 0, 0, 0]
S2 = [2, {(,,3), (kde,4), (ka�dá,5), (věc,6), (má,7), (svůj,8), (řád,9)},1,0,1,0]
S3 = [3, {(,,10), (v�echno,11), (funguje,12)}, 1, 0, 0, 2]
S4 = [4, {(a,13), (vlaky,14), (jezdí,15), (na,16), (sekundu,17), (přesně,18), (.,19)}, 1, 0, 0, 3]

This variant represents in fact the most adequate result; no contraction could be performed due
to the decision that the word-form má (it has/my) is a verb (cf. the values of VU and VA of the nodes S2
here and in the original S-graph). Thus the only node not containing a verb is the node S1, the only
node on the topmost horizontal layer. No contraction is therefore possible on this layer.

Remark
Delimiters (commas) present in nodes created after the contraction of edges may also serve as a source
of information. In some cases (the node S1,3 in the CS-graph under a) they serve as markers indicating
the location of embedded clauses.

12.4 General principles of building S-graphs
The process of building S-graphs is relatively straightforward. In accordance with the definitions
presented above, the first step is always the morphological analysis of the input sentence. On the basis
of its (typically ambiguous) results we divide the sentence into segments, taking into account the
number and position of all delimiters and delimiter sequences in the sentence. This is quite easy,
because the set of all delimiters and delimiter sequences is relatively closed and there is typically no
ambiguity whether a particular word belongs to the list of delimiters or not. Joining the segments
together is also a straightforward operation: the joint segments always start with a delimiter (except
the first segment which need not contain any delimiter at all if the input sentence does not start with
one). The last joint segment also ends with a delimiter, namely with a final full-stop, exclamation
mark or question mark etc. The only slightly more complicated property of joint segments is the fact
that a particular segment Wi may be empty (some examples are discussed later in this section).

The next step, drawing S-graphs relevant for a given input sentence, is slightly more
complicated. A certain degree of ambiguity is involved due to those delimiters which may have both
roles, the coordinating and the subordinating one. If there is such an ambiguous delimiter somewhere
in the sentence, it is necessary to create two S-graphs, one with a horizontal edge and the other with
oblique edge between segments connected by a particular ambiguous delimiter. The subordinating
delimiters are represented by an oblique link going either up or down to the following segment
(according to whether the subordinated segment precedes or follows the governing segment). There
are some exceptions to this general rule. Let us explain these exceptions in the following section.

139

12.4.1 More complicated types of sentences
The investigations performed on the texts of the Czech National Corpus (CNC) helped us to discover
one rather special type of clause structure in Czech, which is easily recognizable and requires a special
treatment. Let us introduce an example:

Nevěděl, �e kdy� jsem se probral k vědomí, zavolal jsem policii.
(He_didn�t_know, that when I_am Refl. woke to conscience, called I_am police)
[He didn�t know that when I had gained consciousness, I had called police.]

If we look closer at this example, we will find that the underlined delimiters are not in fact a single
delimiter sequence, but rather two sequences, the first one (which includes the comma) consisting of
two members, the second one being just a subordinate conjunction. A very important property of this
construction is the fact that both sequences of delimiters are not divided by a comma (cf. the remark
following this section). The sentence consists of three segments, the first of which is the main clause
of the sentence, followed by two subordinate clauses. The main problem of this sentence is to find the
correct pattern how to draw a S-graph and a CS-graph, the presence of two sequences of delimiters
requires a special attention. Let us demonstrate this pattern by building an S-graph.

The segmentation:
W1 : Nevěděl [He didn�t know]
D1 : , �e kdy� [, that when]
W2 : jsem se probral k vědomí [I had gained consciousness]
D2 : ,
W3 : zavolal jsem policii [I had called police]
D3 : .

Joint segments:
S1 = W1

S2 = D1W2

S3 = D2W3D3

The S-graph created by a mechanical application of the rule that delimiters containing subordinate
conjunctions are represented by an oblique edge of the S-graph would look like this:
N1

N2

N3

Fig. 12.9a An inappropriate S-graph reflecting the mutual relationship of segments

or, even worse, it may also look like this (if we do not take into account that there are in fact two
sequences of delimiters inside D1):

N1

N2

N3

Fig. 12.9b An inappropriate S-graph reflecting the mutual relationship of segments

N1 stands for the node [1,{(Nevěděl,1)}, 1, 0, 0, 0]

140

Both S-graphs from Fig. 12.9a and 12.9b differ in the vertical position of N3. Fig. 12.9a has
three vertical levels with the node N3 placed on the middle level, while S-graph from Fig. 12.9b has
only two vertical levels, with both nodes N1 and N3 placed on the top level.

When we try to describe the node N2 we encounter a problem (in both cases) of setting the
subordination index of the node. The S-graphs clearly show that the node N2 depends both on N1 and
N3 . Such a situation not only violates our definition of S-nodes (the subordination index is a single
number in our definition), it also does not reflect in a correct manner the mutual relationship of clauses
in our complex sentence (and that does not correspond to our goal to represent this relationship by
means of S-graphs and CS-graphs). The dependency-oriented notation will definitely prefer the pattern
where the third clause depends directly on the first clause and the second clause depends directly on
the third one. The following S-graph would be a more appropriate representation of the clause
structure than the previous two:
N1

N2

N3

Fig. 12.10. More appropriate S-graph reflecting the mutual relationship of segments

N1 stands for the node [1,{(Nevěděl,1)}, 1, 0, 0, 0]
N2 stands for the node [2,{(,,2), (�e,3), (kdy�,4), (jsem,5), (se,6), (probral,7), (k,8),
(vědomí,9)},1,0,3,0]
N3 stands for the node [3,{(,,10), (zavolal,11), (jsem,12), (policii,13), (.,14)}, 1, 0, 1, 0]

This representation is in accordance with the definition of S-nodes and S-graphs. It is quite
clear that this exception can be easily handled by means of rules used for creation of S-graphs.
Whenever a delimiter sequence consisting of two independent delimiters (or sequences of delimiters)
is encountered, the pattern of building an S-graph described above should be adopted. It is, of course,
clear that in �real texts� the situation may not always be so straightforward as in our sample sentence,
but our thorough investigation of texts in the Czech National Corpus brought some interesting results.

One of those results is the fact that in the whole CNC (at least in the part publicly available in
the year 2000) we have not found an occurrence of three independent delimiters grouped together
(although it is possible to create a Czech sentence using for example a group of delimiters a �e který
kdy� [and that which when]). The second important fact is that although it is theoretically possible, in
�real� texts there are very few examples of a clause or phrase embedded inside the segments
representing both subordinate clauses. A structure of such a complexity is probably generally
considered to be difficult to understand. Among the exceptions we have found rather strange sentences
(... byl jsem v tý samý situaci jako mni�i jednoho klá�tera, který kdy� se dozvěděli, �e Koperník objevil
i jinačí zákony, podle kterejch se točí svět a �e země tedy není centrem světa, spí� naopak, tak ti mni�i
páchali hromadné sebevra�dy, proto�e si nedovedli představit jinačí svět ne� ten, ve kterým �ili. (... I
was in the same situation as monks from one monastery, who when they found that Copernicus
discovered also other rules, according to which the world turns and that the Earth therefore isn�t a
center of the world, rather the other way round, so the monks committed mass suicides, because they
were not able to imagine some other world than that in which they lived.)).

Remark
The work with the CNC also brought out further sentences with very similar structure to those
discussed in this section. Let us consider the following sentences:

Vzpomněl si na svou �enu, které, kdy� ji poznal, bylo také sedmnáct.
[He_remembered Refl. on his wife, whom, when her met, was also seventeen]
(He remembered his wife, who , when he met her, was also seventeen.)

141

Podepsal také vstupenku na vinobraní malé Michalce, která, kdy� Milo�e Zemana uviděla, tak
si podle její maminky myslela, �e dávají zprávy.
[He_signed also ticket on wine_festival to_little Michalka, who, when Milo� Zeman saw, so
Refl. according_to her mom thought, that they_broadcast news.]
(He also signed an entry ticket to the wine festival to little Michalka, who, when she saw
Milo� Zeman, thought according to her mom that they broadcast the news.)

The only difference is in the fact that in these sentences the relative pronoun který is preceded by a
comma and it clearly depends on the main verb of the third clause, therefore the second clause is
embedded into the third one and the treatment in our framework is different, more straightforward than
in the previous case.

The segmentation of the sentence a):
W1 : Vzpomněl si na svou �enu [He remembered his wife]
D1 : , které [, which]
W2 : {empty}
D2 : , kdy� [, when]
W3 : ji poznal [he met her]
D3 : ,
W4 : bylo také sedmnáct [was also seventeen years old]
D4 : .

Joint segments:
S1 = W1

S2 = D1W2

S3 = D2W3

S2 = D3W4D4

N1

N2

N3

N4

Fig. 12.11. An S-graph for the sentence a)

N1 stands for the node [1,{(Vzpomněl,1), (si,2), (na,3), (svou,4), (�enu,5)}, 1, 1, 0, 0]
N2 stands for the node [2,{(,,6), (které,7) },1,0,1,0]
N3 stands for the node [3,{(,,8), (kdy�,9), (ji,10), (poznal,11)}, 1, 0, 2, 0]
N4 stands for the node [4,{(,,12), (bylo,13), (také,14), (sedmnáct,15), (.,16)}, 1, 0, 0, 2]

Let us now contract the edges and build a CS-graph:
S1

S2,4

S3

Fig. 12.12. A CS-graph for the sentence a)

142

S1 = [1,{(Vzpomněl,1), (si,2), (na,3), (svou,4), (�enu,5)}, 1, 1, 0, 0]
S2,4 = [2,{(,,6), (které,7)}{ (,,12), (bylo,13), (také,14), (sedmnáct,15), (.,16)},1,0,1,0]
S3 = [3,{ (,,8), (kdy�,9), (ji,10), (poznal,11)}, 1, 0, 2, 0]

12.5 General principles of building CS-graphs
Unlike in the previous case, the process of building CS-graphs on the basis of S-graphs requires much
deeper and more detailed knowledge of a particular natural language. In this section we would
therefore like to concentrate on general guidelines for building CS-graphs rather than on a presentation
of a complete set of specific rules for a particular language. The process of gathering linguistic data
and creating particular rules would require an extensive research in future, based primarily (for Czech)
on the data contained both in the Prague Dependency Treebank and in the Czech National Corpus.

The discussion of the sentence structure in Example 1 at the beginning of this chapter is a
good example of the type of linguistic knowledge which may be used in the process of transformation
of S-graphs into CS-graphs. The most important type of information exploited in transformation rules
is the information contained in S-nodes, namely the information about the number of (ambiguous and
unambiguous) verbs present in a joint segment represented by the particular S-node. There are also
other types of useful information, which may influence the way in which CS-graphs are created, for
example the lexico-syntactic information of verbs (about the presence of reflexive particles belonging
to a particular verb etc.).

The nature of rules used for transformation of S-graphs into CS-graphs is very delicate. The
amount of information that we have at our disposal is not big � the (in most cases ambiguous) results
of morphological analysis, lexico-syntactic information contained in the main dictionary of the system
and, last but not least, S-graphs already created for a given input sentence. We should be very careful
about when using this information. It will be probably very seldom the case that our linguistic
knowledge supported by the data from a corpus will make it possible to formulate a general and
universally valid rule. In most cases a particular rule will cover only a very specialized pattern (or
configuration) present in the input sentence. In such a case it is quite clear that a huge number of rules
is going to be necessary for achieving a good percentage of success. That is also a reason why we do
not go further in our presentation of rules for the creation of CS-graphs � the task is simply too huge.

Let us now demonstrate some hypothesis that may serve as a basis for transformation rules:
• A very important syntactic rule in Czech says that between any two finite verbs there must be at

least one sentential delimiter (if we consider complex verbal forms as one verb). This fact may be
used for a whole set of transformation rules dealing with a variety of special patterns:
♦ If any S-node in the a particular S-graph represents a segment containing one (safe) finite

verb, all finite ambiguous verbs from the same segments are not verbs at all. This is for
example the node S1 = [1,{Vzpomněl si na svou �enu}, 1, 1, 0, 0] from our previous example,
where the word form vzpomněl (he remembered � 3rd pers. sing. masc. or anim.) clearly
indicates that the word form �enu (woman/I chase � verb, 1st pers. sg./ noun, acc. or loc. case,
sg) is a noun, not a verb.

♦ If all finite verbal forms are unambiguously recognized as verbs and if we mark their total
number in a particular sentence by the letter n (complex verbal forms are counted as a single
verb) and the total number of delimiter sequences by the letter m, and if m = n � 1, then all
delimiter sequences may be considered as sentential, even if they were marked as ambiguous.

♦ If there is a single delimiter between two unambiguous finite verbs then this delimiter is
sentential even though it was marked as ambiguous.

• On the other hand, the fact that the number of delimiters or delimiter sequences in the sentence
equals or exceeds the total number of finite verbs doesn�t mean that some of these delimiters are
not sentential, because the sentence may contain a verbal ellipsis. (Cf. the sentence Petr spal a
Pavel také. [Petr slept and Pavel too] (Petr slept and Pavel slept, too)). It is, of course, also
necessary to take into account the fact that embedded clauses sometimes require an additional
delimiter marking their end, cf. the example řekl, �e dozná, co udělal, a �e slíbí, �e� (he said that
he will confess what he has done and that he will promise�).

143

• The reflexive particles se/si are also very important indicators (cf. the discussion of the sentence in
Example 1) which segments of the sentence belong together. Due to the fact that they (together
with other clitics) typically occupy the Wackernagels position and due to the high degree of word-
order freedom in Czech it is often the case that a reflexive particle and the verb it belongs to are
separated by one or more embedded clauses. If the sentence contains one reflexive particle in one
segment and exactly one reflexive verb in another segment (or one reflexive tantum in one
segment and several other verbs in other segments), it is quite clear that both segments belong to
the same clause. At this point it is necessary to point out that even though the form se is
ambiguous [refl. particle/preposition], in many cases it is not difficult to disambiguate it on the
basis of relatively simple rules � cf. [Oliva et al. 00].

• A similar role as that of reflexive particles may be also played by individual parts of complex verb
forms, for example the complex forms of the Czech past tense.

12.6 The correspondence between CS-graphs and D-trees
From the point of view of the definitions introduced in previous chapters it is interesting to find a
correspondence between CS-graphs and D-trees. The key to their relationship is hidden in the data
contained in the nodes of CS-graphs. According to our definition, each node of a CS-graph contains
(among other) its span and the subordination and vicinity indices. The remaining information stored in
each node is not relevant for the moment.

Before we start discussing the relationship of CS-graphs and De-trees we have to discuss the
relationship of a CS-graph and the original input sentence. Each CS-graph (let us remind that there
might be several different CS-graphs for one sentence) in fact describes one possible way how a
complex input sentence may be divided into individual (hypothetical) clauses and also the mutual
relationship of these clauses. Each node of a particular CS-graph (for the sake of simplicity we will
use the term CS-nodes in the sequel; we will also use the term CS-edges instead of the term edges of
the CS-graph) corresponds to a single (hypothetical) clause and thus the span of the node also covers
the whole clause. The subordination and vicinity indices of the node in fact express the mutual
positions of the clauses. It is quite easy to find a correspondence of oblique CS-edges (represented by
the subordination index) and edges of the corresponding D-tree � each oblique CS-edge has its
counterpart (equally oriented) in the D-tree. The edge of the D-tree leads from the head of the main
clause towards the head of the subordinated clause.

The task of finding the counterpart of horizontal edges of the CS-edge in the D-tree is slightly
more difficult, because the D-trees (according to the definition) do not contain any horizontal edges.
The horizontal CS-edges in fact describe the coordination of hypothetical clauses. Due to the fact that
the definition of D-trees does not account for any special treatment of coordination, describing the
relation of coordination by means of oblique edges can be done in various ways. It is up to the author
of the metagrammar to decide whether the governing node of the coordination is the first or the last
member of this relation or whether the coordinating conjunction should be the governing node of the
coordinated group. Accordingly, the horizontal CS-edges are then transformed into edges of the D-
tree, capturing the relationship between heads of coordinated clauses in a way chosen by the author of
the particular metagrammar.

The correspondence between CS-graphs and D-trees leads to a very important consequence for
parsing. The fact that each CS-node corresponds to one (hypothetical) clause and that the CS-edge
have direct counterparts among the edges of the corresponding D-tree (connecting heads of these
clauses) allows for an independent parsing of these clauses. If we replace CS-edges by corresponding
edges of a D-tree and if we replace the CS-nodes by subtrees obtained as a result of parsing the spans
of CS-nodes, we will get a De-tree covering the whole sentence. If parsing of a clause covered by a
particular CS-node fails, it is a signal that this CS-graph does not represent a correct clause structure of
the sentence and that it should be discarded.

Remark
These considerations hold for projective sentences and for sentences containing non-projective
constructions which do not exceed the span of one clause. At first sight this might seem inadequate,

144

but from the practical point of view we can hardly expect that any practical system (not using the
analysis of clause complexity by means of CS-graphs) would be able to analyze more complicated
non-projective constructions (for example the construction, where the element constituting the non-
projectivity is extracted from the subordinate clause into the main clause). As for Czech as a model
language of our approach, we may raise serious doubts about the grammaticality of nonprojective
constructions exceeding the span of one clause in declarative sentences (except a single type of
constructions similar to the sentence Krásnou říkal, �e si Petr vzal �enu [Beautiful he_said, that Refl.
Petr married woman] (He said that Petr married a beautiful woman)).

12.7 The connection between CS-graphs and our metagrammar
It was already mentioned that one of the main reasons for the construction of CS-graphs is our
endeavor to reduce the complexity of the analysis by filtering out the subtrees which are acceptable
only in a local context, but not globally in the context of the whole input sentence. The derivation of
superfluous structures should be prevented as soon as possible, they are an unnecessary burden having
a detrimental effect on parsing efficiency. Let us now show one possible way of a direct application of
CS-graphs of a particular input sentence in the process of its analysis and thus (at least partially) fulfil
our goal.

We have already defined what we understand under the term layer of the CS-graph in previous
paragraphs. There is quite a straightforward way in which the numbers expressing these layers might
be used in our metagrammar. More precisely there are several ways of applying the layers of CS-
graphs. Let us now present at least the most obvious ones:
• Let us suppose that all items representing words from the span of a particular CS-node will receive

a special attribute layer with the value equal to the value of a layer of that particular CS-node. This
value may be used for blocking the creation of superfluous items, which would put together items
belonging to different layers. The block may be implemented in the relevant metarules for
example in the form of the following IF statement:
IF A.layer = B.layer THEN ELSE FAIL ENDIF
This statement would be very useful for example during the parsing of complex sentences with
embedded clauses. If there is an embedded clause (which may govern other subordinate or even
embedded clauses to make things more complicated), then this statement allows to analyze the
main clause divided by an embedded clause in a correct manner, not allowing to combine subtrees
belonging to different clauses.
This method of using the information about layers has some drawbacks, for example, it does not
guarantee the proper attachment of subtrees in case there are two or more clauses in the same
layer. On the other hand, it is very simple and easily applicable.

• Slightly more complicated is the second method of application of layers. It exploits the
assumption that individual CS-nodes are very likely to represent individual clauses of the input
sentence. The rules according to which the CS-graphs are created should be written with this
assumption in mind. This fact allows for even more refined use of information contained in CS-
graphs. In this case we are going to introduce a special attribute index into all items representing
words from spans of a particular CS-node. The value of this attribute will equal L (the index of the
particular CS-node). This value is going to be used precisely for the same purpose and in the same
manner as the attribute layer in the previous case.
The main advantage of using the attribute index over using the attribute layer consists in solving
the problem of two clauses being in the same layer, on the other hand this method is more
vulnerable to errors which may appear during the creation of CS-graphs.

• The third method, requiring deeper modifications of the parsing algorithm, exploits both types of
information mentioned in previous paragraphs, namely the information about the index and layer
of a particular CS-node. This method is based on the same assumptions as the previous two
methods, and exploits the fact that if we have a CS-graph for the whole sentence, we may start the
analysis from most deeply embedded subordinate clauses (represented by CS-nodes on the layer
with the highest number). When the analysis of all nodes from one layer is finished, it continues

145

on the immediate higher layer until it reaches the top layer (and analysis the main clause(s)) of the
sentence.
It is quite clear that this method would make it possible to replace a complicated task of the
analysis of a complex sentence into a much simpler task of the analysis of a series of simple
clauses and thus it may radically speed up the analysis. It has the same drawback as the previous
method, namely the vulnerability to ill-formed CS-graphs.

All three methods presented above were described as if there were only a single CS-graph for a
particular input sentence. This is, of course, not very likely to happen, a good deal of ambiguity is
going to be involved in the process of building the CS-graphs. We may suppose that the most likely
outcome (at least for more complicated sentences) will be a set of CS-graphs for each complex input
sentence instead of just a single graph.

This fact will, of course, influence all three methods presented above. It will probably have the
smallest influence on the first one, because even if there are two or more distinct CS-graphs for a
particular input sentence, individual words may belong to the same layer in all cases. In other cases it
will probably be necessary to parse the input sentence several times, each time with different values of
the attribute index for individual input items.

This fact may have direct consequences especially for the second method which will probably
need a very sophisticated control system which will take care of reusing the items already computed
during the analysis of other CS-graphs for a particular complex sentence.

This need not necessarily be the case of the third method where it may be much easier to reuse
the subtrees representing individual clauses � if a particular clause represented by a particular CS-node
belongs to different layer or is connected with different CS-node in some other CS-graph, it should not
be necessary to repeat its analysis. In this case we should be able to reuse a lot of already existing
items. Anyway, it is clear that all these considerations are only tentative and that it will be necessary to
choose the �proper� method of exploitation of CS-graphs only after the proposed method of building
CS-graphs is implemented and reliable experimental results are available.

146

Conclusion

The main task of this dissertation was to describe the problem of creating a robust parser for a
language with high degree of word-order freedom from both basic aspects � the theoretical and
implementational one. In the theoretical part we have continued the work already presented in several
papers ([Holan et al. 98], [Holan et al. 00], [Plátek et al. 01]), in the practical part we have developed a
sample (meta)grammar of Czech which served not only as a testing tool for ideas described in the
theoretical part, but it also inspired additional theoretical research reflecting (and trying to cope with)
the problems encountered during the development, testing and debugging of the metagrammar.

As we have already mentioned, our work directly followed up with the research in the
following theoretical fields:
• We have created (in cooperation with Martin Plátek, Tomá� Holan and later also with Karel Oliva)

a theoretical framework capable to describe in an adequate manner both the syntactically ill-
formed and non-projective constructions. As we have shown in our papers in the past, the
problems of non-projectivity and ill-formedness are very closely related.

• We have developed (in cooperation with the team mentioned above) a set of measures providing a
basis for formulation of global constraints restricting the application of the metagrammar and thus
providing more adequate set of results of parsing by filtering out unacceptable results.

Let us now briefly summarize the results described in this dissertation:
− We have adopted the theoretical basis described above for the implementation of a particular

metagrammar of Czech. We have used the measures of non-projectivity and robustness in that
implementation and thus we have demonstrated that the theoretical background may serve as a
cornerstone of more practically oriented work.

− We have practically demonstrated in our metagrammar that due to the relaxation of global
constraints applied on interpretation of individual metarules it is possible to capture quite
complicated concepts of non-projectivity and robustness by relatively simple metarules. This is
possible thanks to the fact that one metarule is interpreted in a different manner according to
which constraints are relaxed either globally, in a given moment, or locally, for one particular
metarule.

− The experience with our metagrammar also influenced (and changed) our original assumptions
concerning the magnitude of non-projectivity for Czech. We have originally estimated that it
equals one, but our experiments with the sentences from the testbed inspired a deeper investigation
of this phenomenon which finally lead to a new, more adequate hypothesis � cf. [Holan et al. 00].

− We have formulated an estimation of the influence of the degree of non-projectivity on parsing
complexity showing that there is a direct correspondence between these two phenomena which
can be expressed in quite a precise manner.

− We have implemented a metagrammar handling a wide range of syntactic phenomena of the
language and allowing to demonstrate several problems of robust parsing of languages with a high
degree of word-order freedom.

− We have developed a method for testing and debugging a large-scale metagrammar and a set of
sentences (testbed) used by this method both for preserving the consistency of the metagrammar in
the process of its incremental development and for demonstrating of advantages and disadvantages
of our approach.

− One of the most important results of our work is contained in the last chapter. The theoretical
framework described there provides a basis for a system which might have a substantial influence
on parsing complexity and adequacy of parsing for complex sentences. This framework is of
course only a first step towards a more adequate handling of complex sentences, but it clearly

147

shows that the work presented in this dissertation was not wasted. It opens a new path leading
towards our ultimate goal of an adequate and efficient robust parser of Czech.

− Last but not least result of our work concerns the methodology of organizing the research of a very
complex problem involving several scientific fields. Even though every member of our team was
mainly engaged in solving the problems of his particular field, we have been able to influence and
inspire each other. From the point of view of the author of the metagrammar, the development of a
large scale metagrammar still remains a one man job, even though our approach allows a
distribution of work at least in the sense that the metarules can be created to a large extent
independently from the investigation and specification of global constraints. The close cooperation
with both author of the interpreter and the author of the underlying theory definitely makes this
task more simple.

148

References

[Abney 96] Abney, S: Partial parsing via finite-state cascades. In Proceedings of the ESSLI�96 Robust
Parsing Workshop, Prague, 1996.

 [Bémová, Kuboň 90] Bémová, A., Kuboň, V.: Czech-to-Russian Transducing Dictionary, In:
Proceedings of the 13th International Conference COLING, Vol. 3, pp. 314 � 316, University
of Helsinki, 1990

[Bémová 96] Bémová, A.: Analysis of Nominal Groups, JRP PECO 2824 Language Technologies for
Slavic Languages, Final Research Report, Appendix I., Prague, 1996

[Bémová et al. 97] Bémová, A., et al.: Anotace na analytické rovině, ÚFAL Technical Report TR-
1997-03, Charles University Prague, 1997

[Brants 99] Brants, T.: Cascaded Markov Models; in: Proceedings of EACL�99, University of Bergen,
1999

[Ciravegna, Lavelli 99] Ciravegna, F., Lavelli, A.: Full Text Parsing using Cascades of Rules: An
Information Extraction Procedure; in: Proceedings of EACL�99, University of Bergen, 1999

[Colmeraurer] Colmerauer, A.: Les Systèmes Q ou un formalisme pour analyser et synthetiser des
phrases sur ordinateur. Mimeo, without date, Montreal

[Gladkij 73] Gladkij, A.V.: Formal�nyje gramatiky i jazyki, Iz. Nauka, Moskva, 1973

[Hajič 94] Hajič, J.: Unification Morphology Grammar, PhD thesis, MFF UK, Praha 1994

[Hajič 98] Hajič, J. et al.: Core Natural Language Processing Technology Applicable to Multiple
Languages, in: Final report of the Workshop'98 of the Center for Language and Speech
Processing at the Johns Hopkins University, Baltimore, 1998

[Hajič, Hladká 98] Hajič, J. Hladká, B.: Tagging Inflective Languages. Prediction of Morphological
Categories for a Rich, Structured Tagset. ACL-Coling�98, Montreal, Canada, August 1998,
pp. 483-490.

[Hajičová 95] Hajičová, E. (Ed.): Text-and-Inference Based Approach to Question Answering,
Theoretical and Computational Linguistics, Vol.3, Fac.of Philosophy, Charles University,
Praha 1995

[Hajičová et al. 99] Hajičová, E., Panevová, J., Sgall, P.: Manuál pro tektogramatické značkování,
ÚFAL Technical Report TR-1999-07, MFF UK Praha, 1999

[Holan et al. 97] Holan, T., Kuboň, V., Plátek, M.: A Prototype of a Grammar Checker for Czech, In:
Proceedings of the Firth Conference on Applied Natural Language Processing, pp.147-154,
Washington, DC, March 1997

[Holan et al. 98] Holan, T., Kuboň, V., Oliva, K., Plátek, M.: Two Useful Measures of Word Order
Complexity, In: Proceedings of the Workshop Processing of Dependency-Based Grammars,
COLING-ACL'98, Universite de Montreal, 1998

149

[Holan et al. 00] Holan, T., Kuboň, V., Plátek, M. and Oliva, K.: On Complexity of Word Order, In:
Les grammaires de dépendance - Traitement automatique des langues Vol 41, No 1 (2000)
(special issue on dependency grammars of the journal Traitement automatique des langues,
guest editor Sylvain Kahane).

[Holan 01] Holan, T.: Nástroj pro vývoj závislostních analyzátorů přirozených jazyků s volným
slovosledem, (A Software Environment for the Development of Dependency Parsers for
Natural Languages with Free Word Order) (in Czech),Disertační práce, MFF UK, Praha, 2001

[Kirschner 87] Kirschner, Z., APAC3-2: An English-to-Czech Machine Translation System, In:
Explizite Beschreibung der Sprache und automatische Textbearbeitung XIII, Prague 1987

[Kirschner 94] Kirschner, Z.: CZECKER - a Maquette Grammar-Checker for Czech, The Prague
Bulletin of Mathematical Lingistics 62, MFF UK Prague, 1994, pp. 5 - 30

[Kuboň et al. 97] Kuboň, V., Holan, T., Plátek, M.: A Grammar Checker for Czech, ÚFAL Technical
Report TR-1997-02, MFF UK Praha, 1997

[Kunze 72] Kunze, J.: Die Auslassbarkeit von Satzteilen bei koordinativen Verbindungen im
Deutschen, Berlin: Akademie-Verlag, 1972

[Kunze 75] Kunze, J.: Abhängigskeitsgrammatik, Berlin: Akademie-Verlag, 1975

[Marcus 65] Marcus, S.: Sur la notion de projectivité, in Zeitschrift für mathematische Logik und
Grundlagen der Mathematik XI, 1965, pp. 181-192.

[Nebeský 72] Nebeský, L.: A Projectivity Theorem, in Prague Studies in Mathematical Linguistics, 3,
Academia, Praha, pp.165-169

[Oliva 89] Oliva, K.: A Parser for Czech Implemented in Systems Q, in Explizite Beschreibung der
Sprache und automatische Textbearbeitung, MFF UK Praha, 1989

[Oliva 93] Oliva, K.: StriPTtTTT: String Processor & Text-to-Tree(s) Transformation Tool, JRP
PECO 2824 Language Technologies for Slavic Languages, Research Report, Saarbruecken,
1993

[Oliva 96] Oliva, K.: A Grammar Checker for Czech, JRP PECO 2824 Language Technologies for
Slavic Languages, Final Research Report, Prague, 1996

[Oliva et al. 00] Oliva, K., Hnátková, M., Petkevič, V. and Květoň, P.: The Linguistic Basis of a Rule-
Based Tagger of Czech, In: TSD 2000, Proceedings (eds. Sojka, Kopeček, Pala) Lecture Notes
in Artificial Intelligence Vol. ,pp.3-8, Springer, 2000

[Panevová 80] Panevová, J., Formy a funkce ve stavbě české věty (Forms and Functions in the Syntax
of Czech Sentences - in Czech), Academia, 1980

[Petkevič 95] Avgustinova, T., Bémová, A., Hajičová, E., Oliva, K., Panevová, J., Petkevič, V.(ed.),
Sgall, P. and Skoumalová, H.: Linguistic Problems of Czech. Final Research Report for the
JRP PECO 2824 project. Prague, 1995

[Plátek et al. 01] Plátek, M., Holan, T., Kuboň, V.: On Relax-ability of Word-Order by D-grammars,
Tech. Report TR-2001-01, MFF UK, Praha, 2001, Accepted at DMTCS 2001 conference.

[Sgall et al. 86] Sgall, P., Hajičová, E., Panevová, J., The meaning of the sentence in its pragmatic
aspects, Mey, J.L., ed., Reidel, 1986.

[Sikkel 97] Sikkel, N.: Parsing Schemata - A Framework for Specification and Analysis of Parsing
Algorithms, Texts in Theoretical Computer Science - An EATCS Series,
ISBN 3-540-61650-0, Springer-Verlag Berlin/Heidelberg/New York, 1997

150

[Sikkel, Nijholt 97] Sikkel, N., Nijholt, A.: Parsing of Context-Free Languages, in: Handbook of
Formal Languages, G.Rosenberg and A.Salomaa (eds.), Springer, Berlin and Heidelberg, 1997

[Skoumalová 94] Skoumalová, H.: Czech Dictionary for the Grammar Checker, JRP PECO 2824
Language Technologies for Slavic Languages, Research Report, pp 130-139, Saarbruecken,
1994

[Panevová, Straňáková 99] Panevová, J., Straňáková, M.: Some Types of Syntactic Ambiguity; How
to Treat them in an Automatic Procedure. In: TSD�99, Proceedings (eds. V. Matou�ek, P.
Mautner, J. Ocelíková, P. Sojka), Lecture Notes in Artificial Intelligence vol.1692, Springer,
pp. 50-55, 1999.

[Starý 97] Starý, J.: Statistický model syntaktických vztahů v povrchovém zápisu české věty,
(Statistical Model of Syntactic Relations in the Surface Description of a Czech Sentence), in
Czech, Diplomová práce na MFF UK, Praha 1997

[Straňáková 99] Straňáková, M.: Selected Types of Pg-Ambiguity. The Prague Bulletin of
Mathematical Llinguistics 72, Praha, pp. 29-58. 1999

[Straňáková 01] Straňáková, M.:Homonymie předlo�kových skupin a mo�nost jejího automatického
zpracování. (The Homonymy of Prepositional Groups and the Possibility of Their Automatic
Processing), in Czech, Disertační práce, MFF UK, Praha, 2001

