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Semantic Network Manual Annotation and its Evaluation

Václav Novák

Abstract
epresent contribution is a brief extract of (Novák, 2008). e PragueDependency Treebank (PDT)

is a valuable resource of linguistic information annotated on several layers. ese layers range from mor-
phemic to deep and they should contain all the linguistic information about the text. e natural exten-
sion is to add a semantic layer suitable as a knowledge base for tasks like question answering, information
extraction etc. In this paper I set up criteria for this representation, explore the possible formalisms for
this task and discuss their properties. One of them, Multilayered Extended Semantic Networks (Multi-
Net), is chosen for further investigation. Its properties are described and an annotation process set up.
I discuss some practical modifications of MultiNet for the purpose of manual annotation. MultiNet el-
ements are compared to the elements of the deep linguistic layer of PDT. e tools and problems of the
annotation process are presented and initial annotation data evaluated.

1. Motivation

e longterm goal of the research in the field of Artificial Intelligence has been to create
a machine which would understand natural language input and be able to perform the rea-
soning necessary to perform the desired actions. It is obvious that such a machine must be
capable of storing the acquired information in its memory in a form suitable for the necessary
reasoning. We will call this form the knowledge representation. Let’s discuss the criteria which
should be imposed upon the form of the information representation, and the existing systems
for knowledge representation and their properties with respect to the given criteria.

ere are several reasons why Tectogrammatical Representation (TR) may not be sufficient
in a question answering system or machine translation:

1. ere is no information about sorts of concepts represented by TR nodes. Sorts (the
upper conceptual ontology) are an important source of constraints for semantic relations.
Every relation has its signature which in turn reduces ambiguity in the process of text
analysis and inferencing.
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2. e syntactic functors Actor and Patient disallow creating inference rules for cognitive
roles like Affected object or State carrier. For example, the axiom stating that an affected
object is changed by the event cannot be feasibly expressed in the TR framework. How-
ever, if needed, this information can be stored in the lexicon for individual verb frames.

3. Lexemes of TR have no hierarchy; this limits especially the search for an answer in a
question answering system. In TR there is no counterpart of SUB, SUBR, and SUBS
MultiNet relations, which connect subordinate concepts to superordinate ones and in-
dividual object representatives to corresponding generic concepts.

4. In TR, each sentence is isolated from the rest of the text, except for coreference arrows
connected to preceding sentences. is, in effect, complicates inferences combining
knowledge from multiple sentences in one inference rule.

5. Nodes in TR always correspond to a word or a group of words in the surface form of a
sentence or to a structure which is deleted on the surface (e.g., obligatory verb argument,
coordination member). ere are no means for representing knowledge generated dur-
ing the inference process, if the knowledge does not have the form of a TR. For example,
consider the axiom of temporal precedence transitivity (1):

(a ANTE b) ∧ (b ANTE c) → (a ANTE c) (1)

In TR, we cannot add an edge denoting (a ANTE c). We would have to include a propo-
sition like “a precedes c” as a whole new clause.

For all these reasons we need to extend our text annotation to a form suitable to more
advanced tasks. It is shown in (Helbig, 2006) that MultiNet is capable of solving all the above
mentioned issues.

2. Criteria

In order to efficiently retrieve and process the knowledge acquired in the form of natu-
ral language input, these criteria should be fulfilled by the internal knowledge representation
format:1

I. Associativity: e knowledge concerning a concept should be available without the ne-
cessity to iterate over the whole knowledge base. A representation lacking this property
would not be scalable to real problems.

II. Local interpretability: e knowledge necessary for interpretation of an object should
be limited to an easily identifiable local neighborhood of the concept (the knowledgemay
include a contextual embedding which is crucial for the concept interpretation).

III. Inference friendliness: e knowledge data format should allow for further inclusion of
new facts, acquired both by new texts and by automatic inferencing. A practical system
should be robust with respect to contradictions to avoid a situation where every proposi-
tion is true.

1Criteria II., A., B. and C. are modifications of some of the criteria imposed by (Helbig, 2006). I formulated criteria
I. and III.
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Apart from the overall necessary requirements, there are also further criteria necessary for
a representation if it is to be annotated manually:

A. Consistency: Analogous facts should be treated analogously.
B. Cognitive Adequacy: e representation must be understandable to the annotators and

easy to visualize and review.
C. Communicability: e instructions should contain applicable operational criteria (Ha-

jičová and Sgall, 1980), definitions, and standards.

e next requirement for the representational formalism is to integrate smoothly into the
layered nature of the PDT (Karcevskij, 1929, Callmeier et al., 2004).

Why are these requirements crucial?
Without associativity (I.), the query for information would always require a search through

the whole knowledge base. Furthermore, for queries which cannot be answered using only
one sentence, one would have to create a kind of associative structure on the fly to make use of
disambiguation, coreferences etc.

Local interpretability (II.) is needed for concepts embedded in a way that changes their
mode of existence. Consider the clause “If I were you”. We do not want to extract the informa-
tion that I refers to the same person as you. However, this is what we would infer if we ignored
the contextual embedding associated with the word if. erefore the knowledge representa-
tion must ensure this information is readily available for every piece of information without
the need to iterate through the whole knowledge base.

Inference friendliness (III.) allows us to enrich the acquired knowledge by applying infer-
ence rules. If we know that “Mrs. Hill is the current vice president finance”, we can infer for
instance that “e current vice president finance is Mrs. Hill”. An inference friendly representa-
tion will allow a compact representation of such an inference. Without this compactness (e.g.,
in the case where the inferencemust be included as a whole new sentence) the scale of practical
inferences would be very limited.

Without consistency (A.) the annotation process is unimaginable, because annotators are
able to use only a limited set of instructions and they always treat the new sentences by analogy.
If this were not the correct way to annotate, they could not produce meaningful results.

Cognitive adequacy (B.) is practical when the annotators must deal with complicated sen-
tences. ere are few people who understand modal operators and first order logic axioms,
but there are many people who understand the sentences in e Wall Street Journal. Ideally,
the complexity of annotating a sentence should be 100% correlated with the complexity of un-
derstanding its meaning. Without cognitive adequacy of the representation, the annotation
cannot leave the realm of toy sentences.

Communicability (C.) is another key to the success of annotation. A mere learning by
example can prove to be useful, but it fails in the case of border cases. Unfortunately, however
contradictory this may sound, border cases make up a significant percentage of decisions and
can be found in every Wall Street Journal sentence.
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3. Existing Meaning Representations

In this section we will discuss various formalisms of knowledge representation and their
conformance to the criteria presented in Section 2.

3.1. Representations Based on First Order Logic

e first attempts to formalize natural language were made using the predicate calcu-
lus (Frege, 1892). Since then various approaches have been trying to fix the problems of using
first order logic purely extensional interpretation of the meaning. First, intensional semantics
was developed (Montague, 1972) to introduce the notion of conceivable worlds. is theory
was further developed in several directions:

• TIL: Transparent Intensional Logic (Tichý, 1988) aimed at further elaboration of the se-
mantics of conceivable worlds

• Description Logic (Donini et al., 1996) focused on the computational aspects ofmeaning
representation.

• DRT: Discourse Representation eory (Eijk and Kamp, 1996) focused on the treatment
of coreferences, quantifiers, and their interplay.

• Hybrid Modal Logic (Areces and Blackburn, 2001, Areces, Blackburn, and Marx, 2004,
Blackburn, 2000, Blackburn, 2001) applied the framework of modal logic to natural lan-
guage semantics.

All these formalisms have been used to represent real-life sentences. ere has been a suc-
cessful attempt to automatically create DRT structures proposed in (Bos, 2005). Hybrid Modal
Logic has been investigated from the linguistic viewpoint in (Kruijff, 2001, Novák, 2004, Novák
and Hajič, 2006). e TIL has been subject to automatic transduction (Horák, 2001), but not
to manual annotation.

How do these systems fit into our criteria? ey are very strong in associativity (I.): every
concept is represented by one or more variables and these variables can be looked up easily. In-
ference friendliness (III.) is guaranteed as to the ease of addition of new knowledge: it can be
added by simply adding predicates. On the other hand the robustness with respect to contra-
dictions is addressed only in some of these systems and in general requires non-monotonicity
of the reasoning.

Local interpretability (II.) is addressed only in DRT, where the relevant contextual embed-
ding should be present only in the current box. Cognitive adequacy (B.) is the most difficult
obstacle which prevents these systems from being manually annotated. e model-theoretic
way of thinking and use of quantifiers are largely unintuitive. is is not apparent for sentences
which are usually addressed in the relevant literature (e.g., “Every farmer owns a donkey”).
Nevertheless, it emerges when we try to come up with a predicate calculus representation of
an ordinary sentence like “e U.S. trade representative, Carla Hills, announced …” It seems
unintuitive to think about trade as a function from possible worlds to a set of objects, which is
the typical treatment for nouns.
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3.2. Representations Based on Linguistic Structures

e meaning representations based on linguistic structures emerged as an extension of de-
pendency syntax (Tesnière, 1934). ere are various formalisms, which all share some common
features: they start with the text or speech and transform it into formalized layers of represen-
tation, where the last layer should be the most suitable for the knowledge representation tasks.
ey are:

• Functional Generative Description (Sgall, Hajičová, and Panevová, 1986), where the
highest layer of description is theTectogrammatical Representation (Hajičová, Panevová,
and Sgall, 2000)

• Robust Minimal Recursion Semantics (Copestake et al., 2005) as a pluggable layer of the
framework of (Callmeier et al., 2004)

• Meaning-Text eory (Mel’čuk, 1988, Bolshakov and Gelbukh, 2000), which is in many
respects similar to the FGD framework (Žabokrtský, 2005).

ese approaches have difficulties with respect to the inference friendliness (III.): to include
a piece of inferred knowledge, we oen have to add a whole new sentence which describes
the fact. For example if we are to apply a rule stating the symmetry of a predicate in a logic-
based system, we simply add one predicative statement for every instance. In a linguistics-based
system, we have to copy the whole statement and transform it into the inverse form.

enext obstacle concerns the cognitive adequacy: the tree constraints force the annotators
to choose only one connection where more of them could be applied: in “ey met during the
concert on Tuesday.” the above mentioned systems require the annotator to decide whether
on Tuesday is connected to met or concert, although from the knowledge base viewpoint it
would be ideal if both met and concert were connected with the temporal specification under
consideration.

3.3. Semantic Networks

Semantic networks, as different from the logic-based systems as they may seem, have much
in common with them. e semantic network, being a directed graph, can usually be turned
into a set of formulae of predicate calculus. emain difference lies in the fact that the relation-
ship between the predicates and the knowledge is not direct: the predicates encode information
about the network. e elements of the network then carry their own meaning.

e main advantage of semantic networks is their concept-centeredness. As noted on page
4 of (Helbig, 2006), the difference is similar to the difference between a logical programming
language (e.g., Prolog) and an object oriented programming language (e.g., Java). Every con-
cept should correspond to a cognitive concept and it is assumed that two distinct concepts do
not represent the same object, unless there is a piece of information indicating the opposite.
On the other hand, in a model-theoretic framework, the model builders tend to create a model
as small as possible, therefore collapsing the referents of all variables where possible. is, in
effect, oen leads to a wrong conclusion.

Individual semantic network formalisms differ in their repertoire of formalmeans. In prac-
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tice, two systems have been used for purposes of natural language processing:
• KL-ONE: knowledge representation system (Brachman and Schmolze, 1985)
• MultiNet: Multilayered Extended Semantic Networks (Helbig, 2006)
ey satisfy all the criteria presented in Section 2 and therefore they are discussed in the

remaining chapters.

3.4. Semantic Web

A Semantic web is sometimes considered yet another semantic representation. However,
it is more a framework allowing us to standardize the representations and exchange the data
in a structured format. It is therefore not possible to simply create a semantic web corpus.
e technologies being used are the Web Ontology Language (Horrocks and Patel-Schneider,
2004), which allows for standardization and exchange of ontologies, and Resource Descrip-
tion Framework (RDF Core Working Group, 2007), which is an XML-based data format for
exchanging predicate-like structures.

4. Evaluation Metrics

Human annotations are usually evaluated against each other to measure the consistency of
the annotation. e most common measures of agreement are accuracy (number of correct
decisions divided by the number of all decisions) and F-measure (harmonic mean between the
recall and the precision). However, these approaches suffer from the fact that some annota-
tion agreement is present simply by chance. is fact was the reason to propose annotation
agreement metrics corrected for the agreement by chance. First, Scott’s π (Scott, 1955) and
Cohen’s κ (Cohen, 1960) were introduced. ey were later generalized to theK coefficient of
agreement (Carletta, 1996).

I do not use any of these corrections for three reasons:
1. e agreement metrics itself is difficult to develop and to obtain the most appropriate

agreement score there is still much to do.
2. e agreement by chance is difficult to compute in such a complex situation. e prob-

ability that two annotators will produce exactly the same oriented graph with the same
size and all the attributes is virtually zero.

3. e measures have no clear probabilistic interpretation (Artstein and Poesio, 2007).
When a stable level of annotator agreement is achieved and maintained, and the agreement

measure is robust with respect to equivalent annotations, the metrics extended for hierarchical
values should be used. An example is Krippendorf ’s α (Krippendorff, 1980).

5. Evaluation Data

e initial evaluation presented in this section has been carried out on a portion ofeWall
Street Journal articles from the Penn Treebank (Marcus, Marcinkiewicz, and Santorini, 1993),
which have been annotated on all the FGD layers and are available as the Prague English De-
pendency Treebank (Hajič et al., est. 2009). Initially, some sentences were used during the
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training of annotators. ese sentences were removed from the evaluation sample. e eval-
uation sample contains 67 annotated sentences (1793 words), annotated by two annotators, of
which 46 sentences (1236 words) were annotated by three independent annotators. All anno-
tators are native English speakers.

6. Structural Agreement

e structural agreement is measured for every sentence in isolation in two steps. First,
the best match between the two annotators’ graphs is found. Most of the graph nodes are
connected to the tectogrammatical tree and for the remaining nodes, all possible one-to-one
mappings are constructed and the optimal mapping w.r.t. the F-measure is selected. Second,
the optimal mapping is used to compute the agreement.

Formally, we start with a set of tectogrammatical trees containing a set of nodesN . e an-
notation is a tupleG = (V,E, T,A), where V are the vertices,E ⊆ V ×V ×P are the directed
edges and their labels (e.g., agent of an action: AGT∈ P ), T ⊆ V ×N is themapping from ver-
tices to the tectogrammatical nodes, and finallyA are attributes of the nodes. We simplified the
problem by ignoring the mapping from edges to tectogrammatical nodes, the metaedges, and
the MultiNet edge attribute knowledge type. Analogously, G ′ = (V ′, E ′, T ′, A ′) is another
annotation of the same sentence and our goal is to measure the similarity s(G,G ′) ∈ [0, 1] of
G andG ′.

To measure the similarity we need a set Φ of admissible one to one mappings between ver-
tices in the two annotations. Amapping is admissible if it connects vertices which are indicated
by the annotators as representing the same tectogrammatical node:

Φ =

{
ϕ ⊆ V × V ′

∣∣∣ (2)

∀
n∈N
v∈V
v ′∈V ′

((
(v, n) ∈ T ∧ (v ′, n) ∈ T ′

)→ (v, v ′) ∈ ϕ
)

∧ ∀
v∈V

v ′,w ′∈V ′

((
(v, v ′) ∈ ϕ∧ (v, w ′) ∈ ϕ

)→ (v ′ = w ′)
)

∧ ∀
v,w∈V
v ′∈V ′

((
(v, v ′) ∈ ϕ∧ (w, v ′) ∈ ϕ

)→ (v = w)
)}

In Equation 2, the first condition ensures that Φ is constrained by the mapping induced by
the links to the tectogrammatical layer. e remaining two conditions guarantee that Φ is a
one-to-one mapping.

en we can define the annotation agreement s as

s(G,G ′,m) = Fm(G,G ′, ϕ∗) (3)
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where ϕ∗ is the optimal mapping between nodes of alternative annotations:

ϕ∗ = argmax ϕ∈Φ(Fm(G,G ′, ϕ)) (4)

and Fm is the F1-measure:

Fm(G,G ′, ϕ) =
2 ·m(ϕ)

|E| + |E ′|
(5)

wherem(ϕ) is the number of edges that match given the mapping ϕ. We use four variants of
m, which gives us four variants of F and consequently four scores for every sentence:
Directed unlabeled:

mdu(ϕ) =

∣∣∣∣∣{(v, w, ρ) ∈ E
∣∣∣∃v ′,w ′∈V ′,ρ ′∈P( (v ′, w ′, ρ ′) ∈ E ′

∧ (v, v ′) ∈ ϕ∧ (w,w ′) ∈ ϕ
)}∣∣∣∣∣

(6)

Undirected unlabeled:

muu(ϕ) =

∣∣∣∣∣{(v, w, ρ) ∈ E
∣∣∣∃v ′,w ′∈V ′,ρ ′∈P((

(v ′, w ′, ρ ′) ∈ E ′ ∨ (w ′, v ′, ρ ′) ∈ E ′
)

∧ (v, v ′) ∈ ϕ∧ (w,w ′) ∈ ϕ
)}∣∣∣∣∣

(7)

Directed labeled:

mdl(ϕ) =

∣∣∣∣∣{(v, w, ρ) ∈ E
∣∣∣∃v ′,w ′∈V ′( (v ′, w ′, ρ) ∈ E ′

∧ (v, v ′) ∈ ϕ∧ (w,w ′) ∈ ϕ
)}∣∣∣∣∣

(8)

Undirected labeled:

mul(ϕ) =

∣∣∣∣∣{(v, w, ρ) ∈ E
∣∣∣∃v ′,w ′∈V ′((

(v ′, w ′, ρ) ∈ E ′ ∨ (w ′, v ′, ρ) ∈ E ′
)

∧ (v, v ′) ∈ ϕ∧ (w,w ′) ∈ ϕ
)}∣∣∣∣∣

(9)
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Figure 1. Inter-annotator agreement depending on the sentence length.

ese fourm(ϕ) functions give us four possibleFm measures, which allows us to have four
scores for every sentence: sdu, suu, sdl and sul.

Figure 1 shows that the agreement is not correlated with the sentence length. is means
that longer sentences are on average no more difficult than short sentences. e variance de-
creases with the sentence length as expected.

In Figure 2 I present a comparison of directed and labeled evaluations with the undirected
unlabeled case. By definition, the undirected unlabeled score is the upper bound for all the
other scores. e directed score is well correlated and not very different from the undirected
score, indicating that the annotators did not have much trouble with determining the correct
direction of the edges. is might be in part due to support from the formalism and the cedit
tool: each relation type is specified by a sort signature; a relation that violates its signature is
reported immediately to the annotator. On the other hand, labeled score is significantly lower
than the unlabeled score, which suggests that the annotators have difficulties in assigning the
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Sample Annotators Agreement F-measure

suu sdu sul sdl

Smaller CB-CW 61.0 56.3 37.1 35.0
Smaller SM-CB 54.9 48.5 27.1 25.7
Smaller SM-CW 58.5 50.7 31.3 30.2
Smaller average 58.1 51.8 31.8 30.3
Larger CB-CW 64.6 59.8 40.1 38.5

Table 1. Inter-annotator agreement in percents. The results come from the two
samples described in the Section 5.

correct relation types. e correlation coefficient between suu and sul (approx. 0.75) is also
much lower than the correlation coefficient between suu and sdu (approx. 0.95).

Figure 3 compares individual annotator pairs. e scores are similar to each other and also
have a similar distribution shape.

A more detailed comparison of individual annotator pairs shows that there is a significant
positive correlation between scores, i.e., if two annotators can agree on the annotation, the
third annotator is also likely to agree, but this correlation is not a very strong one. e actual
correlation coefficient varies between 0.34 and 0.56. All the results are summarized in Table 1.

Acknowledgements is work was supported by the Czech Ministry of Education grants
LC536 and 0021620838 and by Czech Academy of Sciences grant 1ET201120505.
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Figure 2. Upper: Directed vs. undirected inter-annotator agreement. Lower:
Labeled vs. unlabeled inter-annotator agreement.
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Figure 3. Comparison of individual annotator pairs.

80



Václav Novák Semantic Network Annotation (69–82)

Bibliography

Areces, Carlos and Patrick Blackburn. 2001. Bringing them all Together. Journal of Logic and Computa-
tion, 11(5):657–669.

Areces, Carlos, Patrick Blackburn, and Maarten Marx. 2004. Hybrid Logics: Charac-
terization, Interpolation and Complexity. To appear in the Journal of Symbolic Logic,
http://www.loria.fr/projets/hylo/Papers/jsl.pdf.

Artstein, Ron and Massimo Poesio. 2007. Inter-coder agreement for computational linguistics. Compu-
tational Linguistics, submitted.

Blackburn, Patrick. 2000. Representation, Reasoning, and Relational Structures: A Hybrid Logic Mani-
festo. Logic Journal of the IGPL, 8(3):339–625.

Blackburn, Patrick. 2001. Modal Logic As Dialogical Logic. Synthese, 127(1 - 2):57–93, April.
Bolshakov, Igor and Alexander Gelbukh. 2000. e Meaning-Text Model: irty Years Aer. Interna-

tional Forum on Information and Documentation, 1:10–16.
Bos, Johan. 2005. TowardsWide-Coverage Semantic Interpretation. In Proceedings of Sixth International

Workshop on Computational Semantics IWCS-6, pages 42–53.
Brachman, Ronald and James Schmolze. 1985. An Overview of the KL-ONE Knowledge Representation

System. Cognitive Science, 9:171–216.
Callmeier, Ulrich, Andreas Eisele, Ulrich Schäfer, and Melanie Siegel. 2004. e Deepought Core

Architecture Framework. In Proceedings of LREC, May.
Carletta, Jean. 1996. Assessing Agreement on Classification Tasks: e Kappa Statistic. Computational

Linguistics, 22(2):249–254.
Cohen, Jacob. 1960. A coefficient of agreement for nominal scales. Educational and Psychological Mea-

surement, 20:37–46.
Copestake, Ann, Dan Flickinger, Carl Pollard, and Ivan Sag. 2005. Minimal Recursion Semantics: An

Introduction. Research on Language and Computation, 3(4):281–332, December.
Donini, Francesco M., Maurizio Lenzerini, Daniele Nardi, and Andrea Schaerf. 1996. Reasoning in

Description Logics. In Gerhard Brewka, editor, Principles of Knowledge Representation. CSLI Publi-
cations, Stanford, California, pages 191–236.

Eijk, Jan and Hans Kamp. 1996. Representing Discourse in Context. In Johan Benthem and Alice
Meulen, editors, Handbook of Logic and Language. Elsevier, Amsterdam, pages 179–237.

Frege, Gottlob. 1892. Über Sinn und Bedeutung. In Mark Textor, editor, Funktion - Begriff - Bedeutung,
volume 4 of Sammlung Philosophie. Vandenhoeck & Ruprecht, Göttingen.

Hajič, Jan, Kristýna Čermáková, Lucie Mladová, Anja Nedolužko, Jiří Semecký, Jana Šindlerová, Josef
Toman, and Zdeněk Žabokrtský. est. 2009. Prague English Dependency Treebank (in progress).

Hajičová, Eva, Jarmila Panevová, and Petr Sgall. 2000. A Manual for Tectogrammatic Tagging of the
Prague Dependency Treebank. Technical Report TR-2000-09, ÚFAL MFF UK, Prague, Czech Re-
public. in Czech.

Hajičová, Eva and Petr Sgall. 1980. Linguistic meaning and knowledge representation in automatic
understanding of natural language. In Proceedings of the 8th conference on Computational linguistics,
pages 67–75, Morristown, NJ, USA. Association for Computational Linguistics.

81



PBML 90 DECEMBER 2008

Helbig, Hermann. 2006. Knowledge Representation and the Semantics of Natural Language. Springer,
Berlin, Germany.

Horák, Aleš. 2001. e Normal Translation Algorithm in Transparent Intensional Logic for Czech. Ph.D.
thesis, Faculty of Informatics, Masaryk University, Brno, Czech Republic.

Horrocks, Ian and Peter F. Patel-Schneider. 2004. Reducing OWL Entailment to Description Logic Sat-
isfiability. Journal of Web Semantics, 1(4):345–357.

Karcevskij, Sergei. 1929. Du dualisme asymétrique du signe linguistique. Travaux du Cercle linguistique
de Prague, 1:88–93.

Krippendorff, Klaus. 1980. Content analysis: an introduction to its methodology. Sage Publications,
Newbury Park, CA.

Kruijff, Geert Jan. 2001. A Categorial-Modal Logical Architecture of Informativity. Ph.D. thesis, Faculty
of Mathematics and Physics, Charles University. http://www.coli.uni-sb.de/ gj/dissertation.phtml.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a large annotated
corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–330.

Mel’čuk, Igor A. 1988. Dependecy Syntax: eory and Practice. State University of New York Press.

Montague, Richard. 1972. Pragmatics and Intensional Logic. Semantics of Natural Language.

Novák, Václav. 2004. Towards Logical Representation of Language Structures. e Prague Bulletin of
Mathematical Linguistics, 82:5–86.

Novák, Václav. 2008. Semantic Network Manual Annotation and its Evaluation. Ph.D. thesis, Institute of
Formal and Applied Linguistics, Charles University, Prague, Czech Republic.

Novák, Václav and Jan Hajič. 2006. Perspectives of Turning Prague Dependency Treebank into a Knowl-
edge Base. In Proceedings of the LREC Conference, Genova, Italy.

RDF Core Working Group. 2007. Resource Description Framework (http://www.w3.org/RDF/).

Scott, William A. 1955. Reliability of Content Analysis: the Case of Nominal Scale Coding. Public
Opinion Quarterly, 19:321–325.

Sgall, Petr, Eva Hajičová, and Jarmila Panevová. 1986. e Meaning of the Sentence in Its Semantic and
Pragmatic Aspects. D. Reidel, Dordrecht, e Netherlands.

Tesnière, Lucien. 1934. Comment construire une Syntaxe. Bulletin de la Faculté des Lettres de Strasbourg,
pages 219–229.

Tichý, Pavel. 1988. e Foundations of Frege’s Logic. Walter de Gruyter & Co, Berlin/New York.

Žabokrtský, Zdeněk. 2005. Resemblances betweenMeaning-Texteory and Functional Generative De-
scription. In Proceedings of the 2nd International Conference of Meaning-Text eory, pages 549–557.

82


