
The Prague Bulletin of Mathematical Linguistics
NUMBER 98 OCTOBER 2012 51–61

pycdec: A Python Interface to cdec

Victor Chahuneau, Noah A. Smith, Chris Dyer
Language Technologies Institute, Carnegie Mellon University

Abstract
This paper describes pycdec, a Python module for the cdec decoder. It enables Python code

to use cdec’s fast C++ implementation of core finite-state and context-free inference algorithms
for decoding and alignment. The high-level interface allows developers to build integrated
MT applications that take advantage of the rich Python ecosystem without sacrificing compu-
tational performance. We give examples of how to interact directly with the main cdec data
structures (lattices, hypergraphs, sparse feature vectors), evaluate translation quality, and use
the suffix-array grammar extraction code. This permits rapid prototyping of new algorithms
for training, data visualization, and utilizing MT and related structured prediction tasks.

1. Introduction

Machine translation decoders are complex pieces of software. They must provide
efficient search and inference algorithms, represent large translation grammars (e.g.,
phrase tables), and support scoring of hypotheses with a variety of feature functions.
Typically, they also contain functionality for parameter learning and translation qual-
ity evaluation. Despite this sophistication, machine translation can be formalized
quite well using familiar, well-defined mathematical objects (e.g., lattices, vectors, hy-
pergraphs, weighted finite-state transducers) and in terms of just a few algorithms
(e.g., FST/CFG intersection, shortest path search, etc.).

Although this convenient and precise mathematical language exists (and is, of
course, used in the academic literature), the programmatic interfaces to real transla-
tion systems are much more complicated. On one hand, the low-level implementation
in the decoder’s native language (usually C++ or Java) is highly optimized, making
the mapping between the mathematical primitives discussed in papers and the actual
code difficult to perceive. On the other hand, the high-level command-line interface

© 2012 PBML. All rights reserved. Corresponding author: vchahune@cs.cmu.edu
Cite as: Victor Chahuneau, Noah A. Smith, Chris Dyer. pycdec: A Python Interface to cdec. The Prague
Bulletin of Mathematical Linguistics No. 98, 2012, pp. 51–61. doi: 10.2478/v10108-012-0008-7.

PBML 98 OCTOBER 2012

that decoders expose is not suitably expressive for anything but the most coarse au-
tomation. As a result, when new researchers and engineers master the theory of MT,
they must still invest a great deal of work in learning a real software system before
they can really innovate. This paper describes a new Python interface for the cdec de-
coder designed to narrow the gap between theory and practice.

cdec is a good candidate for this task because it has been designed with modular-
ity in mind from the beginning (Dyer et al., 2010). We choose Python as the language
to expose the API for its large user base and rich extension ecosystem, and also be-
cause it is an interpreted language supporting both object-oriented and functional
programming. The goals for this project include:

• exposing the decoder functionality as a library with a natural, easy-to-understand
interface;

• providing access to the decoder’s data structures, including translation hyper-
graphs, input lattices, hypothesis feature vectors, etc.;

• allowing direct integration of external Python libraries such as NLTK (Bird et al.,
2009) and scikit-learn (Pedregosa et al., 2011) into machine translation systems;
and

• encouraging creative use of machine translation technology by programmers
who do not need to learn the details of open-source machine translation systems.

The pycdec interface is implemented using Cython (Behnel et al., 2011) and included
as part of the open-source cdec distribution.1 In the following, we give an introduc-
tion to its main functionality and then describe a few applications of the new interface.

2. Related Work

Experiment management tools (Koehn, 2010; Clark et al., 2010) abstract the inter-
nals of the decoder from the user to provide a uniform interface to the main training
steps of the system. While these facilitate the coordination of large experimental se-
tups, they must be configured using either a domain-specific language or a graphical
interface that the user has to learn to manipulate the system. We go in the opposite di-
rection and directly expose the decoder to the user in a modern and familiar language,
Python.

Recent work has also explored the use of visualization tools for machine transla-
tion. Weese and Callison-Burch (2010) describe extensions to the Joshua decoder to
populate a graphical interface used to display derivation trees and hypergraphs. We
obtain similar functionality with just a couple of lines of pycdec in conjunction with
existing visualization tools (§ 4.1). Since our visualizations are computed with simple
Python scripts, developers have far more flexibility to innovate.

Finally, the popularity of web translation services such as Google Translate has
motivated the development of web interfaces for open-source translation tools (Fed-

1http://cdec-decoder.org

52

V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

ermann and Eisele, 2010). We demonstrate how such tools can be rapidly developed
using common networking and communication libraries (§ 4.2).

3. Library Description

The API of pycdec exposes the main data structures and algorithms necessary for
machine translation and similar structured prediction problems. When it makes sense
to do so, we retain the structure of the C++ interface, but otherwise follow the Python
conventions.

3.1. Basic Translation and Inference API

The translation interface is provided by the Decoder class. The constructor takes
arguments specifying the configuration of the decoder. Feature weights used by the
decoder can be assigned and modified at any time (for example, in an online training
algorithm).

Once the decoder is instantiated, it can translate sentences, optionally using a
sentence-specific grammar passed as a string argument. The result returned is a trans-
lation hypergraph encoding the search space explored by the decoder.

The Hypergraph object is central to this system, and therefore it supports several
types of operations:

• extraction of the Viterbi translation (viterbi), source and target trees
(viterbi_trees) and of the corresponding feature vector (viterbi_features);

• extraction of k-best translations (kbest), source and target trees (kbest_trees)
and of the corresponding feature vectors (kbest_features);

• operations that modify the hypergraph, including:
– rescoring with new weights (reweight),
– inside-outside pruning (prune),
– intersection with a reference sentence or lattice (intersect); and

• iteration over the edges and nodes that form the hypergraph.
As an example, here is how to use a hierarchical phrase-based decoder to translate

a sentence with a grammar read from a file:

import cdec
Create and configure a decoder object
decoder = cdec.Decoder(formalism='scfg',

feature_function=['WordPenalty', 'KLanguageModel lm.klm'],
add_pass_through_rules=True)

Set weights for the language model features
decoder.weights['LanguageModel_OOV'] = -1
decoder.weights['LanguageModel'] = 0.1
Read a SCFG from a file
grammar = open('grammar.scfg').read()

53

PBML 98 OCTOBER 2012

Translate the sentence; returns a translation hypergraph
hg = decoder.translate('traduttore , traditore .', grammar=grammar)
Extract the best hypothesis from the hypergraph
print(hg.viterbi())

Other formalisms such as phrase-based translation can be accessed in a similar way
by setting the appropriate configuration parameters for the decoder.

3.2. Grammar Extraction API

To minimize memory usage and code complexity, cdec uses per-sentence grammars
(i.e., grammars containing just the rules that can match the words in a single test
sentence). While these grammars can be constructed from arbitrary tools, pycdec in-
cludes the suffix array grammar extractor of Lopez (2007), which uses an efficient
compiled representation of a parallel corpus and word alignment to construct trans-
lation grammars on demand for new test sentences. The Python module makes this
online grammar extraction procedure particularly simple.

After the training corpus has been compiled into a suffix array representation using
the tools distributed with cdec, the resulting configuration can be used to call the
grammar extractor for any arbitrary input:
extractor = cdec.sa.GrammarExtractor('extractor_config.py')
decoder = cdec.Decoder(formalism='scfg')
sentence = 'traduttore , traditore .'
decoder.translate(sentence, grammar=extractor.grammar(sentence))

The extraction algorithm is implemented in Cython and is suitable for online extrac-
tion of grammars from very large corpora (Lopez, 2008).

3.3. Translation Quality Evaluation

cdec includes implementations of basic evaluation metrics (BLEU and TER), ex-
posed in Python via the cdec.score module. For a given (reference, hypothesis) pair,
sufficient statistics vectors (SufficientStats) can be computed. These vectors are
then added together for all sentences in the corpus and the final result is finally con-
verted into a real-valued score.

Writing a script which computes the BLEU score for a set of hypotheses and refer-
ences is thus straightforward:
import cdec.score
with open('hyp.txt') as hyp, open('ref.txt') as ref:

stats = sum(cdec.score.BLEU(r).evaluate(h) for h, r in zip(hyp, ref))
print('BLEU = {0:.1f}'.format(stats.score * 100))

Multiple references can be used by supplying a list of strings instead of a single string:
cdec.score.BLEU([r1, r2])

54

V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

澳洲

与

是

北�

有 邦交

的

少数 国家

之一

。

S

S

S

X

X

X

X

X

X

S

S

S

X

australia is

X

one of the X

few countries

X

have diplomatic relations X

with north korea

X

.

Figure 1. Source (Chinese) and target (English) parse trees, drawn using NLTK

When implementing training algorithms using pycdec (§ 4.3), it is often necessary
to manipulate k-best lists of scored hypotheses. For every metric, sentence scorers are
able produce such sets of hypotheses (CandidateSet). For each Candidate in the list,
its sentence-level metric score (score), feature vector (fmap) and output string (words)
can be obtained.

4. Applications

In this section, we provide several examples using the pycdec module to solve
visualization, parameter estimation, and grammar extraction problems.

4.1. Visualizing the Result of Decoding

We can make use of the functionality of NLTK to visualize derivation trees that
result from the decoding of a sentence under a synchronous grammar. Fig. 1 shows an
example for a Chinese/English hierarchical phrase-based system. The corresponding
Python code is:
hg = decoder.translate(sentence)
f_tree, e_tree = hg.viterbi_trees()
nltk.Tree(f_tree).draw() # draw source tree
nltk.Tree(e_tree).draw() # draw target tree

55

PBML 98 OCTOBER 2012

Another finite-state formalism supported by cdec is compound splitting, in which
case the model output takes the form of a lattice (encoded as a hypergraph produced
by the translatemethod). Conversion to the Graphviz dot format (Ellson et al., 2003)
allows a compact visualization of the output space. Then we can use any of the several
Python interfaces to Graphviz to directly render the lattice as shown below:
hg = decoder.translate('tonbandaufnahme')
hg.prune(beam_alpha=9.0, csplit_preserve_full_word=True)
pydot.graph_from_dot_data(hg.lattice().todot()).write_svg('lattice.svg')

0

1
ton

2tonband 4

tonbandaufnahme

band

bandaufnahme

aufnahme

3aufn ahme

Finally, we introduce a more complex visualization which makes use of the direct
access to the hypergraph (Fig. 2). For the same sentence as our first example, we
represent the synchronous parse chart as a table, with each cell containing all the
possible non-terminals for the corresponding span. Then we color the background of
the cell according to the following value:

log
∑

node∈nodes

max
edge→node

p(edge)

This gives an indication of how much uncertainty is present at each level of the
parse. We believe that this is an efficient method to compactly visualize the enormous
output space produced by the decoder: the hypergraph contains 244, 232 edges and
77 nodes encoding a total of 3.8× 1028 paths!

We conclude by noting that, as opposed to specialized visualization tools (e.g.,
Weese and Callison-Burch, 2010), pycdec allows the programmer to use any algo-
rithm and output format to explore the various decoder data structures. We suggest
in particular the use of the IPython notebook (Pérez and Granger, 2007) to produce
HTML or SVG graphics directly in a web browser, as we did for Fig. 2.

4.2. A Web Translation Interface

Commercial web translation platforms, such as Google Translate, have been very
successful in bringing state of the art machine translation systems to internet users.
In a research environment, it can also be useful to provide similar web interfaces,
for example, for non-technical users to explore the strength and weaknesses of the
system.

56

V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

 Code

Chart Last saved: Jul 17 8:01 PM

File Edit View Insert Cell Kernel Help

In [60]:

In [63]:

 yield '</tr>'
 yield '</table>'

display_html(' '.join(table()), raw=True)

[澳洲]
X/S X/S X/S X/S X/S X/S X/S X/S X/S X/S S/Goal

[是]
X X X X X X X X X X

[与]
X X X X X X X X X

[北�]
X X X X X X X X

[有]
X X X X X X X

[邦交]
X X X X X X

[的]
X X X X X

[少数]
X X X X

[国家]
X X X

[之一]
X X

[。]
X

 Code

Chart Last saved: Jul
17 8:01 PM

File Edit View Insert Cell Kernel Help

In [63]:

In [54]:

In []:

def lines():
 yield '<div style="border:1px solid black; height:1em; display:inline-block">'
 for i in arange(1e-12, 1, 0.05):
 x = int(log(i) * 100)
 yield ' '
 yield '</div>'

display_html(''.join(lines()), raw=True)

def lines2():
 for i in arange(1e-12, 1, 0.05):
 x = int(log(i) * 100) + 50
 yield ' '

display_html(''.join(lines2()), raw=True)

probability

0 1

Figure 2. Chart for the synchronous parse of a Chinese sentence

web
UI

suffix array
extractor

cdec
decoder

NLTK
tokenizer

HTTP ØMQsource text tok. sentence grammar

flask
web server

detokenizer + recaser
translated sentence

Figure 3. Architecture of the web translation service

57

PBML 98 OCTOBER 2012

Since pycdec provides an access to the decoder directly from Python, it is possible
to implement such a service with standard networking libraries to manage commu-
nication. Fig. 3 illustrates the messages transmitted between the three layers of the
architecture as a piece of text is translated:

• The user interface consists of a HTML page with a JavaScript UI interacting with
the web server via asynchronous HTTP requests.

• When the web server – a Python application implemented using the flask web
framework – receives a translation request, it applies standard pre-processing
steps to the input. The text is first segmented into sentences, and each sentence
is in turn tokenized. We rely on NLTK for this step, at least when the source
language is English. Then, each sentence is sent separately through a ZeroMQ2

socket to the translation server, using the pyzmq library.
• The translation server receives individual sentences, for which it extracts gram-

mars on the fly as explained in § 3.2, before calling the decoder to translate the
sentence with the extracted grammar. It replies to the web server with the trans-
lated sentence.

• The web server then post-processes each translated sentence and recomposes
the translated text block before transmitting it back to the web UI.

Even with such a minimal architecture, our system can easily be scaled by multiplying
the number of translation servers and relying on ZeroMQ to distribute translation
tasks to the multiple decoder instances.

4.3. Parameter Estimation

Another natural use case for pycdec is to facilitate development of new discrimi-
native parameter learning algorithms in Python. Such algorithms (e.g., Chiang et al.,
2008; Hopkins and May, 2011; Gimpel and Smith, 2012) use the decoder to compute
statistics over the hypergraphs or k-best lists produced by decoding a development
set so as to optimize some objective function (like BLEU, or likelihood). In these al-
gorithms, the majority of the computational effort is the decoding step (or a similar
inference problem, such as computing posterior probabilities over n-grams), whereas
the manipulation of the weight vector is inexpensive. Thus, a natural division of labor
is to use Python’s mathematical libraries for manipulation of the weight vector and
pycdec for inference.

Advantages of writing a new training method with pycdec include the possibility
to easily debug code by directly interacting with the decoder data structures through
the Python interpreter, and the availability of mature machine learning libraries such
as scikit-learn.

To illustrate these claims, we implement a recently published training method that
is not currently included in cdec. We choose Bazrafshan et al. (2012), a simple exten-

2http://www.zeromq.org

58

http://www.zeromq.org

V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

decoder = cdec.Decoder(...)

def get_pairs(source, reference):
hg = decoder.translate(source)
1. Generate a list containing the k best translations
cs = cdec.score.BLEU(reference).candidate_set()
cs.add_kbest(hg, K)
2. Use the uniform distribution to sample n random pairs
from the set of candidate translations
pairs = []
for _ in range(n_samples):

ci = cs[random.randint(0, len(cs) - 1)]
cj = cs[random.randint(0, len(cs) - 1)]
3. Keep a pair of candidates if the difference between their score
is bigger than a threshold t
if abs(ci.score - cj.score) < score_threshold: continue
pairs.append((ci.fmap - cj.fmap, ci.score - cj.score))

4. From the potential pairs kept in the previous step,
keep the s pairs that have the highest score
for x, y in heapq.nlargest(n_pairs, pairs, key=lambda xy: abs(xy[1])):

5. For each pair kept in step 4, make two data points
yield x, y
yield -1 * x, -1 * y

The DictVectorizer converts dictionaries into sparse vectors
vectorizer = sklearn.feature_extraction.DictVectorizer()

for _ in range(n_iterations):
Collect training pairs
X, g = [], []
for source, reference in zip(sources, references):

for x, y in get_pairs(source, reference):
X.append(dict(x))
g.append(y)

Train a linear regression model
model = sklearn.linear_model.LinearRegression()
X = vectorizer.fit_transform(X)
model.fit(X, g)
Update weights with the learned model
for fname, fval in zip(vectorizer.feature_names_, model.coef_):

decoder.weights[fname] = (alpha * fval +
(1 - alpha) * decoder.weights[fname])

Figure 4. Python code for Tuning as Linear Regression (Bazrafshan et al., 2012)

59

PBML 98 OCTOBER 2012

sion to PRO (Hopkins and May, 2011) which uses linear regression instead of a binary
classifier to rank sampled training pairs (briefly: the model is trained to predict the
difference in sentence level BLEU scores based on a difference in feature vectors). The
complete Python code is given in Fig. 4.

5. Conclusion

We have presented pycdec, a high-level Python interface to the fast cdec decoder.
We illustrated how such an interface allows effortless development of visualizations,
training algorithms and applications using machine translation. We hope that the
release of our tool will encourage further creative uses of finite-state and context-free
methods for machine translation and related applications.

Acknowledgments

This research is supported by the U. S. Army Research Laboratory and the U. S. Army
Research Office under contract/grant number W911NF-10-1-0533.

Bibliography

Bazrafshan, M., T. Chung, and D. Gildea. Tuning as linear regression. In Proc. of NAACL-HLT,
pages 543–547. Association for Computational Linguistics, 2012.

Behnel, S., R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, and K. Smith. Cython: The best of
both worlds. Computing in Science Engineering, 13(2):31–39, March–April 2011.

Bird, S., E. Klein, and E. Loper. Natural language processing with Python. O’Reilly Media, 2009.
URL http://nltk.org.

Chiang, D., Y. Marton, and P. Resnik. Online large-margin training of syntactic and structural
translation features. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 224–233. Association for Computational Linguistics, 2008.

Clark, J.H., J. Weese, B.G. Ahn, A. Zollmann, Q. Gao, K. Heafield, and A. Lavie. The machine
translation toolpack for LoonyBin: Automated management of experimental machine trans-
lation hyperworkflows. The Prague Bulletin of Mathematical Linguistics, 93:117–126, 2010.

Dyer, C., J. Weese, H. Setiawan, A. Lopez, F. Ture, V. Eidelman, J. Ganitkevitch, P. Blunsom, and
P. Resnik. cdec: A decoder, alignment, and learning framework for finite-state and context-
free translation models. In Proc. of the ACL (Demonstration track), pages 7–12. Association for
Computational Linguistics, 2010.

Ellson, J., E.R. Gansner, E. Koutsofios, S.C. North, and G. Woodhull. Graphviz and Dynagraph –
static and dynamic graph drawing tools. In Junger, M. and P. Mutzel, editors, Graph Drawing
Software, pages 127–148. Springer-Verlag, 2003. URL http://graphviz.org.

Federmann, C. and A. Eisele. MT server land: An open-source MT architecture. The Prague
Bulletin of Mathematical Linguistics, 94:57–66, 2010.

60

http://nltk.org
http://graphviz.org

V. Chahuneau, N. A. Smith, C. Dyer pycdec: A Python Interface to cdec (51–61)

Gimpel, K. and N.A. Smith. Structured ramp loss minimization for machine translation. In
Proceedings of NAACL, 2012.

Hopkins, M. and J. May. Tuning as ranking. In Proc. of EMNLP, pages 1352–1362. Association
for Computational Linguistics, 2011.

Koehn, P. An experimental management system. The Prague Bulletin of Mathematical Linguistics,
94:87––96, 2010.

Lopez, A. Hierarchical phrase-based translation with suffix arrays. In Proc. of EMNLP-CoNLL,
pages 976–985, 2007.

Lopez, A. Tera-scale translation models via pattern matching. In Proc. COLING, pages 505–512,
2008.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011. URL http://scikit-learn.org.

Pérez, F. and B.E. Granger. IPython: a system for interactive scientific computing. Comput. Sci.
Eng., 9(3):21–29, 2007. URL http://ipython.org.

Weese, J. and C. Callison-Burch. Visualizing data structures in parsing-based machine transla-
tion. The Prague Bulletin of Mathematical Linguistics, 93:127–136, 2010.

Address for correspondence:
Victor Chahuneau
vchahune@cs.cmu.edu
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213, USA

61

http://scikit-learn.org
http://ipython.org

	Introduction
	Related Work
	Library Description
	Basic Translation and Inference API
	Grammar Extraction API
	Translation Quality Evaluation

	Applications
	Visualizing the Result of Decoding
	A Web Translation Interface
	Parameter Estimation

	Conclusion

