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Abstract
We describe an open-source implementation of the Margin Infused Relaxed Algorithm

(MIRA) for statistical machine translation (SMT). The implementation is part of the Moses
toolkit and can be used as an alternative to standard minimum error rate training (MERT).
A description of the implementation and its usage on core feature sets as well as large, sparse
feature sets is given and we report experimental results comparing the performance of MIRA
with MERT in terms of translation quality and stability.

1. Introduction

1.1. Background

Statistical Machine Translation (SMT) systems usually consist of a number of mod-
els, each dealing with a particular aspect of the translation task. The core features
of models like those described in (Koehn, 2010), i.e. phrase table, language model
and reordering model, are likelihood-based features that are estimated in a genera-
tive fashion. These features are combined in a log-linear model as shown in equation
(1), which produces a weighted score of all feature functions hk given a source sen-
tence f, a target sentence e and a derivation d.

P(e,d|f) =
exp

∑K
k=1 λkhk(e,d,f)∑

e’,d’ exp
∑K

k=1 λkhk(e’,d’,f)
(1)

Feature functions can consist of the generative features mentioned above but can
also be arbitrary features whose values are not to be interpreted as probabilities, e.g.
a word or phrase penalty. It is quite straightforward to improve the discriminative
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power of the model by adding feature functions hk. For example we might want to
use binary phrase features as in equation (2) to measure how much a particular phrase
pair helps to discriminate between good and bad translations.

hk(fi, ei) =

{
1, if fi=“dieses Haus” and ei=“this house”
0, otherwise

(2)

If we assign a weight λi to each of them, we can let the parameter tuning algo-
rithm decide which features are useful for translation and which should be dropped.
However, since the number of fine-grained features like these can easily grow in the
thousands or millions, they pose a challenge for parameter tuning algorithms.

The Margin Infused Relaxed Algorithm (MIRA) (Crammer and Singer, 2003) is
an online large margin algorithm that enforces a margin between different transla-
tions of the same sentence. This margin can be tied to a loss function which makes it
straightforward to integrate BLEU (Papineni et al., 2002) or another quality measure.
Given that we can provide the learning algorithm with good oracle translations, the
model is tuned to score hypothesis translations with higher BLEU scores better than
translations with lower BLEU scores. Picking oracle translations that represent good,
reachable translations to update towards is an important part of the algorithm.

MIRA learns a weight w vector by additively updating the current decoder weights.
After each new input sentence fi ∈ {f1, .., fn} was translated by the decoder, MIRA
seeks the smallest update to the current weights subject to the following constraint.
The difference in model scores, ∆hj · w = (h(e∗i ) − h(eij)) · w, between an oracle
translation e∗i and a hypothesis translation eij ∈ {ei1, .., eim} must be at least as large
as the loss L(e∗i , eij) = lj between them. h(ei) is a feature vector representation of
translation ei and the loss is defined as the difference in BLEU scores here but could
be measured by other metrics as well.

The constrained optimization problem is illustrated in equation (3), where ξ is a
non-negative slack variable1, C is a positive aggressiveness parameter that controls the
relative size of the update, t ranges over rounds of the algorithm and j ranges over a
subset of hypothesis translations.

wt+1 = argminw
1

2
∥w − wt∥2 + C

∑
j

ξj

subject to
lj − ∆hj · w ≤ ξj, ∀j ∈ J ⊆ {1, ..,m}

(3)

1Slack variables are introduced when the data are not linearly separable, see (Cortes and Vapnik, 1995).
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Constructing the Lagrangian of equation (3) and taking partial derivatives yields
the update rule in equation (4) which is defined in terms of the dual variables αj.
The vector α of dual variables constitutes the step size for MIRA. Equation (5) shows
how to solve for α if there is only one constraint in the optimization problem. The
parameter C functions as an upper bound for α in the dual formulation2. For large
optimization problems,α can be found using iterative algorithms such as the Hildreth
algorithm (Censor and Zenios, 1997) or SMO (Platt, 1998).

wt+1 = wt +
∑
j

αj∆hj (4)

α = min
{
C,

l− ∆h · w
∥∆h∥2

}
(5)

1.2. Motivation

Minimum Error Rate Training (MERT) is to date the most frequently used param-
eter tuning algorithm for SMT systems. It iteratively optimizes the parameters of an
SMT model separately along each feature dimension and because of this, the number
of parameters it can tune reliably ranges between only 15 to 30. The final weights de-
pend on the given start weights which means that some prior knowledge about how a
“good” set of feature weights looks like is advantageous. Another issue with MERT is
that it uses random restarts and so the results can vary considerably between different
runs.

MIRA has been suggested for tuning machine translation systems with larger fea-
tures sets. Watanabe et al. (2007) and Chiang et al. (2009) added thousands of features
to their baseline systems and showed improved translation quality after tuning the en-
hanced models with MIRA. Arun and Koehn (2007) explored training a phrase-based
SMT system in a discriminative fashion with MIRA. McDonald et al. (2005) were the
first to apply MIRA to train a dependency parser.

In order to promote further research for SMT systems in terms of feature engi-
neering, it is important to have a method for tuning feature-rich models efficiently.
The requirement for larger tuning sets when training sparse models suggests that on-
line methods like MIRA will prove especially useful when scaling up discriminative
training.

2. MIRA implementation for Moses

MIRA computes its weight updates by selecting hypothesis and oracle translations
and solving an optimization problem with the constraints posed by these transla-
tions. Our implementation of MIRA solves a similar optimization problem to those of

2For details and derivations see (Crammer et al., 2006).
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(Watanabe et al., 2007) and (Chiang et al., 2008) and was shown above in equation (3).
The update for the optimization problem solved in every iteration of MIRA is com-
puted with the Hildreth algorithm. The specific setup of the optimization problem
can be controlled with parameters, for example, the number and type of hypothesis
translations used for discriminative training can be varied.

Oracle translations are selected according to a modified decoder objective function:
ê = arg maxe (model score(e) + approx. BLEU score(e)). It is possible to use 3 different
lists of hypothesis translations as suggested by Chiang et al., who used an n-best list
according to the model score, a list of “good” translations (hope) according to the oracle
selection objective and a list of “bad” translations (fear) according to ê = arg maxe
(model score(e) - approx. BLEU score(e)). Another option is to use only the hope and
fear lists and leave out the n-best model translations.

The algorithm works by iterating over the training set sentence by sentence (or
batch by batch), running the decoder on the current example to produce hypothesis
translations. Given the resulting batch of translations, the feature vector representa-
tions are turned into constraints from which an update is computed and the algorithm
moves on to the next example.

2.1. Main parameters

The following list shows the most important parameters for MIRA training. They
were adapted from the literature about MIRA for SMT (mostly (Chiang et al., 2009),
(Chiang et al., 2008), (Watanabe et al., 2007), (Arun and Koehn, 2007)). An epoch
denotes a complete pass through the tuning data.
--hope-fear (def: true), --model-hope-fear (def: false), 2 n-best lists: constraints are

formed between all pairs of hope and fear translations, or 3 n-best lists: each
translation forms a constraint with the 1-best hope translation (oracle)

--learner Perceptron update or MIRA update (def: “mira”)
--shuffle the development set may be shuffled to avoid sequence bias (def: false)
--average-weights the final weights can be computed over all seen weight vectors

(def: false) or only those of the current epoch
--batch-size number of input sentences processed as a batch (def: 1)
--slack MIRA updates can be regularized (def: 0.01); smaller values mean more reg-

ularization, 0 means no regularization (parameter C in objective)
--sentence-bleu (def: true), --history-of-oracles, --history-of-1best (def: false)

sentence-level BLEU with smoothed precision counts for ngrams with n > 1 or
approximate document-level BLEU using a history as suggested by Chiang et al.

--mixing-frequency see §2.3 for description (def: 5)
--perceptron-learning-rate (default: 0.01), --mira-learning-rate (def: 1) learning rates

for weight vector updates
--scale-update scale MIRA update by oracle BLEU score (better oracles yield larger

updates, def: false)
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2.2. Stopping criterion and final weight selection

MIRA stops when no update has been performed during a full epoch and by de-
fault, it also stops when during three consecutive epochs the sum of all updates in each
dimension has not changed by more than a predefined value (default: 0.01). This is
supposed to capture the point when no more important updates to the weight vector
are made and hence convergence was reached.

However, the selection of the final weights depends on MIRA’s performance on
a development test set that is translated using the current decoder weights during
training (the number of times is configurable). According to our experiments, select-
ing the best weights found during 5-10 training epochs yields good results and the
algorithm does not seem to improve further with more training epochs.

It is also possible to set a decreasing learning rate that reduces the size of the up-
dates as the training progresses (parameter --decr-learning-rate).

2.3. Parallelization

MIRA can be run on multiple processors to speed up training times. In general,
parallelization for online learning methods is not straightforward, because the up-
dates build on top of each other sequentially. (McDonald et al., 2010) proposed a
variation of a parameter mixing strategy that has proven useful for log-linear models,
called iterative parameter mixing. It splits the training data into shards and each of n pro-
cessors working in parallel updates its weight vector only according to the examples in
its shard. After each training epoch, the resulting n weight vectors are mixed together
using mixture coefficients. McDonald et al. showed for a named-entity recognition
and a dependency parsing task that iterative parameter mixing yields performance
as good as or better than training serially on all data.

Our implementation makes use of the Message Passing Interface (MPI). It follows
the description of iterative parameter mixing and parameterizes the number of times
per epoch the weight vectors are mixed across processors (no mixture coefficients are
used). When the mixing frequency is set to 0, no mixing of the current weight vectors
is performed but the accumulated weights from all past updates are still averaged
across processors before dumping the average weights to disk.

2.4. Adding new feature functions

How to add new feature functions to Moses is described on the Moses website
http://www.statmt.org/moses/?n=Moses.FeatureFunctions. When using score pro-
ducers with an unlimited number of score components (features), it makes sense to
keep their weights separate from the moses.ini file because in that case, we do not have
a predefined set of feature IDs. Implementing those kinds of features is described in
paragraph Moses.SparseFeatureFunctions.
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2.5. Usage

The MIRA implementation is currently located at mosesdecoder/branches/mira-mtm5/.
In order to use multiple processors for MIRA, it should be run from a training script3

that starts the requested number of mira processes with mpirun. The script also picks
up weight files dumped by MIRA to automatically translate a given development test
set with the respective weights and compute its BLEU score. When using sparse
features on top of the core features, the training script will separate them from the
dumped weight files and put them into a separate weight file that can be passed to
the Moses decoder with the parameter -weight-file.

Caching of translation options in Moses should be switched off in the moses.ini
file used by MIRA ([use-persistent-cache] 0) in order to keep translations options
always up to date with respect to the current decoder weights.

Available parameters can be printed with the --help flag. To start MIRA, run:
mira-mtm5/mira/mira -f moses.ini -i source-file -r reference-file or
mira-mtm5/mira/training-expt.perl -config expt.cfg -exec and pass parame-
ters and the path to MIRA in the config file.

3. Experiments

All experiments where carried out on the news commentary corpus, with devel-
opment set nc-dev2007, dev. test set nc-test2007 (for selecting final weights) and test
sets nc-devtest2007 and news-test2008, see (Callison-Burch et al., 2008). Experiments
were configured to use one oracle and one hypothesis translation (1 hope/1 fear) and
sentence-level BLEU. Results are reported for language pairs en-de, en-fr and de-en.
We show how the performance of MIRA compares to the performance of MERT on
a core feature set and then show some results of models with additional large set of
sparse features. We also report observations on parallelization and start weights.

3.1. MERT and MIRA results for models with core features

Tables 1 and 2 compare the performance of MERT and MIRA on a model with
14 core features. The results for MIRA were obtained by running the algorithm for
10 epochs on the original tuning set as well as well as two shuffled versions of it (3
runs) in order to test how much the final results depend on the order of the tuning set.
The MERT results were obtained by averaging the results of 3 runs to account for the
randomness within MERT. The tables show averaged values over the different runs as
well as the standard deviation of BLEU and length ratio for the development test set.
We can see that for 7 out of 9 compared BLEU scores, MIRA yields equivalent or better
results, while the standard deviation shows that the order of the tuning sentences does
not have a big impact on the final results for MIRA.

3mira-mtm5/mira/training-expt.perl, sample config file: expt.cfg
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Lang. pair Avg BLEU(dev test) σ Avg BLEU(test1) Avg BLEU(test2)

en-de 17.6 (0.988) 0.083 15.1 (0.966) 11.0 (1.046)
en-fr 28.2 (1.000) 0.045 15.2 (1.125) 17.7 (1.016)
de-en 26.5 (1.012) 0.082 22.9 (1.048) 15.5 (0.950)

Table 1. Average results of 3 MERT runs, news commentary data, length ratio in brackets

Lang. pair Avg BLEU(dev test) σ Avg BLEU(test1) Avg BLEU(test2)

en-de 17.7 (0.981) 0.013 14.9 (0.957) 11.1 (1.041)
en-fr 28.3 (0.994) 0.077 15.2 (1.119) 17.8 (1.011)
de-en 26.6 (1.000) 0.041 23.2 (1.034) 15.4 (0.939)

Table 2. Average results of 3 MIRA runs (10 epochs), news commentary data, length ratio in brackets

Table 3 shows results on the two test sets when choosing the best weights from the
first 5 epochs. The results are only slightly different (some even better) than the results
for 10 epochs of training, which suggests that training for 5 epochs might already
be sufficient. MERT using 8 threads on a machine with 8 CPUs took 10-21 hours
for training (for 7-14 iterations), MIRA using 8 parallel processors took 4 hours for 5
iterations and 8 hours for 10 iterations. If a development test set is used to determine
the final weight vector, some extra resources are needed for decoding that set.

3.2. MIRA results for models with large feature sets

Table 4 compares results on the development test set for a model with core fea-
tures and two models with sparse target bigram (TB) features, one using word bi-
grams with 33,300 active features and the other using POS bigrams with 1,400 active
features. Even though these features do not seem to improve translation performance
very much4, the results show that MIRA can deal with a large number of features and
manages to train the core weights properly at the same time.

4Also the results on the test sets varied only slightly (less than ± 0.1 BLEU).

Lang. pair Avg BLEU(dev test) σ Avg BLEU(test1) Avg BLEU(test2)

en-de 17.6 (0.970) 0.024 14.8 (0.945) 11.2 (1.031)
en-fr 28.0 (0.987) 0.059 15.3 (1.112) 17.8 (1.005)
de-en 26.5 (0.997) 0.039 23.3 (1.030) 15.3 (0.936)

Table 3. Average results of 3 MIRA runs (5 epochs), news commentary data, length ratio in brackets
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Lang. pair en-de

core features 17.7 (0.981)
core + word TB features 17.8 (0.984)
core + POS TB features 17.7 (0.986)

Table 4. Average BLEU scores on dev. test set (avg.
of 3 MIRA runs) over 10 epochs, news commentary

data, length ratio in brackets.

Feature name Feature weight
Distortion 0.207147

WordPenalty -1.34204
LM 0.645341

dlmb_<s>:ART 0.247516
dlmb_<s>:NN -0.10823

dlmb_ADJ:NN 0.137049
dlmb_NN:ADJ -0.164686

Table 5. Example feature
weights of model with core + TB

features

Table 5 shows some of the core feature weights and the weights of some frequently
occurring sparse features. We can see that the bigram feature dlmb_<s>:ART got a
positive weight while the feature dlmb_<s>:NN got a negative weights, which means
that the model prefers German sentences starting with articles to those starting with
nouns. The model also learned that an adjective is likely to preceed a noun in German
while it is not likely to follow a noun.

3.3. Parallelization

We ran experiments with different numbers of processors to investigate the vari-
ance between different parallel setups. Table 6 shows results for the same MIRA setup
with 1, 2, 4, and 8 processors, all with a mixing frequency of 5. Since paralleliza-
tion works by dividing the development set into shards that are sent to different pro-
cessors, doubling the number of processors reduces the training time by half. Even
though there is some variation in the results, we cannot observe a general tendency
across language pairs that increasing the number of processors would change the re-
sults in a systematic way. The difference in BLEU scores within the same language
pair was at most 0.2 which can be considered a negligible loss.

3.4. Start weights

MERT is usually initialized with feature weights that yield better performance than
uniform weights according to past experience. The reported results for the MIRA
experiments were achieved with uniform start weights (all weights 0.1), while the
MERT experiments were initialized with the following weights: language model=0.5,
distortion/reordering=0.3, translation features=0.2, word penalty=-1.

In the experiment reported in table 7, the development of the word penalty weight
for uniform and preset start weights is shown. The reported values were measured
at the end of each epoch, for 10 epochs. Even though the uniform weight started at
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Lang. pair # processors Best BLEU(dev. test set)

en-de

1 17.7 (0.985)
2 17.7 (0.977)
4 17.7 (0.975)
8 17.7 (0.973)

en-fr

1 28.3 (1.002)
2 28.4 (0.997)
4 28.2 (1.002)
8 28.3 (0.999)

de-en

1 26.6 (1.007)
2 26.6 (1.007)
4 26.6 (1.005)
8 26.5 (1.003)

Table 6. Varying the number of processors with a mixing frequency of 5, best results on dev. test set
during 10 epochs, length ratio in brackets

WP start 1 2 3 4 5 6 7 8 9 10
0.1 -0.26 -0.60 -0.85 -1.00 -1.14 -1.25 -1.33 -1.41 -1.50 -1.54

-1 -1.09 -1.22 -1.32 -1.41 -1.46 -1.53 -1.58 -1.61 -1.64 -1.67

Table 7. Word penalty weight after each of 10 epochs, for uniform and preset start weights.

0.1 and the preset weight at -1, they became quite similar after a few epochs. The best
result on the development test set was BLEU=17.68 with uniform start weights and
BLEU=17.66 with preset start weights which shows that uniform initialization does
not harm the performance of MIRA. However, after the first epoch, the development
test performance was BLEU=17.14 for uniform start weights and BLEU=17.65 for pre-
set start weights, indicating that good start weights result in shorter training times.

4. Conclusions

We presented an open-source implementation of the Margin Infused Relaxed Al-
gorithm for the Moses toolkit. We reported results on core feature sets as well as large,
sparse feature sets, showing that MIRA yields comparable performance to MERT on
the core features and is able to handle much larger feature sets. We have also given
evidence that MIRA can be run on parallel processors with negligible or no loss and
that it works well with uniform start weights. In the future we want to scale up to
larger training sets and explore new ways of integrating sparse features.
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