
The Prague Bulletin of Mathematical Linguistics
NUMBER 94 SEPTEMBER 2010 57–66

MT Server Land:
An Open-Source MT Architecure

Christian Federmann, Andreas Eisele
DFKI, German Research Center for Artificial Intelligence

Abstract
We describe the implementation of MT Server Land, an open-source architecture for machine

translation that is developed by the MT group at DFKI. A broker server collects and distributes
translation requests to several worker servers that create the actual translations. Users can access
the system via a fast and easy-to-use web interface or use an XML-RPC-based API interface to
integrate it into their applications. The source code is published under a BSD-style license and
is freely available from GitHub1.

1. Introduction

Easy-to-use machine translation (MT) services that are available via the internet
are an important means to increase visibility of MT research and to help shaping the
multi-lingual web. Applications such as Google Translate allow lay users to quickly
and effortlessly create translations of texts or even complete web pages; the continued
success of such services shows the potential that lies in usable machine translation,
something both developers and researchers should strive for.

Despite impressive progress in recent times, MT can by far not be regarded as a
solved problem, and the ongoing research on many levels requires careful analysis of
existing systems that may vary along many dimensions or that may be hybrid solu-
tions composed from building blocks taken from different paradigms. A significant
number of existing systems from ongoing research projects should be made available
to researchers from the field for a couple of reasons.

1You can download a copy of the code at http://github.com/cfedermann/mt-serverland.

© 2010 PBML. All rights reserved. Corresponding author: cfedermann@dfki.de
Cite as: Christian Federmann, Andreas Eisele. MT Server Land: An Open-Source MT Architecure. The Prague
Bulletin of Mathematical Linguistics No. 94, 2010, pp. 57–66. doi: 10.2478/v10108-010-0020-8.



PBML 94 SEPTEMBER 2010

For one, the ease of comparative evaluation would advance the understanding of
merits and weaknesses and hence facilitate progress towards higher quality in MT.
But the easy availability of systems would also allow researchers and developers from
related areas to use MT functionality as building blocks in a larger context. Areas
that would benefit most from this include efforts towards computer-aided translation
(CAT) platforms, cross-lingual search and question answering, easy deployment of
multilingual websites, knowledge acquisition from multilingual document reposito-
ries, and many more.

Beyond such groups, also decision makers from language industry and large or-
ganisation that are potential users of MT functionality should be given easy access to
the existing functionality in order to allow them to judge the potential of such systems
for specific applications.

Last not least, the general public, who often takes the offerings of service providers
like Google or Microsoft to be representative of the current state of the art in MT,
should be given a chance to compare these services against the functionality provided
by ongoing research. In the context of ongoing MT research projects at DFKI’s lan-
guage technology lab, such as EuroMatrixPlus, ACCURAT or TaraXÜ, we have de-
cided to design and implement such a translation application. We have published
the source code as open-source and hope that it becomes a useful tool for the MT
community.

2. Scope and Requirements

Considering some intended usages of the toolkit, we have collected a set of require-
ments our software should meet. We are planning for a staged delivery, where sub-
sequent releases of the software will meet an increasing number of the requirements
and where the priorities concerning the next round will be determined based on ex-
perience collected with active usage of the system as it was already delivered, in a set
of realistic applications. The requirements can be grouped into core functionalities,
important extensions, and features that would be useful in advanced applications.

Core Functionalities: A central requirement for the toolkit is to provide a sin-
gle entry point to multiple MT engines for multiple users. The system should also
support multiple language pairs and multiple MT engines per language pair, includ-
ing different types of engines (SMT, RBMT, hybrid MT) and multi-engine setups, as
well as variants of systems optimized for multiple application domains, text types,
and styles. The system should provide access both via user-friendly, web-based in-
teraction, as well as programmatically via a simple, yet powerful API such as a Web
service.

Important Extensions: The system should allow to assign appropriate roles to
each user (e.g. not every user should have access to every system, some user may
have priority over others, etc.). The system should support many concurrent trans-
lation requests and multiple installations of the engines on different computers. It

58



C. Federmann, A. Eisele MT Server Land (57–66)

Figure 1. Overview of the System Architecture

should make sure that work is distributed over available resources via queuing and
load balancing. The system should be able to recognize and handle exceptional cir-
cumstances caused by failure of engines and communication. The system should min-
imize the required administrative effort, even under heavy load.

Advanced Features: The sytem should be able to pass not only translation in-
and output between users and MT engines, but also additional data generated by
the engines, such as alignments, results of intermediate processing steps, as far as
the engines are able to generate these. It should allow users to pass in additional in-
formation to the engines that will allow the engines to adapt to the needs of the each
user (personalization, incremental training). Furthermore, it should provide auxiliary
functionality, such as splitting of longer documents into paragraphs and sentences,
tokenisation, case normalisation.

3. System Architecture
In this section, we will give an overview on the system’s general architecture and

the several components it is composed of. Figure 1 shows a bird’s-eye view on the
MT Server Land application. A similar application has been described in (Victor M.
Sanchez-Cartagena, 2010).

3.1. Overview

The system consists of two different layers: first, we have the broker server that
handles all direct requests from end users or API calls alike. Second, we have a layer
of so-called worker servers, each implementing some sort of machine translation func-

59



PBML 94 SEPTEMBER 2010

package serverland;

message TranslationRequestMessage {
required string request_id = 1; // Random UUID-4 32-digit hex number
required string source_language = 2; // ISO 639-2 language codes
required string target_language = 3;
required string source_text = 4; // UTF-8 encoded texts
optional string target_text = 5;

message KeyValuePair {
required string key = 1;
required string value = 2;

}

repeated KeyValuePair packet_data = 6; // Contains additional request data
}

Figure 2. TranslationRequestMessage .proto definition

tionality. All communication between users and workers is channeled through the
broker server which acts as a central “proxy” server. For users, both broker and work-
ers “constitute” the MT Server Land application.

Human users connect to the system using any modern web browser, API access
can be implemented using XML-RPC calls. It would be relatively easy to extend the
API interface to support other protocols such as SOAP or REST. By design, all internal
method calls that connect to the worker layer have to be implemented with XML-RPC.
In order to prevent encoding problems with the input text, we send and receive all
data encoded as Base64 Strings between broker and workers; the broker server takes
care of the necessary conversion steps.

3.2. Broker Server

The broker server has been implemented using the django web framework which
takes care of low-level tasks and allows for rapid development and clean design of
components. We have used the framework for other project work before and think it
is well suited to the task. More information on django can be found on the project
website which is available at http://www.djangoproject.com/, the framework itself
is available under an open-source BSD-license.

3.2.1. Translation Request Messages

Each translation request is defined by a unique request id, a source and target lan-
guage as well as a source text. After the translation has been produced, the request
will also contain the target translation and, for some worker implementations, addi-
tional data such as log files, alignment information or even parse trees that have been
returned from the translation engine.

60



C. Federmann, A. Eisele MT Server Land (57–66)

In order to allow flexible serialization of translation requests, we have implemented
them using Google Protocol Buffers (Google, 2010b). Our .proto definition is shown
in Figure 2, it can be compiled into Python code using the following command:

$ protoc --python_out=workers/ TranslationRequestMessage.proto

This will create a new Python file named TranslationRequestMessage_pb2 inside the
workers/ folder of our MT Server Land application. Using protocol buffers allows to
easily serialize Python instances to a binary representation and vice versa, something
that has proven to be very useful during the development of the system.

3.2.2. Object Models

The broker server implements two main object django models which we describe
below. Please note that we have also developed additional object models, e.g. for
quota management or API access authentication. See the MT Server Land source code
for more information.

A WorkerServer instance stores all information related to a remote worker server.
This includes the respective hostname and port address as well as a name and a short
description. In fact, this is just a shallow wrapper around the XML-RPC interface.

The TranslationRequest model represents an external translation job and related
information such as the chosen worker server, the assigned request id and additional
information about the creation date or the owner. We also prepare some fields for
caching of translation request state. Please note that neither source nor target texts
are stored within the django instance; instead they are kept in form of a serialized
TranslationRequestMessage file which is named by the request id and stored in a
configurable location on the broker server’s hard disk.

3.2.3. User Interface

We developed a browser-based web interface to access and use the MT Server Land
application. End users first have to authenticate before they can access their dashboard
which lists all known translation requests for the current user and also allows to create
new requests. Once a translation request has been completed by the chosen worker
server, the result is transferred to the broker server’s data storage, deleting the request
data from the worker server. The user can view the result within the dashboard or
download the file to a local hard disk. It is also possible to delete “pending” transla-
tion requests at any time, effectively terminating the corresponding thread within the
connected worker server.

61



PBML 94 SEPTEMBER 2010

3.2.4. API Interface

In parallel to the browser interface, we have designed and started to implement
an API that allows to connect applications to the MT functionality provided by our
service using XML-RPC. Again, we first require authentication before any machine
translation can be used. We plan to use so-called auth tokens, i.e. randomly generated
32-digit hexadecimal numbers which are bound to a certain user account, for this. We
provide methods to list all requests for the current “user” (i.e. the application account)
and to create, download, or delete translation requests. Extension to REST or SOAP
protocols is possible. Again, serialized TranslationRequestMessage objects are used
to exchange requests between the user’s application and the MT Server Land.

3.2.5. Starting the Broker Server

Like any other django project, the broker server can be started in debug mode using
the python manage.py runserver command. For internal deployment of the system,
we have used the lighttpd web server which is a lightweight, fast and open-source web
server that can be easily combined with a django application. More information can
be found on the project website which is available at http://www.lighttpd.net/. We
have configured the web server to serve all django media files and send all other re-
quests to the django FCGI server that runs in a background process. A sample server
configuration file lighttpd-django.conf and startup/stop scripts for django’s FCGI
mode are contained in the source code release package.

3.3. Worker Servers

Actual machine translation functionality is implemented by a layer of so-called
worker servers that are connected to the central broker server. We have created a
Python-based AbstractWorkerServer class which is the foundation for all worker im-
plementations. The basic worker interface is described next.

Attributes: finished: Boolean that controls the main server loop. Defaults to
False. server: The actual SimpleXMLRPCServer instance is bound here. jobs: Dictio-
nary memorizing all translation requests the worker has accepted. Maps request ids
as keys to Process objects that represent the actual worker threads. Request ids are
random 32-digit hexadecimal UUID numbers.

General Methods: __init__: Constructor, takes care of setting up the logging and
creates the actual XML-RPC server instance. start_worker: Starts the main server
loop that handles requests. stop_worker: Sets finished to True and terminates all
running translation processes. Intermediate results are lost, the file storage of the
worker server should be cleaned afterwards to avoid keeping invalid requests.

Status Methods: list_requests: Returns a list of all registered translation re-
quest ids. is_alive: Returns True to signal that the worker server is up and run-
ning. is_busy: Checks whether the worker server is currently processing requests.

62



C. Federmann, A. Eisele MT Server Land (57–66)

is_ready: Checks whether the request with the given request id is finished. is_valid:
Checks whether the request id is valid, i.e. contained within jobs.

Translation Methods: language_pairs: Returns a read-only tuple containing tu-
ples that encode the available language pairs which are supported by this translation
engine. All languages are identified by ISO 639-2 codes2. language_code Converts
the given ISO 639-2 code into the internal representation of language codes used
by the worker’s translation engine. start_translation: Takes the given serialized
TranslationRequestMessage object, creates a local copy inside the worker server’s
/tmp/ folder and then starts a Process that calls the handle_translation handler.
fetch_translation: Retrieves the translation result for the given request id if al-
ready available. Otherwise returns an empty String. delete_translation: Deletes
the translation request with the given request id from the jobs dictionary, terminating
the connected process if still running. handle_translation: Implements the actual
translation functionality of a worker implementation. Custom worker servers need to
overwrite this method.

3.3.1. Example: Implementing a Google Translate Worker

Worker servers can be implemented by subclassing AbstractWorkerServer and
creating a custom handle_translation method. The listing in Figure 3 shows the
actual code for a “Google worker” server that sends its input text to Google Translate
and extracts the translation from the resulting website.

3.3.2. Worker Server Implementations

We have implemented worker servers for several MT systems:
- Lucy RBMT: our Lucy (Alonso and Thurmair, 2003) worker is implemented

using an internal Lucy Server mode wrapper. Due to the system’s architecture,
this has to be run on a Windows machine. The actual worker code can be started
on any platform.

- Moses SMT: a Moses (Koehn et al., 2007) worker is configured to serve exactly
one language pair. We use the Moses Server mode to keep translation and lan-
guage model in memory which helps to speed up the translation process.

- Joshua SMT: similar to the Moses worker, we have created a Joshua (Li et al.,
2009) worker that works by creating a new Joshua instance for each translation
request.

We have also created worker servers for popular online translation engines such as
Google Translate, Microsoft Translator and Yahoo! Babel Fish which already
makes available a huge number of language pairs for use in MT research contexts.

2See http://www.loc.gov/standards/iso639-2/ for more information.

63



PBML 94 SEPTEMBER 2010

import re, sys, urllib, urllib2
from worker import AbstractWorkerServer
from TranslationRequestMessage_pb2 import TranslationRequestMessage

class GoogleWorker(AbstractWorkerServer):
""" Implementation of a worker server that connects to Google Translate. """
__name__ = 'GoogleWorker'

def language_pairs(self):
"""Returns a tuple of all supported language pairs for this worker."""
languages = ('afr', 'alb', 'ara', ..., 'vie', 'wel', 'yid')
return tuple([(a,b) for a in languages for b in languages if a != b])

def language_code(self, iso639_2_code):
"""Converts a given ISO-639-2 code into the worker representation."""
mapping = { 'afr': 'af', 'alb': 'sq', ... 'wel': 'cy', 'yid': 'yi' }
return mapping.get(iso639_2_code)

def handle_translation(self, request_id):
"""Translation handler that connects to Google Translate."""
handle = open('/tmp/{0}.message'.format(request_id), 'r+b')
message = TranslationRequestMessage()
message.ParseFromString(handle.read())

source = self.language_code(message.source_language)
target = self.language_code(message.target_language)
the_url = 'http://translate.google.com/translate_t'
the_data = urllib.urlencode({'js': 'n', 'sl': source, 'tl': target,
'text': message.source_text.encode('utf-8')})

the_header = {'User-agent': 'Mozilla/5.0'}

opener = urllib2.build_opener(urllib2.HTTPHandler)
http_request = urllib2.Request(the_url, the_data, the_header)
http_handle = opener.open(http_request)
content = http_handle.read()
http_handle.close()

result_exp = re.compile('<textarea name=utrans wrap=SOFT ' \
'dir="ltr" id=suggestion.*>(.*?)</textarea>', re.I|re.U)

result = result_exp.search(content)

if result:
message.target_text = unicode(result.group(1), 'utf-8')
handle.seek(0)
handle.write(message.SerializeToString())

handle.close()

Figure 3. Source code for the Google Translate worker

4. Basic Usage

The MT Server Land code can be obtained from GitHub and extracted to a local
folder named serverland/ using the following command:

$ git clone git://github.com/cfedermann/mt-serverland.git serverland

64



C. Federmann, A. Eisele MT Server Land (57–66)

After downloading the source code, we need to create a database for the project. This
can be done using the manage.py syncdb command, as shown below:

$ python manage.py syncdb

It is mandatory to create a superuser account during the syncdb step. We also pro-
vide a sample development.db file with a sample user admin:admin at the GitHub
repository3. It is now possible to startup django in development using manage.py
runserver, as we have already mentioned. However, before any translation work can
be done, at least a single worker server instance has to be started and registered inside
the django database.

The available worker server implementations can be found inside workers/. We
also provide scripts to start and stop worker server instances. To startup the Google
Translate worker server, we have to start it using the following command:

$ ./start_worker.py GoogleWorker localhost 1234

This will create a new GoogleWorker instance serving from http://localhost:1234/.
In order to make this worker instance accessible from the MT Server Land system, we
have to register it inside the broker server’s database. For this, we access the django
administration backend (which is available at http://127.0.0.1:8000/admin/) and
create a WorkerServer object pointing to the correct host and port address. After
the worker server has been created, authenticated users can create new translation
requests which are then processed by the respective worker server.

5. Conclusion and Future Work

We have presented an open-source architecture for machine translation. The sys-
tem can flexibly be extended and allows lay users to make use of MT technology
within a web browser or by using XML-RPC method calls from custom applications.
A central broker server receives requests from clients and dispatches them to a layer
of worker servers that take care of the translation duties. We have used open-source
software to build the system and have released the source code under a BSD-style
license.

5.1. Open-Source Development

We hope that the MT Server Land software will benefit from and grow by be-
ing maintained as an open-source project. We have opted for hosting at the GitHub
platform as this guarantees transparent development and ensures open access to the

3At http://github.com/downloads/cfedermann/mt-serverland/mt-serverland-development.db

65



PBML 94 SEPTEMBER 2010

source code. We continue to extend the MT Server Land code and available worker
servers, possibly starting at the Machine Translation Marathon in Le Mans for which
we are currently preparing project ideas related to the MT Server Land platform.

Acknowledgments

We would like to thank all members of the MT Group at DFKI for testing the MT
Server Land prototype and for all their helpful feedback during the development of
this software. This work was supported by the EuroMatrixPlus project (IST-231720)
which is funded by the European Community under the Seventh Framework Pro-
gramme for Research and Technological Development.

Bibliography

Alonso, Juan A. and Gregor Thurmair. The Comprendium Translator system. In Proceedings of
the Ninth Machine Translation Summit, New Orleans, USA, 2003.

Google. Google Translate, 2010a. URL http://translate.google.com/.
Google. Google Protocol Buffers, 2010b. URL http://protobuf.googlecode.com/.
Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola

Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst. Moses: Open source toolkit for statistical
machine translation. In Proceedings of the 45th Annual Meeting of the Association for Com-
putational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages
177–180, Prague, Czech Republic, June 2007. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/P07-2045.

Li, Zhifei, Chris Callison-Burch, Chris Dyer, Sanjeev Khudanpur, Lane Schwartz, Wren Thorn-
ton, Jonathan Weese, and Omar Zaidan. Joshua: An open source toolkit for parsing-based
machine translation. In Proceedings of the Fourth Workshop on Statistical Machine Translation,
pages 135–139, Athens, Greece, March 2009. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/W09/W09-0x24.

Microsoft. bing Translator, 2010. URL http://www.microsofttranslator.com/.
Victor M. Sanchez-Cartagena, Juan Antonio Perez-Ortiz. ScaleMT: a Free/Open-Source Frame-

work for Building Scalable Machine Translation Web Services. In Open Source Tools for Ma-
chine Translation, MT Marathon 2010, Dublin, Ireland, 2010.

Yahoo! Yahoo! Babel Fish, 2010. URL http://babelfish.yahoo.com/.

Address for correspondence:
Christian Federmann
cfedermann@dfki.de
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, GERMANY

66

http://translate.google.com/
http://protobuf.googlecode.com/
http://www.aclweb.org/anthology/P07-2045
http://www.aclweb.org/anthology/W/W09/W09-0x24
http://www.microsofttranslator.com/
http://babelfish.yahoo.com/

	Introduction
	Scope and Requirements
	System Architecture
	Overview
	Broker Server
	Translation Request Messages
	Object Models
	User Interface
	API Interface
	Starting the Broker Server

	Worker Servers
	Example: Implementing a Google Translate Worker
	Worker Server Implementations


	Basic Usage
	Conclusion and Future Work
	Open-Source Development


