
The Prague Bulletin of Mathematical Linguistics
NUMBER 98 OCTOBER 2012 109–119

Better Splitting Algorithms for Parallel Corpus Processing

Lane Schwartz
Air Force Research Laboratory

Human Effectiveness Directorate
Wright-Patterson AFB, OH USA

Abstract
Each iteration of minimum error rate training involves re-translating a development set.

Distributing this work across computational nodes can speed up translation time, but in prac-
tice some parts may take much longer to complete than others, leading to computational slack
time. To address this problem, we develop three novel algorithms for distributing translation
tasks in a parallel computing environment, drawing on research in parallel machine schedul-
ing. We present results showing a substantial speedup in overall decoding time.

1. Introduction

The task of translation involves translating a source language document f into tar-
get language e. Most popular statistical translation techniques select the best transla-
tion ê for source sentence f according to a linear combination of models ϕ using a set
of model weights λ (Och and Ney, 2002).

ê = arg max
e

∑
i

λiϕi(e, f) (1)

Values for λ are obtained by optimizing an objective function such as BLEU (Pa-
pineni et al., 2001) against a development set, most commonly using minimum error
rate training (MERT) (Och, 2003). Each iteration of MERT requires this development
set to be re-translated using a new set of λ weights. MERT is one of the slowest com-
ponents in a typical machine translation training pipeline, and translating the devel-
opment set is nearly always the slowest step in MERT. We now examine techniques

© 2012 PBML. All rights reserved. Corresponding author: Lane.Schwartz@wpafb.af.mil
Cite as: Lane Schwartz. Better Splitting Algorithms for Parallel Corpus Processing. The Prague Bulletin of
Mathematical Linguistics No. 98, 2012, pp. 109–119. doi: 10.2478/v10108-012-0013-x.

PBML 98 OCTOBER 2012

for speeding up the translation process by splitting a source document into parts and
distributing the translation of those parts across parallel computational nodes.

Ideally, all parts should take the same amount of time to translate. While naive
splitting techniques reduce the time required for each translation iteration by split-
ting the work between n computational nodes, in practice some parts may take much
longer to complete than others. This can lead to significant computational slack time.
To address this problem, we develop three novel algorithms for splitting translation
tasks in a parallel computing environment, drawing on research in parallel machine
scheduling.

2. Related Work

Research into parallel machine scheduling problems constitutes a wide and well-
studied field, ranging through various disciplines of engineering, manufacturing, and
management in addition to computer science and applied mathematics (Cheng and
Sin, 1999), spanning a wide range of scheduling techniques (Panwalkar and Iskander,
1977).

We now briefly examine the existing research most relevant to our task. Hu (1961)
and Graham (1966; 1969) develop various list scheduling algorithms. This family of
algorithms prioritizes jobs into a queue, then assigns jobs to machines in queue order.
This approach attempts to evenly balance the load on each execution host (De and
Morton, 1980; Cheng and Sin, 1999). Both Algorithm 1 below and the techniques we
develop in Section 3 fall into this family of algorithms.

Algorithm 1 Split input text intonparts such that each part contains the same number
of lines. In cases where the total number of lines is not evenly divisible by n, the last
part will contain fewer lines than each of the other parts.

function N-S(n,input)
s← input.length
ℓ← ⌈s/n⌉
for p← 0 . . . (n− 1) do

i← ℓ× p

for j← i . . .min(i+ ℓ− 1,s− 1) do
output[p].append(input[j])

end for
end for
return output

end function

While the models in Equation 1 could, in theory, condition on previously trans-
lated sentences, in practice virtually no widely used models do so. It is therefore very

110

Lane Schwartz Better Splitting Algorithms for Parallel Corpus Processing (109–119)

..

.

.
.100 .200 .300 .400 .500 .600 .700 .800

.0

.50

.100

.150

.Sentence Number

.Se
nt

en
ce

Le
ng

th

Figure 1: Sentence length (in words) of sentences from the NIST OpenMT 2008 Urdu-
English task.

straightforward to split the data into n parts, and translate each part independently
on n computational nodes.

3. Better Splitting Algorithms

We begin by examining the development set for the NIST OpenMT 2008 Urdu-
English task. When tuning the model weights λ, this development set will be trans-
lated numerous times. We observe in Figure 1 that the number of words in each sen-
tence varies widely and unevenly throughout the corpus.

Using Algorithm 1, scripts included with Moses (Koehn et al., 2007) split the cor-
pus into n parts of of ℓ or fewer lines each; ℓ is the smallest integer greater than or
equal to s/n, where s is the total number of input sentences. The first ℓ lines comprise
the first part, the next ℓ lines comprise the second part, and so on. Thus, each part
contains exactly ℓ lines, with the possible exception of the last part, which contains
fewer than ℓ lines when s is not evenly divisible by n.

Figure 2a shows the amount of time taken to translate each part of the development
set, split using Algorithm 1 into 64 parts, using Moses configured with a 5-gram lan-
guage model. We observe that the shape of Figure 2a generally matches that of Figure
1. There is substantial variance in translation time between the parts in Figure 2a, with
some parts taking nearly 80 seconds and many others finishing in well under 10 sec-
onds. We observe that this disparity is largely due to an imbalance of short versus
long sentences between the parts. Because short sentences take less time to translate
than long sentences, parts assigned mostly short sentences finish much faster than
parts that are assigned many longer sentences.

To remedy this imbalance, we propose Algorithm 2. Prior to splitting the data
into parts, Algorithm 2 begins by examining the number of words in each sentence.

111

PBML 98 OCTOBER 2012

..
.

.
.0 .8 .16 .24 .32 .40 .48 .56 .64

.0
.10

.20

.30

.40

.50

.60

.70

.80

.Tr
an

sl
at

io
n

Ti
m

e

(a) Algorithm 1 — N-S

..
.

.
.0 .8 .16 .24 .32 .40 .48 .56 .64

.0
.10

.20

.30

.40

.50

.60

.70

.80

.Tr
an

sl
at

io
n

Ti
m

e

(b) Algorithm 2 — H-S

..
.

.
.0 .8 .16 .24 .32 .40 .48 .56 .64

.0
.10

.20

.30

.40

.50

.60

.70

.80

.Tr
an

sl
at

io
n

Ti
m

e

(c) Algorithm 3 — W-S

..
.

.
.0 .8 .16 .24 .32 .40 .48 .56 .64

.0
.10

.20

.30

.40

.50

.60

.70

.80

.Tr
an

sl
at

io
n

Ti
m

e

(d) Algorithm 4 — T-S

Figure 2: Total translation time (in seconds) for each part when data from the NIST
OpenMT 2008 Urdu-English task is split into 64 parts using each of four algorithms.

112

Lane Schwartz Better Splitting Algorithms for Parallel Corpus Processing (109–119)

Algorithm 2 Split input text into n parts to balance the histograms of line lengths for
all parts.

function H-S(n,input)
for i← 0 . . . (input.length −1) do

sentence[i].length← input[i].length
sentence[i].index← i

end for
S(sentence) {|x, y| x.length⇔ y.length}

◃ Sort sentences by length
p← n

for i← 0 . . . (input.length −1) do
if p < n− 1 then

p← p+ 1

else
p← 0

end if
output[p].append(input[sentence[i].index])

end for
return output

end function

Sentences are sorted according to length, then assigned in turns to parts. This round-
robin distribution of sentences into parts results in the sentence length histograms for
each part being approximately equal. While Algorithm 2 attempts to balance short
and long sentences across parts, we nevertheless observe non-trivial imbalance in
translation times across parts in Figure 2b.

To improve this remaining imbalance, we propose Algorithm 3. In Algorithm 3,
sentences are sorted by length into a queue, with longest sentences at the head of the
queue. Initially, no sentences have been assigned to any part. The longest sentence, at
the head of the queue, is assigned first to a part. As each sentence is assigned to a part,
the total number of words assigned to that part is recorded. Each subsequent sentence
is removed from the queue and assigned to the part with the least work assigned to it,
as measured by number of words. In Figure 2c, we observe that most of the imbalance
in translation times across parts has been resolved.

When assigning sentences to jobs, we would ideally like to know how long each
sentence will take to process. Algorithms 2 and 3 use the number of words in each
sentence as a proxy for processing time. During MERT, the same set of development
sentences are translated multiple times. Since each decoding process differs only by
the λ weights used, it is reasonable to expect little variation in decoding runtime for
any given sentence across all MERT runs. With this in mind, we record the time re-
quired to translate each sentence during the first iteration of MERT. In subsequent

113

PBML 98 OCTOBER 2012

Algorithm 3 Split input text into n parts to balance the number of words for all parts.
function W-S(n,input)

for i← 0 . . . (input.length −1) do
sentence[i].length← input[i].length
sentence[i].index← i

end for
S(sentence) {|x, y| y.length⇔ x.length}

◃ Sort sentences by length, in reverse order
for i← 0 . . . (input.length −1) do

p← L(words)
◃ Find partition with fewest words

output[p].append(input[sentence[i].index])
words[p]←words[p] + sentence[i].length

end for
return output

end function

iterations, Algorithm 4 uses the time recorded to translate a sentence as an estimate
of the time it will take to translate that sentence again. Algorithm 4 differs from Al-
gorithm 3 by sorting using these times instead of sentence length. We see in Figure
2d that the time imbalance between parts is virtually non-existent, with all times now
within 0.01 seconds of each other.

4. Experimental Configuration

To observe the effects of splitting algorithms on decoding speed, we translated the
NIST OpenMT 2008 development set of Urdu-English data using Moses in a parallel
computing cluster, distributing work using the Sun Grid Engine. We ran two decoding
setups: a standard configuration using a 5-gram language model, and a much slower
syntactic LM configuration following Schwartz et al. (2011).

Figure 2 shows the per-part translation times for all parts of the development set
when n = 64. In Figure 3, we examine the per-part translation times for only the slow-
est of n translation jobs in each configuration for various values of n, ranging from
2–512. In all configurations, we see that Algorithm 4 provides the fastest performance.

Another metric to use in examining our algorithms is total computational slack
time. During MERT, computational slack time arises when some parts of the devel-
opment set finish translating faster than others. Figure 4 lists the decoding times of
the fastest and slowest translation jobs for parts split using each of the four algorithms
for various values of n, ranging from 2–512. We see the total cumulative slack time
for each of these conditions in Figure 5.

114

Lane Schwartz Better Splitting Algorithms for Parallel Corpus Processing (109–119)

..

.

.
.8 .16 .32 .64 .128 .256 .512

.60

.50

.40

.30

.20

.10

.Split Size (n)

.D
ec

od
e

Ti
m

e
(S

ec
on

ds
)

.

. ..Algorithm 1: N-S

. ..Algorithm 2: H-S

. ..Algorithm 3: W-S

. ..Algorithm 4: T-S

(a) Decoding times in seconds for decoder configured using a 5-gram language model.

..

.

.
.8 .16 .32 .64 .128 .256 .512

.130

.120

.110

.100

.90

.80

.70

.60

.50

.40

.30

.20

.10

.Split Size (n)

.D
ec

od
e

Ti
m

e
(H

ou
rs

)

.

. ..Algorithm 1: N-S

. ..Algorithm 2: H-S

. ..Algorithm 3: W-S

. ..Algorithm 4: T-S

(b) Decoding times in hours for decoder configured using a syntactic language model (Schwartz et al.,
2011) in addition to a 5-gram language model.

Figure 3: Decoding times for the slowest translation job in a translation task split into
n decoding jobs using various splitting algorithms (N-S, H-S,
W-S, and T-S).

115

PBML 98 OCTOBER 2012

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Split Size N-S H-S W-S T-S

(n) Min Max Min Max Min Max Min Max
2 222.9 224.4 221.5 225.8 219.3 228.0 223.7 223.7
4 109.2 113.7 110.0 114.6 108.7 115.6 111.8 111.8
8 51.4 58.4 52.2 59.0 53.2 58.3 55.9 55.9
16 24.9 32.2 25.0 31.7 25.3 30.0 27.9 28.0
32 11.3 19.1 11.9 17.3 11.7 16.1 14.0 14.0
64 5.4 11.3 5.4 10.6 5.7 9.1 7.0 7.0
128 1.3 8.0 2.2 6.3 2.3 5.2 3.5 3.5
256 0.3 5.3 0.7 4.3 0.8 3.0 1.7 2.5
512 0.0 3.6 0.2 3.1 0.3 2.5 0.6 2.5

(a) Decoding times in seconds for decoder configured using a 5-gram language model.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Split Size N-S H-S W-S T-S

(n) Min Max Min Max Min Max Min Max
2 365.7 408.0 376.3 397.5 386.1 387.6 386.9 386.9
4 176.1 214.4 186.8 205.0 184.6 200.9 193.4 193.4
8 84.6 122.8 84.8 107.6 88.4 101.9 96.7 96.7
16 40.8 70.8 40.5 62.0 45.3 55.0 48.4 48.4
32 19.2 38.3 18.8 37.8 20.5 29.2 24.2 24.2
64 9.2 26.1 9.2 25.4 9.4 16.7 12.1 12.1
128 2.7 16.6 4.1 13.0 3.7 9.3 5.9 6.2
256 0.7 10.2 1.3 8.0 1.4 6.6 2.9 4.6
512 0.0 6.9 0.3 6.3 0.6 4.6 1.1 4.6

(b) Decoding times in hours for decoder configured using a syntactic language model (Schwartz et al.,
2011) addition to a 5-gram language model.

Figure 4: Decoding times for the fastest (min) and slowest (max) decoding jobs when
a translation task is split into n decoding jobs. Bold indicates fastest max time at
that split. Italics indicate balanced task times, corresponding to zero slack time (see
Figure 5).

116

Lane Schwartz Better Splitting Algorithms for Parallel Corpus Processing (109–119)

..

.

.
.2 .4 .8 .16 .32 .64 .128 .256 .512

.1,400

.1,200

.1,000

.800

.600

.400

.200

.100

.Split Size (n)

.Sl
ac

k
C

PU
-S

ec
on

ds .

. ..Algorithm 1: N-S

. ..Algorithm 2: H-S

. ..Algorithm 3: W-S

. ..Algorithm 4: T-S

(a) Slack CPU-Seconds for decoder configured using a 5-gram language model.

..

.

.
.2 .4 .8 .16 .32 .64 .128 .256 .512

.3,000

.2,500

.2,000

.1,500

.1,000

.750

.500

.250

.100

.Split Size (n)

.Sl
ac

k
C

PU
-H

ou
rs .

. ..Algorithm 1: N-S

. ..Algorithm 2: H-S

. ..Algorithm 3: W-S

. ..Algorithm 4: T-S

(b) Slack CPU-Hours for decoder configured using a syntactic language model (Schwartz et al., 2011) in
addition to a 5-gram language model.

Figure 5: Cumulative slack CPU time for n processing cores when processing a paral-
lel translation task split inton jobs using various splitting algorithms. Slack CPU time
is caused when some jobs finish before others. Zero slack time indicates conditions
where all jobs complete simultaneously.

117

PBML 98 OCTOBER 2012

Algorithm 4 Split input text into n parts to balance the estimated translation time of
all parts.

function T-S(n,input,estimate)
for i← 0 . . . (input.length −1) do

sentence[i].time← estimate[i]
sentence[i].index← i

end for
S(sentence) {|x, y| y.time⇔ x.time}

◃ Sort sentences by time, in reverse order
for i← 0 . . . (input.length −1) do

p← L(times)
◃ Find partition with least time

output[p].append(input[sentence[i].index])
times[p]← times[p] + sentence[i].time

end for
return output

end function

5. Conclusion

While statistical translation models could, in theory, condition on previously trans-
lated sentences, in practice virtually no widely used models do so. Translation is
therefore embarrassingly parallel — a document to be translated can be split into n

parts, with each part translated independently on a different computational node.
While such splitting is commonly performed, a suboptimal naive splitting tech-

nique (Algorithm 1) is used by all translation software of which we are aware. In this
work we have presented three more effective corpus splitting algorithms (Algorithms
2, 3 and 4), enabling substantial speed-ups in parallel decoding time at virtually no
additional cost.

We observe that while Algorithm 2 fails to improve over Algorithm 1 for a standard
Moses configuration for small values of n, for values of n > 8, and for all values of
n using the slow syntactic language model, Algorithm 2 represents a clear improve-
ment. Results for Algorithm 3 show further speedups over Algorithms 1 and 2 in
most configurations. Algorithm 4 is the clear winner, nearly eliminating slack time in
many cases.

While the most effective algorithm (Algorithm 4) requires per-sentence decode
times from previous decodes, in most realistic settings, Algorithm 3 provides much
of the benefit of Algorithm 4 in terms of decreased computational slack time while
requiring little changes to existing decoding scripts which use the naive Algorithm 1.

Implementations in Ruby and Java of all four splitting algorithms are provided at
http://github.com/dowobeha/balance-corpus.

118

http://github.com/dowobeha/balance-corpus

Lane Schwartz Better Splitting Algorithms for Parallel Corpus Processing (109–119)

Bibliography

Cheng, T.C.E. and C.C.S. Sin. A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research, 47:271–292, 1999.

De, Prabuddha and Thomas E. Morton. Scheduling to minimum makespan on unequal parallel
processors. Decision Sciences, 11(4):586–602, October 1980.

Graham, Ron L. Bounds on certain multiprocessing timing anomalies. The Bell Systems Technical
Journal, 45(9):1563–1581, November 1966.

Graham, Ron L. Bounds on certain multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, March 1969.

Hu, T.C. Parallel sequencing and assembly line problems. Operations Research, 9(6):841–848,
1961.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Compu-
tational Linguistics, Demo and Poster Sessions, pages 177–180, Prague, Czech Republic, June
2007.

Och, Franz. Minimum error rate training in statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Computational Linguistics, pages 160–167, Sapporo,
Japan, July 2003.

Och, Franz and Hermann Ney. Discriminative training and maximum entropy models for sta-
tistical machine translation. In Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 295–302, Philadelphia, Pennsylvania, July 2002.

Panwalkar, S.S. and Wafik Iskander. A survey of scheduling rules. Operations Research, 25(1):
45–61, 1977.

Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for automatic
evaluation of machine translation. In Proceedings of the 39th Annual Meeting of the Association
for Computational Linguistics, pages 311–318, Toulouse, France, 2001.

Schwartz, Lane, Chris Callison-Burch, William Schuler, and Stephen Wu. Incremental syntactic
language models for phrase-based translation. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Techologies, pages 620–631,
Portland, Oregon, USA, June 2011.

Address for correspondence:
Lane Schwartz
Lane.Schwartz@wpafb.af.mil
2255 H St, Dayton, OH 45433, USA

Opinions, interpretations, conclusions, and recommendations are those of the authors and are not nec-
essarily endorsed by the United States Air Force. Cleared for public release on 19 Jan 2011. Originator
reference number RH-11-107802. Case number 88ABW-2011-0185. Thanks to Grant Erdmann and Tim
Anderson, and to the anonymous reviewers.

119

	Introduction
	Related Work
	Better Splitting Algorithms
	Experimental Configuration
	Conclusion

